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Motivated by the result of Rankin for representations of integers as sums of
squares, we use a decomposition of a modular form into a particular Eisenstein
series and a cusp form to show that the number of ways of representing a positive
integer n as the sum of k triangular numbers is asymptotically equivalent to the
modified divisor function σ

]

2k−1(2n + k).

1. Introduction

1A. General problem. We wish to study δk(n), the number of ways to write n as
the sum of k triangular numbers. This problem dates back to Gauss, who discovered
that every nonnegative integer can be represented as a sum of three triangular num-
bers. The basic problem is similar to questions about representations of integers
as sums of squares, and some of the basic techniques for attacking that problem
carry over. We define the function

2(q) :=

∞∑
n=−∞

qn2
= 1 + 2q + 2q4

+ 2q9
+ · · ·

so that
2k(q) =

∑
n≥0

rk(n)qn

where rk(n) is the number of representations of n as the sum of k squares. It
was exploited in [Rankin 1965] the fact that 2(1) is a modular form of weight 1

2
for 00(4) to study the functions rk(n). Ono, Robins, and Wahl [1995] defined an
analogous modular form to study triangular numbers.

We begin by defining triangular numbers.
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Definition 1.1. The n-th triangular number (n ≥ 0) is

Tn :=
n(n + 1)

2
.

These numbers may be geometrically interpreted as the number of dots in a grid
with the shape of an equilateral triangle of side length n. We also introduce the
generating functions

9(q) :=

∞∑
n=0

qTn = 1 + q + q3
+ q6

+ · · ·

and

9k(q) =

∞∑
n=0

δk(n)qn.

1B. Modular group and congruence subgroups. Before we formally define mod-
ular forms, we need to define the modular group and its subgroups.

Definition 1.2. Let A =
(

a b
c d

)
. The modular group 0 is

SL2(Z) = {A | a, b, c, d ∈ Z and det A = ±1}.

It is well known that 0 is generated by S =
(

0 −1
1 0

)
and T =

(
1 1
0 1

)
.

Definition 1.3. The congruence subgroups of level N ∈ N are defined as follows:

(1) 00(N ) := {A ∈ 0 | c ≡ 0 mod N };

(2) 01(N ) := {A ∈ 0 | c ≡ 0 mod N and a ≡ d ≡ 1 mod N };

(3) 0(N ) := {A ∈ 0 | c ≡ b ≡ 0 mod N and a ≡ d ≡ 0 mod N }.

It is easy to check that they are, in fact, subgroups.
It is clear that for every level N ∈ N, 0(N ) ≤ 01(N ) ≤ 00(N ) ≤ 0. More

precisely, the following identities hold [Koblitz 1993, p. 231]:

[0 : 00(N )] = N
∏
p | N

(
1 +

1
p

)
,

[0 : 01(N )] = N 2
∏
p | N

(
1 −

1
p2

)
,

[0 : 0(N )] = N 3
∏
p | N

(
1 −

1
p2

)
.
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We will make use of 00(4), which is generated by T and ST −4S. In particular,
[0 : 00(4)] = 6, with coset representatives

I =

( 1 0
0 1

)
, S−1T −2S =

( 1 0
2 1

)
, S =

( 0 −1
1 0

)
,

ST =

( 0 −1
1 1

)
, ST 2

=

( 0 −1
1 2

)
, ST 3

=

( 0 −1
1 3

)
.

Any group of 2×2 matrices gives rise to an action on the complex plane, namely
the linear fractional transformation

Az :=
az + b
cz + d

,

where A =
(

a b
c d

)
. In particular, 0 and its subgroups act on the upper half plane

H = {z ∈ C | Im(z) > 0}.

Considering the geometric meaning of orbits and equivalence classes under this
action on H leads to the idea of a fundamental domain. This is a subset of H

which possesses both convenient topological and geometric properties and is also
algebraically related to some 0 or one of its subgroups.

Definition 1.4. A closed, simply connected region F in H is called a fundamental
domain for a subgroup 0′ of 0 if every point in the plane is equivalent under 0′ to
a point in F and no two points in the interior of F are equivalent under 0′.

For example, a fundamental domain for 0 is the set

R0 = {z ∈ C | −
1
2 ≤ Re(z) ≤

1
2 , |z| ≥ 1}.

Figure 1 shows this fundamental domain, as well as the fundamental domain for
00(4)

For the sake of consistency, we will use R0′ to denote a fundamental domain
for 0′. The following lemma provides an algorithm to compute R0′ using R0, and
coset representation of 0′ in 0.

