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Under certain conditions, solutions of the boundary value problem

y(n) = f (x,y, y′, . . . , y(n−1)),

y(i−1)(x1)= yi for 1≤ i ≤n−1, and y(x2)−
∑m

i=1 ri y(ηi )= yn , are differentiated
with respect to boundary conditions, where a < x1 < η1 < · · · < ηm < x2 < b,
and r1, . . . , rm, y1, . . . , yn ∈ R.

1. Introduction

In this paper, we will be concerned with differentiating solutions of certain nonlocal
boundary value problems with respect to boundary data for the n-th order ordinary
differential equation

y(n) = f (x, y, y′, . . . , y(n−1)), a < x < b, (1)

satisfying

y(i−1)(x1)= yi , 1≤ i ≤ n− 1, y(x2)−

m∑
k=1

rk y(ηk)= yn, (2)

where a< x1 <η1 < · · ·<ηm < x2 < b, and y1, . . . , yn, r1, . . . , rm ∈R, and where
we assume

(i) f (x, u1, . . . , un) : (a, b)×Rn
→ R is continuous,

(ii) ∂ f/∂ui (x, u1, . . . , un) : (a, b)×Rn
→ R are continuous, i = 1, 2, . . . , n, and

(iii) solutions of initial value problems for (1) extend to (a, b).
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We remark that condition (iii) is not necessary for the spirit of this work’s results,
however, by assuming (iii), we avoid continually making statements in terms of
solutions’ maximal intervals of existence.

Under uniqueness assumptions on solutions of (1) and (2), we will establish
analogues of a result that Hartman [1964] attributes to Peano concerning differen-
tiation of solutions of (1) with respect to initial conditions. For our differentiation
with respect to the boundary conditions results, given a solution y(x) of (1), we
will give much attention to the variational equation for (1) along y(x), which is
defined by

z(n) =
n∑

k=1

∂ f
∂uk

(x, y(x), y′(x), . . . , y(n−1)(x))z(k−1). (3)

There has long been interest in multipoint nonlocal boundary value problems
for ordinary differential equations, with much attention given to positive solutions.
To see only a few of these papers, we refer the reader to [Bai and Fang 2003; Gupta
and Trofimchuk 1998; Ma 1997; 2002; Yang 2002].

Likewise, many papers have been devoted to smoothness of solutions of bound-
ary value problems with respect to boundary data. For a view of how this work
has evolved, involving not only boundary value problems for ordinary differential
equations, but also discrete versions, functional differential equations versions and
dynamic equations on time scales versions, we suggest results from among the
many papers [Datta 1998; Ehme 1993; Ehme et al. 1993; Ehme and Henderson
1996; Ehme and Lawrence 2000; Hartman 1964; Henderson 1984; 1987; Hender-
son et al. 2005; Henderson and Lawrence 1996; Lawrence 2002; Peterson 1976;
1978; 1981; 1987; Spencer 1975]. In fact, smoothness results have been given
some consideration for (1) and (2) when n = 2 and for specific and general values
of m [Ehrke et al. 2007; Henderson and Tisdell 2004].

The theorem for which we seek an analogue and attributed to Peano by Hartman
can be stated in the context of (1) as follows

Theorem 1.1. [Peano] Assume that, with respect to (1), conditions (i)–(iii) are
satisfied. Let x0 ∈ (a, b) and y(x)≡ y(x, x0, c1, c2, . . . , cn) denote the solution of
(1) satisfying the initial conditions y(i−1)(x0)= ci , 1≤ i ≤ n. Then,

(i) For each 1 ≤ i ≤ n, ∂y/∂ci exists on (a, b) and αi ≡ ∂y/∂ci is a solution of
the variational equation (3) along y(x) and satisfies the initial condition,

α
( j−1)
i (x0)= δi j , 1≤ i, j ≤ n.

(ii) ∂y/∂x0 exists on (a, b), and β ≡ ∂y/∂x0 is the solution of the variational
equation (3) along y(x) satisfying the initial conditions,

β(i−1)(x0)=−y(i)(x0), 1≤ i ≤ n.
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(iii) ∂y/∂x0(x)=−
∑n

k=1 y(k)(x0)∂y/∂ck(x).