Lemma 1.5. Let 0′
≤ 0 be of finite index n in 0. If 0 =

⋃n
i=1 γi0

′ is its coset
representation, then

R0′ =

n⋃
i=1

γ −1
i R0.

Proof. This is proved in [Koblitz 1993, p.105]. �

Definition 1.6. Let 0′
≤ 0, and fix a fundamental domain R0′ . The points where

R0′ intersects the boundary ∂H = {i∞} ∪ R are called the cusps of 0′.
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Figure 1. The fundamental domains for 0 (left) and for 00(4) (right).

The full modular group has a single cusp at i∞. From the fundamental domain
for 00(4) shown in Figure 1, we see that 00(4) has three cusps, namely 0, 1

2 and
i∞.

1C. Modular forms. Modular forms are holomorphic functions on H which have
nice symmetry properties under the action of 0 or one of its subgroups. Specifi-
cally, we say

Definition 1.7. f : H → C is a modular form of weight k ∈ N over 00(N ) if

(i) f is holomorphic on H;

(ii) f is holomorphic at the cusps of 00(N );

(iii) for all A =
(

a b
c d

)
∈ 00(N ), the equation f (Az) = (cz + d)k f (z) holds for all

z ∈ H.

Definition 1.8. A modular form f over 0′ is called a cusp form if it vanishes at
all cusps of 0′.

If T ∈ 0′, it follows that a modular form over 0′ always has period 1. In other
words, f (z) = f (z + 1) for all z ∈ H. Therefore f has a Fourier expansion (also
called q-expansion) in q = e2π i z:

f (z) =

∞∑
n=0

c(n)qn.
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Modular forms of a given congruence subgroup and of fixed weight form a
vector space. This structure can be of great help when trying to study a particular
modular form. Using a suitable basis, we can decompose elements of a given
space of modular forms in terms of basis vectors. This technique often produces
expressions that are easy to work with.

Definition 1.9. The vector space of modular forms of weight k over the congruence
subgroup 0′ of 0 is denoted Mk(0

′). The subspace of cusp forms is denoted Sk(0
′).

For all 0′
≤0 which contain −I , both M2k+1(0

′) and S2k+1(0
′) are trivial. This

follows by applying the transformation −I to a modular form f (z), implying

f (z) = (−1)2k+1 f (z) = − f (z),

and hence f (z) = 0 for all z ∈ H. Thus, we may consider only modular forms of
even weight. Since 00(4) will be important in our work, we state without proof a
characterization of its spaces of even-weight modular forms. Recall the definition
of 2(z) =

∑
∞

n=−∞
qn2

.

Definition 1.10. Let F(z) be the following modular form of weight 2 over 00(4):

F(z) =

∞∑
n=1

σ1(2n + 1)q2n+1.

Lemma 1.11. M2k(00(4)) is a (k + 1)-dimensional vector space with basis

{Fk, Fk−124, . . . , F24(k−1), 22k
}.

Furthermore, S2k(00(4)) consists of all polynomials divisible by

24 F(24
− 16F) = η12(2z).

Therefore, there exists an isomorphism between S2k(00(4)) and M2k−6(00(4)).

Proof. This is Exercise III.3.17 in [Koblitz 1993], proved on pp. 235–6. �

1D. Representations as sums of triangular numbers. In our study of δk(n), we
focus on the expressions for δ4k(n). The generating function qk94k(q2) is in
M2k(00(4)), which is a well-understood space of small dimension. By decom-
posing elements of M2k(00(4)) for some k into basis vectors, it is possible to
find identities between qk94k(q2) and other forms in the same space with ac-
cessible coefficients. This is the method used by Ono et al. [1995] for δk(n),
k = 2, 3, 4, 6, 8, 10, 12 and 24. Their results for δ4k(n) are summarized in the
following lemma.
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Lemma 1.12. For n ≥ 0,

δ4(n) = σ1(2n + 1),

δ8(n) = −
1
8σ

]

3 (n + 1),

δ12(n) =
1

256(σ5(2n + 3) − a(2n + 3)), and

δ24(n) =
1

17689

(
σ

]

11(n + 3) − τ(n + 3) − 2072 τ
(n + 3

2

))
,

where a(n) is defined by η12(2z) =
∑

∞

n=1 a(n)qn and τ(n) is the n-th Fourier
coefficient of 1(z) = (2π)12η24(z).

Looking at the case δ4, this lemma states that

q94(q2) =

∞∑
n=0

δ4(n)q2n+1
= F(z),

where F is as defined previously, so we have the following useful corollary:

Corollary 1.13.
qk94k(q2) = Fk .