In addition, our analogue of Theorem 1.1 depends on uniqueness of solutions
of (1) and (2), a condition we list as an assumption.

(iv) Given a < x1 < η1 < · · · < ηm < x2 < b, if y(i−1)(x1) = z(i−1)(x1) for each
1≤ i ≤ n−1, and y(x2)−

∑m
k=1 rk y(ηk)= z(x2)−

∑m
k=1 rkz(ηk), where y(x)

and z(x) are solutions of (1), then y(x)≡ z(x).

We will also make extensive use of a similar uniqueness condition on (3) along
solutions y(x) of (1).

(v) Given a < x1 < η1 < · · · < ηm < x2 < b, and a solution y(x) of (1), if
u(i−1)(x1) = 0, 1 ≤ i ≤ n− 1, and u(x2)−

∑m
k=1 rku(ηk) = 0, where u(x) is

a solution of (3) along y(x), then u(x)≡ 0.

2. An analogue of Peano’s Theorem for Equations (1) and (2)

In this section, we derive our analogue of Theorem 1.1 for boundary value prob-
lem (1), (2). For such a differentiation result, we need continuous dependence of
solutions on boundary conditions. The arguments for this continuous dependence
follow much along the lines of those in [Henderson and Tisdell 2004], when (1) is
of second order. For that reason, we omit the details of the proof.

Theorem 2.1. Assume (i)–(iv) are satisfied with respect to (1). Let u(x) be a solu-
tion of (1) on (a, b), and let a < c < x1 < η1 < · · · < ηm < x2 < d < b be given.
Then, there exists a δ > 0 such that, for

|xi − ti |< δ, i = 1, 2,

|ηi − τi |< δ and |ri − ρi |<δ, 1≤ i ≤ m,

|u(i−1)(x1)− yi |< δ, 1≤ i ≤ n− 1∣∣u(x2)−

m∑
k=1

rku(ηk)− yn
∣∣< δ,

there exists a unique solution uδ(x) of (1) such that

u(i−1)
δ (t1)= yi , 1≤ i ≤ n− 1,

uδ(t2)−
m∑

k=1

ρkuδ(τk)= yn

and {u( j−1)
δ (x)} converges uniformly to u( j−1)(x), as δ→0, on [c, d], for 1≤ j≤n.

We now present the result of the paper.
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Theorem 2.2. Assume conditions (i)–(v) are satisfied. Let u(x) be a solution (1)
on (a, b). Let a < x1 < η1 < · · ·< ηm < x2 < b be given, so that

u(x)= u(x, x1, x2, u1, . . . , un, η1, . . . , ηm, r1, . . . , rm),

where u(i−1)(x1)= ui , 1≤ i ≤ n− 1, and u(x2)−
∑m

k=1 rku(ηk) = un . Then,

(i) For each 1 ≤ i ≤ n, ∂u/∂ui exists on (a, b). Moreover, for each 1 ≤ j ≤
n−1, y j ≡ ∂u/∂u j solves Equation (3) along u(x) and satisfies the boundary
conditions,

y(i−1)
j (x1)= δi j , 1≤ i ≤ n− 1, y j (x2)−

m∑
k=1

rk y j (ηk)= 0,

and yn ≡ ∂u/∂un solves (3) along u(x) and satisfies the boundary conditions,

y(i−1)
n (x1)= 0, 1≤ i ≤ n− 1, yn(x2)−

m∑
k=1

rk yn(ηk)= 1.

(ii) ∂u/∂x1 and ∂u/∂x2 exist on (a, b), and zi ≡ ∂u/∂xi , i = 1, 2, are solutions
of (3) along u(x) and satisfy the respective boundary conditions,

z(i−1)
1 (x1)=−u(i)(x1), 1≤ i ≤ n− 1, z1(x2)−

m∑
k=1

rkz1(ηk)= 0,

z(i−1)
2 (x1)= 0, 1≤ i ≤ n− 1, z2(x2)−

m∑
k=1

rkz2(ηk)=−u′(x2).

(iii) For 1 ≤ j ≤ m, ∂u/∂η j exists on (a, b), and w j ≡ ∂u/∂η j , j = 1, . . . ,m, is
a solution of (3) along u(x) and satisfies

w
(i−1)
j (x1)= 0, 1≤ i ≤ n− 1, w j (x2)−

m∑
k=1

rkw j (ηk)= r j u′(η j ).

(iv) For 1 ≤ j ≤ m, ∂u/∂r j exists on (a, b), and v j ≡ ∂u/∂r j , j = 1, . . . ,m, is a
solution of (3) along u(x) and satisfies,

v
(i−1)
j (x1)= 0, 1≤ i ≤ n− 1, v j (x2)−

m∑
k=1

rkv j (ηk)= u(η j ).

Proof. For part (i), let 1≤ j ≤ n−1, and consider ∂u/∂u j , since the argument for
∂u/∂un is similar. In this case we designate, for brevity, u(x, x1, x2, u1, . . . , un ,
η1, . . . , ηm, r1, . . ., rm) by u(x, u j ).

Let δ > 0 be as in Theorem 2.1. Let 0< |h|< δ be given and define

y jh(x)=
1
h

[
u(x, u j + h)− u(x, u j )

]
.
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Note that u( j−1)(x1, u j + h) = u j + h, and u( j−1)(x1, u j ) = u j , so that, for every
h 6= 0,

y( j−1)
jh (x1)=

1
h
[u j + h− u j ] = 1.

Also, for every h 6= 0, 1≤ i ≤ n− 1, i 6= j ,

y(i−1)
jh (x1)=

1
h

[
u(i−1)(x1, u j + h)− u(i−1)(x1, u j )

]
=

1
h
[ui − ui ] = 0,

and

y jh(x2)−

m∑
k=1

rk y jh(ηk)=
1
h

[
u(x2, u j + h)− u(x2, u j )

]
−

m∑
k=1

rk

h

[
u(ηk, u j + h)− u(ηk, u j )

]
=

1
h
[un − un] = 0.

Let β = u(n−1)(x1, u j ), and ε = ε(h) = u(n−1)(x1, u j + h)− β. By Theorem 2.1,
ε = ε(h)→ 0, as h→ 0. Using the notation of Theorem 1.1 for solutions of initial
value problems for Equation (1) and viewing the solutions u as solutions of initial
value problems and denoting y(x, x1, u1, . . . , u j , . . . , un−1, β) by y(x, x1, u j , β),
we have

y jh(x)=
1
h

[
y(x, x1, u j + h, β + ε)− y(x, x1, u j , β)

]
.

Then, by utilizing a telescoping sum, we have

y jh(x)=
1
h

[
{y(x, x1, u j + h, β + ε)− y(x, x1, u j , β + ε)}

+ {y(x, x1, u j , β + ε)− y(x, x1, u j , β)}
]
.

By Theorem 1.1 and the Mean Value Theorem, we obtain

y jh(x)=
1
h
α j
(
x, y(x, x1, u j + h̄, β + ε)

)
(u j + h− u j )

+
1
h
αn
(
x, y(x, x1, u j , β + ε̄)

)
(β + ε−β),

where αk(x, y(·)), k ∈ { j, n}, is the solution of the variational Equation (3) along
y(·) and satisfies, in each case,

α
(i−1)
j (x1)= δi j α(i−1)

n (x1)= δin, 1≤ i ≤ n,

respectively. Furthermore, u j + h̄ is between u j and u j + h, and β+ ε̄ is between
β and β + ε. Now simplifying,

y jh(x)= α j
(
x, y(x, x1, u j + h̄, β + ε)

)
+
ε

h
αn
(
x, y(x, x1, u j , β + ε̄)

)
.
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Thus, to show lim
h→0

y jh(x) exists, it suffices to show lim
h→0

ε/h exists.

Now αn(x,y(·)) is a nontrivial solution of Equation (3) along y(·), and

α(i−1)
n (x1,y(·))= 0, 1≤ i ≤ n− 1.