2. δ4k as an Eisenstein series plus a cusp form

The generating function 2k(z) for rk(n) can be decomposed into a cusp form and
a particular Eisenstein series. In the same vein as the work by Rankin [1965] on
2k(z), we would like to similarly decompose qk94k(q2).

Definition 2.1. Let k ∈ N. Then let H2k be the Eisenstein series of weight 2k on
00(4) defined by

H2k(z) =



∞∑
n>0
n odd

σ
]

2k−1(n)qn if k is odd,

∞∑
n>0

n even

σ
]

2k−1(n)qn if k is even.

Definition 2.2. We define the partial zeta function ζ i (s) for i modulo N to be

ζ i (s) :=

∑
n≡i mod N

1
ns .

Proposition 2.3. For a given congruence subgroup 00(N ), let G(a1,a2)
k (z) be the

Eisenstein series ∑
m1≡a1(N )
m2≡a2(N )

1

(m1z + m2)
k

,
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and let B2k ∈ Q be the 2k-th Bernoulli number. Then

(1) as a modular form for 00(2),
∞∑

n=1

σ
]

2k−1(n)qn
= −

B2k

8kζ(2k)

(
G(1,0)

2k (z) + G(1,1)
2k (z)

)
;

(2) as a modular form for 00(4),
∞∑

n=1

σ
]

2k−1(n)qn
= −

22k B2k

8kζ(2k)

(
G(2,0)

2k (z) + G(2,2)
2k (z)

)
.

Proof. Koblitz [1993, p. 133] shows that for 00(N ),

G(a1,a2)
k (z) = b(a1,a2)

0 +
(−1)k−12kζ(k)

N k Bk

·

( ∑
m1≡a1 mod N

m1>0

∞∑
j=1

j k−1ξ ja2q jm1
N +(−1)k

∑
m1≡−a1 mod N

m1>0

∞∑
j=1

j k−1ξ− ja2q jm1
N

)
,

where

ξ := e2π i/N , qN := e2π i z/N , b(a1,a2)
0 =

{
0 if a1 6= 0,

ζ a1(k) + (−1)kζ−a2(k) if a1 = 0.

We can collect terms with jm1 = n to find explicit expansions of some particular
G(a1,a2)

k (z). From the above expression, we have two assertions:

(i) G(1,0)
2k (z) = 2c2k

∞∑
n=1

( ∑
j | n,n/j odd

j2k−1
)

qn
2 ,

G(1,1)
2k (z) = 2c2k

∞∑
n=1

( ∑
j | n,n/j odd

j2k−1(−1) j
)

qn
2 .

Adding these two series, we get

G(1,0)
2k (z)+G(1,1)

2k (z)= 22k+1c2k

∞∑
n=1

σ
]

2k−1(n)qn
=−

8kζ(2k)

B2k

∞∑
n=1

σ
]

2k−1(n)qn,

which is the first assertion.

(ii) The second assertion follows similarly, except that c2k = −
4kζ(2k)

24k B2k
for the

Eisenstein series of 00(4). �

If we take the first identity from Proposition 2.3 and substitute in 2z, we obtain
∞∑

n=1

σ
]

2k−1(n)q2n
= −

B2k

8kζ(2k)

(
G(1,0)

2k (2z) + G(1,1)
2k (2z)

)
.
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This is a modular form for 00(4). By the definition of σ
]

2k−1(n) and the definition
of G(a1,a2)

k (z),

∞∑
n=1

σ
]

2k−1(2n)q2n
=

−
22k B2k

16ζ(2k)

(
G(2,0)

2k (z) + G(2,1)
2k (z) + G(2,2)

2k (z) + G(2,3)
2k (z)

)
. (2-1)

We have proven

Corollary 2.4.
∑

n>0
even

σ
]

2k−1(n)qn and
∑

n>0
odd

σ
]

2k−1(n)qn are both modular forms

for 00(4). The former is given by Equation (2-1), and the latter is equal to

−
22k B2k

16ζ(2k)

(
G(2,0)

2k (z) − G(2,1)
2k (z) + G(2,2)

2k (z) − G(2,3)
2k (z)

)
.

We can now compute the desired values at the cusps. From [Koblitz 1993], we
have

G(2,i)
2k (z) = −

4kζ(2k)

42k B2k

∞∑
n=1

( ∑
j | n

n/j≡i(4)

j2k−1
+

∑
j | n

n/j≡−i(4)

j2k−1
)

qn
4

so it follows that
∑

n>0
even

σ
]

2k−1(n)qn and
∑

n>0
odd

σ
]

2k−1(n)qn are both 0 at i∞.