So, by assumption (v), αn(x2, y(·))−
∑m

k=1 rkαn(ηk, y(·)) 6= 0. However, we ob-
served that y jh(x2)−

∑m
k=1 rk y jh(ηk)= 0, from which we obtain

ε

h
=

∑m
k=1 rkα j

(
ηk, y(x, x1, u j + h̄, β + ε)

)
−α j

(
x2, y(x, x1, u j + h̄, β + ε)

)
αn
(
x2, y(x, x1, u j , β + ε̄)

)
−
∑m

k=1 rkαn
(
ηk, y(x, x1, u j , β + ε̄)

) .

As a consequence of continuous dependence, we can let h→ 0, so that

lim
h→0

ε

h
=−

α j
(
x2, y(x, x1, u j , β2)

)
−
∑m

k=1 rkα j
(
ηk, y(x, x1, u j , β)

)
αn
(
x2, y(x, x1, u j , β)

)
−
∑m

k=1 rkαn
(
ηk, y(x, x1, u j , β)

)
=−

α j (x2, u(x))−
∑m

k=1 rkα j (ηk, u(x))
αn(x2, u(x))−

∑m
k=1 rkαn(ηk, u(x))

=: D.

Let y j (x)= lim
h→0

y jh(x), and note by construction of y jh(x) that

y j (x)=
∂u
∂u j

(x).

Furthermore,

y j (x)= lim
h→0

y jh(x)= α j (x, y(x, x1, u j , β))+ Dαn(x, (u(x)),

which is a solution of the variational Equation (3) along u(x). In addition because
of the boundary conditions satisfied by y jh(x), we also have

y(i−1)
j (x1)= δi j , 1≤ i ≤ n− 1, y j (x2)−

m∑
k=1

rk y j (ηk)= 0.

This completes the argument for ∂u/∂u j .
In part (ii) of the theorem, we will produce the details for ∂u/∂x1, with the

arguments for ∂u/∂x2 being similar. This time, we designate

u(x, x1, x2, u1, . . . , un, η1, . . . , ηm, r1, . . . , rm)

by u(x, x1).
So, let δ > 0 be as in Theorem 2.1, let 0< |h|< δ be given, and define

z1h(x)=
1
h
[u(x, x1+ h)− u(x, x1)].
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Note that, for 1≤ i ≤ n− 1,

z(i−1)
1h (x1)=

1
h
[u(i−1)(x1, x1+ h)− u(i−1)(x1, x1)]

=
1
h
[u(i−1)(x1, x1+ h)− u(i−1)(x1+ h, x1+ h)]

= −
1
h
[u(i)(cx1,h, x1+ h) · h]

= −u(i)(cx1,h, x1+ h),

where cx1,h lies between x1 and x1+ h. In addition, we note that, for every h 6= 0,

z1h(x2)−

m∑
k=1

rkz1h(ηk)=
1
h
[u(x2, x1+ h)−

m∑
k=1

rku(ηk, x1+ h)

−{u(x2, x1)−

m∑
k=1

rku(ηk, x1)}] =
1
h
[un − un] = 0.

Next, let

β = u(n−1)(x1, x1),

ε j = ε j (h)= u( j−1)(x1, x1+ h)− u j ,

εβ = εβ(h)= u(n−1)(x1, x1+ h)−β.

Let us note at this point that
ε j

h
= z( j−1)

1h (x1)=−u( j)(cx1,h, x1+ h).

By Theorem 2.1, both ε j→ 0 and εβ→ 0, as h→ 0. As in part (i), we employ the
notation of Theorem 1.1 for solutions of initial value problems for (1). Viewing
the solutions u as solutions of initial value problems, and denoting

y(x, x1, u1, . . . , u j , . . . , un − 1, β)

by y(x, x1, u j , β), we have

z1h(x)=
1
h
[y(x, x1, u j + ε j , β + εβ)− y(x, x1, u j , β)]

=
1
h
[y(x, x1, u j + ε j , β + εβ)− y(x, x1, u j , β + εβ)

+y(x, x1, u j , β + εβ)− y(x, x1, u j , β)].

By the Mean Value Theorem,

z1h(x)=
1
h

[
ε jα j

(
x, y(x, x1, u j + ε̄ j , β + εβ)

)
+ εβαn

(
x, y(x, x1, u j , β + ε̄β)

)]
,
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where u j + ε̄ j lies between u j and u j + ε j , β+ ε̄β lies between β and β+ εβ , and
α j (x, y(·)) and αn(x, y(·)) are the solutions of Equation (3) along y(·) and satisfy,
respectively,

α
(i−1)
j (x1)= δi j , 1≤ i ≤ n,

α(i−1)
n (x1)= δin, 1≤ i ≤ n.

As before, to show that lim
h→0

z1h(x) exists, it suffices to show that

lim
h→0

ε j

h
and lim

h→0

εβ

h

exist. Now, from above,

lim
h→0

ε j

h
= lim

h→0
z( j−1)

1h (x1)= lim
h→0

u( j)(cx1,h, x1+ h)=−u( j)(x1).

Since αn(x,y(·)) is a nontrivial solution of (3) along y(·) and

α(i−1)
n (x1,y(·))= 0, 1≤ i ≤ n− 1,

it follows from assumption (v) that

αn(x2,y(·))−
m∑

k=1

rkαn(ηk,y(·)) 6=0.

Since

z1h(x2)−

m∑
k=1

rkz1h(ηk)= 0,

we have

εβ

h
=

(
−ε j

h

) A
αn
(
x2, y(x, x1, u j , β + ε̄β)

)
−
∑m

k=1 rkαn
(
ηk, y(x, x1, u j , β + ε̄β)

) ,
where

A = α j
(
x2, y(x, x1, u j + ε̄ j , β + εβ)

)
−

m∑
k=1

rkα j
(
ηk, y(x, x1, u j + ε̄ j , β + εβ)

)
.

And so,

lim
h→0

εβ

h
=

u( j)(x1)
[
α j
(
x2, y(x, x1, u j , β)

)
−
∑m

i=1 riα j
(
ηi , y(x, x1, u j , β)

)]
αn
(
x2, y(x, x1, u j , β)

)
−
∑m

i=1 riαn
(
ηi , y(x, x1, u j , β)

)
=

u( j)(x1)
[
α j
(
x2, u(x)

)
−
∑m

i=1 riα j
(
ηi , u(x)

)]
αn
(
x2, u(x)

)
−
∑m

i=1 riαn
(
ηi , u(x)

) =: E .
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From the above expression,

z1h(x)=
ε j

h
α j
(
x, y(x, x1, u j + ε̄ j , β + εβ)

)
+
εβ

h
αn
(
x, y(x, x1, u j , β + ε̄β)

)
,

and we can evaluate the limit as h → 0. If we let z1(x) = limh→0 z1h(x), then
z1(x)= ∂u/∂x1, and

z1(x)= lim
h→0

z1h(x)

=−u( j)(x1)α j
(
x, y(x, x1, u j , β)

)
+ Eαn

(
x, y(x, x1, u j , β)

)
=−u( j)(x1)α j

(
x, u(x)

)
+ Eαn

(
x, u(x)

)
,

which is a solution of Equation (3) along u(x). In addition, from above observa-
tions, z1(x) satisfies the boundary conditions,

z(i−1)
1 (x1)= lim

h→0
z(i−1)

1h (x1)=−u(i)(x1), 1≤ i ≤ n− 1,

and

z1(x2)−

m∑
k=1

rkz1(ηk))= lim
h→0

(z1h(x2)−

m∑
k=1

rkz1h(ηk))= 0.

This completes the proof for ∂u/∂x1.
The proofs of (iii) and (iv) are in very much the same spirit. For (iii), we fix

1≤ j≤m, and this time we designate

u(x,x1,x2,u1,. . . ,un,η1,. . . ,ηm,r1,. . . ,rm)

by u(x, η j ). Let δ > 0 be as in Theorem 2.1 and 0< |h|< δ be given. Define

w jh(x)=
1
h
[u(x, η j + h)− u(x, η j )].

Note that for every h 6= 0,

w
(i−1)
jh (x1)= 0, 1≤ i ≤ n− 1.

Next, let β = u(n−1)(x1, η j ), and

ε = ε(h)= u(n−1)(x1, η j + h)−β.

By Theorem 2.1, ε→ 0, as h→ 0. Again, we use the notation of Theorem 1.1 for
solutions of initial value problems for (1); viewing the solutions u as solutions of
initial value problems and denoting

y(x, x1, u1, . . . , un−1, β)
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by y(x, x1, β), we have

w jh(x)=
1
h
[y(x, x1, β + ε)− y(x, x1, β)].