To find the values at the cusp 0, we use the transformation S. We have

G(2,0)
2k (z)|[S]2k = G(0,2)(z); G(2,1)

2k (z)|[S]2k = G(1,2)(z);

G(2,2)
2k (z)|[S]2k = G(2,2)(z); G(2,3)

2k (z)|[S]2k = G(3,2)(z).

Additionally, G(1,2)(i∞) = G(2,2)(i∞) = G(3,2)(i∞) = 0 (from [Koblitz 1993]
again) and

G(0,2)(i∞) = 2ζ 2(2k) = 2
∑
n>0

n≡2(4)

1
n2k = 2

( 1
22k −

1
24k

)
ζ(2k).

Hence,
∑

n>0
even

σ
]

2k−1(n)qn and
∑

n>0
odd

σ
]

2k−1(n)qn both equal

−
B2k

8k

(
1 −

1
4k

)
at 0.
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To find the values at the cusp 1
2 , we use the transformation ST −2S. We have

G(2,0)
2k (z)|[ST −2S]2k = G(2,0)(z); G(2,1)

2k (z)|[ST −2S]2k = G(0,1)(z);

G(2,2)
2k (z)|[ST −2S]2k = G(2,2)(z); G(2,3)

2k (z)|[ST −2S]2k = G(0,3)(z).

We know G(2,0)
2k (i∞) = G(2,2)

2k (i∞) = 0, and

G(0,1)
2k (i∞) = G(0,3)

2k (i∞) = ζ 1(2k) + ζ 3(2k) =

∑
n>0
n odd

1
n2k =

(
1 −

1
22k

)
ζ(2k).

Hence, at the cusp 1
2 ,

∑
n>0,even

σ
]

2k−1(n)qn
= −

4k B2k

8k

(
1 −

1
4k

)
,

∑
n>0,odd

σ
]

2k−1(n)qn
=

4k B2k

8k

(
1 −

1
4k

)
.

Theorem 2.5. Let k ∈ N. Then

qk94k(q2) =
1
dk

(H2k(z) − T2k(z)), (2-2)

where

dk = −
(−16)k B2k(4k

− 1)

8k
∈ Q

and T2k(z) ∈ S2k(00(4)).

Proof. We know that Fk(z) is 0 at i∞,
(
−

1
64

)k at 0, and
( 1

16

)k at 1
2 , as is 1

dk
H2k(z).

Hence,

qk94k(q2) −
1
dk

H2k(z)

is a cusp form. �

Corollary 2.6.

δ4k(n) =
1
dk

(σ
]

2k−1(2n + k) − a(2n + k)), (2-3)

where

T2k(z) =

∑
n

a(n)qn
∈ S2k(00(4)).

Proof. This follows from equating the coefficients of the Fourier series in (2-2). �
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k
∑

a(n)qn

1 0
2 0
3 28 F − 1624 F2

4 27(28 F2
− 1624 F3)

5 216 F − 32212 F2
+ 1996828 F3

− 315924 F4

6 211(216 F2
− 32212 F3

+ 232828 F4
− 3315224 F5)

7 224 F − 48220 F2
+ 1595136216 F3

−51023872212 F4
+ 166074777628 F5

− 2004143308824 F6

8 215
(
224 F2

− 48220 F3
+ 33576216 F4

−1053952212 F5
+ 2327193628 F6

− 23796940824 F7
)

Table 1

Corollary 2.7. δ4k(n) ∼ σ
]

2k−1(2n + k).

Proof. The cusp form coefficients in (2-3) a(2n +k) ∈ O(nk) [Apostol 1990]. The
σ

]

2k−1(2n + k) term has lower bound n2k−1, and thus this term is asymptotically
dominant. Therefore

lim
n→∞

δ4k(n)

σ
]

2k−1(2n + k)
= 1 . �

For particular k, we can compute the value of c2k , and then, by equating finitely
many coefficients, compute the remaining cusp form

∑
a(n)qn as a homogeneous

polynomial in F and 24. We list the result of this computation for several values
of k in Table 1.

We can rewrite (2-3) using

σ
]
k (n) =

{
σk(n) if n is odd,

2kσ
]
k ( n

2 ) if n is even,

and the values in Table 1. The resulting formulae for k = 1, 2, 3, and 6 agree with
those in Lemma 1.12.
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