By the Mean Value Theorem,

w jh(x)=
ε

h
αn(x, y(x, x1, β + ε̄)),

where αn(x, y(·)) is the solution of Equation (3) along y(·) and satisfies

α(i−1)
n (x1)= δin, 1≤ i ≤ n− 1,

and β+ ε̄ lies between β and β+ ε. Once again, to show limh→0w jh(x) exists, it
suffices to show limh→0 ε/h exists.

Since αn(x,y(·)) is a nontrivial solution of (3) along y(·) and

α(i−1)
n (x1,y(·))= 0, 1≤ i ≤ n− 1,

it follows from assumption (v) that

αn(x2,y(·))−
m∑

k=1

rkαn(ηk,y(·)) 6= 0.

Hence,

ε

h
=

w jh(x2)−
∑m

k=1 rkw jh(ηi )

αn
(
x2, y(x, x1, β2+ ε̄)

)
−
∑m

k=1 rkαn
(
ηk, y(x, x1, β + ε̄)

) .
We look in more detail at the numerator of this quotient. Consider

w jh(x2)−

m∑
k=1

rkw jh(ηk)

=
1
h

[
u(x2, η j + h)−

m∑
k=1

rku(ηk, η j + h)−
[
u(x2, η j )−

m∑
k=1

rku(ηk, η j )
]]

=
1
h

[
u(x2, η j + h)−

∑
k∈{1,...,m}\{ j}

rku(ηk, η j + h)

−r j u(η j + h, η j + h)+ r j u(η j + h, η j + h)

−r j u(η j , η j + h)
]
−

un

h

=
un

h
−

un

h
+

r j u(η j + h, η j + h)− r j u(η j , η j + h)
h

=
r j

h

[
u(η j + h, η j + h)− u(η j , η j + h)

]
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=
r j

h

∫ η j+h

η j

u′(s, η j + h)ds

=
r j

h
u′(c j,h, η j + h)(η j + h− η j )= r j u′(c j,h, η j + h),

where c j,h is between η j and η j + h. So, as h→ 0 we obtain

r j u′(ch, η j + h)→ r j u′(η j , η j )= r j u′(η j ).

When we return to the quotient defining ε/h, we compute the limit,

lim
h→0

ε

h
=

r j u′(η j )

αn
(
x2, y(x, x1, u1, β)

)
−
∑m

k=1 rkαn
(
ηk, y(x, x1, u1, β)

)
=

r j u′(η j )

αn
(
x2, u(x)

)
−
∑m

k=1 rkαn
(
ηk, u(x)

) =: E j .

From
w jh(x)=

ε

h
αn
(
x, y(x, x1, u1, β + ε̄)

)
,

if we let w j (x)= limh→0w jh(x), then w j (x)= ∂u/∂η j , and

w j (x)= lim
h→0

w jh(x)= E jαn(x, y(x, x1, u1, β))= E jαn(x, u(x)),

which is a solution of Equation (3) along u(x). In addition, from above observa-
tions, w j (x) satisfies the boundary conditions,

w
(i−1)
j (x1)= lim

h→0
w
(i−1)
jh (x1)= 0, 1≤ i ≤ n− 1,

w j (x2)−

m∑
k=1

rkw j (ηk)= r j u′(η j ).

This concludes the proof of (iii). It remains to verify part (iv).
Fix 1≤ j ≤m as before and consider ∂u/∂r j . Again, let δ > 0 be as in Theorem

2.1 and 0< |h|< δ. Define

v jh(x)=
1
h
[u(x, r j + h)− u(x, r j )],

where, for brevity, we designate

u(x, x1, x2, u1, . . . , un, η1, . . . , ηm, r1, . . . , rm)

by u(x, r j ). Note that

v
(i−1)
jh (x1)=

1
h
(ui − ui )= 0,
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for every h 6= 0 and 1≤ i ≤ n− 1. Also, we see that

v jh(x2)−

m∑
k=1

rkv jh(ηk)

=
1
h

[
u(x2, r j + h)− u(x2, r j )−

m∑
k=1

rk
(
u(ηk, r j + h)− u(ηk, r j )

)]
=

1
h

[
u(x2, r j + h)− u(x2, r j )−

m∑
k=1

rku(ηk, r j + h)+
m∑

k=1

rku(ηk, r j )
]

=
1
h

u(x2, r j + h)−
1
h

m∑
k=1

rku(ηk, r j + h)−
un

h

=
1
h

[
u(x2, r j + h)−

∑
k∈{1,...,m}\{ j}

rku(ηk, r j + h)

−r j u(η j , r j + h)− hu(η j , r j + h)+ hu(η j , r j + h)
]
−

un

h

=
1
h

[
u(x2, r j + h)−

∑
k∈{1,...,m}\{ j}

rku(ηk, r j + h)

−(r j + h)u(η j , r j + h)
]
+ u(η j , r j + h)−

un

h

=
un

h
+ u(η j , r j + h)−

un

h
= u(η j , r j + h).

And so by Theorem 2.1,

lim
h→0

v jh(x2)−

m∑
k=1

rkv jh(ηk)= u(η j , r j ).

Now recall that u(n−2)(x1, r j )= un−1, and define

β = u(n−1)(x1, r j ), and ε = ε(h)= u(n−1)(x1, r j + h)−β.

As usual, ε→ 0 as h→ 0. Once again, using the notation for solutions of initial
value problems for (1) and denoting y(x, x1, u1, . . . , un−1, β) by y(x, x1, β), we
have

v jh(x)=
1
h

[
y(x, x1, β + ε)− y(x, x1, β)

]
.

By the Mean Value Theorem,

v jh(x)=
1
h
αn
(
x, y(x, x1, β + ε)

)
(β + ε−β)

=
ε

h
αn
(
x, y(x, x1, β + ε)

)
,
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where αn(x, y(·)) is the solution of Equation (3) along y(·) and satisfies

α(i−1)
n (x1, y(·))= 0, 1≤ i ≤ n− 1,

α(n−1)
n (x1, y(·))= 1,

and β+ε lies between β and β+ε. As in previous cases, it follows from assumption
(v) that

αn(x2, y(·))−
m∑

k=1

rkαn(ηk, y(·)) 6= 0.

Hence,

ε

h
=

v jh(x2)−
∑m

k=1 rkv jh(ηk)

αn
(
x2, y(x, x1, β + ε̄)

)
−
∑m

k=1 rkαn
(
ηk, y(x, x1, β + ε̄)

) ,
and so from above,

lim
h→0

ε

h
=

r j u(η j )

αn
(
x2, y(x, x1, β)

)
−
∑m

k=1 rkαn
(
ηk, y(x, x1, β)

)
=

r j u(η j )

αn
(
x2, u(x)

)
−
∑m

k=1 rkαn
(
ηk, u(x)

) =: E j .

From

v jh(x)=
ε

h
αn
(
x, y(x, x1, β + ε̄)

)
,

if we set v j (x)= limh→0 v jh(x), we obtain v j (x)= ∂u/∂r j . In particular,

v j (x)= lim
h→0

v jh(x)= E jαn(x, y(x, x1, β))= E jαn(x, u(x)),

which is a solution of (3) along u(x). In addition, v j (x) satisfies the boundary
conditions,

v j (x1)= lim
h→0

v
(i−1)
jh (x1)= 0, 1≤ i ≤ n− 1,

v j (x2)−

m∑
k=1

rkv j (ηk)= u(η j ).

This completes case (iv), which in turn completes the proof of the theorem. �

We conclude the paper with a corollary to Theorem 2.2, whose verification is
a consequence of the n-dimensionality of the solution space for the variational
Equation (3). In addition, this corollary establishes an analogue of part (iii) of
Theorem 1.1.
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Corollary 2.2.1. Assume the conditions of Theorem 2.2. Then,

∂u
∂x1
=−

n−1∑
k=1

u(k)(x1)
∂u
∂ui

and
∂u
∂x2
=−u′(x2)

∂u
∂un

,

and for 1≤ j ≤ m,
∂u
∂η j
= r j

u′(η j )

u(η j )

∂u
∂r j

.
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