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The gap functions for generalized vector quasivariational inequalities in Haus-
dorff topological vector spaces are introduced, then using Fan–Knaster–Kura-
towski–Mazurkiewicz (FKKM) theorem, some existence theorems for a class of
generalized vector quasivariational inequalities under suitable assumptions are
established. The obtained results extend and unify corresponding results in the
literature.

1. Introduction

The vector variational inequality in a finite-dimensional Euclidean space was first
introduced by Giannessi [1980]. It is the vector-valued version of the variational
inequality of Hartman and Stampacchia [1966]. Later on, many authors have ex-
tensively studied various types of vector variational inequalities in abstract space
(see, for example, [Ansari 1995; Chen 1992; Chen et al. 1997; Chen et al. 2005;
Ding and Tarafdar 2000; Giannessi 2000; Göpfert et al. 2003; Huang and Fang
2005; Huang and Gao 2003; Huang and Li 2006; Khanh and Luu 2004; Konnov
and Yao 1997; Lee and Lee 2000; Lee et al. 1996; Li and He 2005; Siddiqi et
al. 1997; Yang 2003; Yang and Yao 2002; Yu and Yao 1996] and the references
therein).

The gap function approach is an important research method in the study of varia-
tional inequalities. One advantage of the gap function for the variational inequality
is that the variational inequality can be transformed into the optimization problem.
Thus, powerful optimization solution methods and algorithms can be applied to
find solutions of variational inequalities. Recently, many authors have investigated
the gap functions for vector variational inequalities. Chen et al. [1997] introduced
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two set-valued functions as the gap functions for two classes of vector variational
inequalities. Yang and Yao [2002] introduced the gap function for the multivalued
vector variational inequality. Li and He [2005] generalized the results of Yang and
Yao [2002] to the generalized vector variational inequality. They introduced a gap
function for a class of generalized vector variational inequalities and proved the
existence of some solutions for such problems. For some related works, we refer
to [Li and Mastroeni 2008] and [Yang 2003].

Inspired and motivated by the reseach mentioned above, we introduce in this
paper some new gap functions for generalized vector quasivariational inequalities
in Hausdorff topological vector spaces. By using FKKM theorem, we prove a
number of existence theorems for a class of generalized vector quasivariational
inequalities under certain assumptions. The results presented in this paper extend,
improve and unify some corresponding results in the literature.

2. Gap functions for generalized vector quasivariational inequalities

Let X and Y be two real Hausdorff topological vector spaces and E a nonempty
subset of X . Let L(X, Y ) be the space of all the continuous linear operators from
X into Y and σ is the family of bounded subsets of X whose union is total in X ,
that is, the linear hull of ∪{S : S ∈ σ } is dense in X . Let B be a neighborhood base
of 0 in Y . When S runs through σ , V through B, the family

M(S, V )= {t ∈ L(X, Y ) : ∪x∈S〈t, x〉 ⊂ V }

is a neighborhood base of 0 in L(X, Y ) for a unique translation-invariant topol-
ogy, called the topology of uniform convergence on the sets S ∈ σ , or, briefly the
σ -topology where 〈t, x〉 denotes the valuation of the linear operator t ∈ L(X, Y )
at x ∈ X (see, [Schaefer 1971]). By the corollary of Schaefer [1971], L(X, Y )
becomes a locally convex topological vector space under the σ -topology, where Y
is assumed a locally convex topological vector space.

Lemma 2.1 ([Ding and Tarafdar 2000]). Let X and Y be two real Hausdorff topo-
logical vector spaces and L(X, Y ) be the topological vector space under the σ -
topology. Then the bilinear mapping

〈·, ·〉 : L(X, Y )× X→ Y

is continuous in L(X, Y )× X.

Let E be a nonempty compact subset of X , and C ⊆ Y be a closed, convex,
pointed cone in Y with apex at the origin and int C 6=∅. Assume that K : E→ 2E

is a lower semicontinuous with compact-valued mapping, and T : E×E→ 2L(X,Y )

is set-valued mapping such that T (x, x) is compact for any x ∈ E . Assume that
η : E×E→ E and h : E×E→ Y are two continuous functions with respect to the
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first argument. Let η(x, x)= 0 and h(x, x)= 0 for any x ∈ E . In this section, we
consider the following three generalized vector quasivariational inequalities (for
short, GVQVIs):

(I) find x∗ ∈ E and t∗ ∈ T (x∗, x∗) such that

x∗ ∈ K (x∗) and 〈t∗, η(y, x∗)〉+ h(y, x∗) 6∈ − int C, for all y ∈ K (x∗);(1)

(II) find x∗ ∈ E and t∗ ∈ T (x∗, x∗) such that

x∗ ∈ K (x∗) and 〈t∗, η(y, x∗)〉+ h(y, x∗) 6∈ −C\{0}, for all y ∈ K (x∗).(2)

Remark 2.1. It is clear that any solution of GVQVI (2) is a solution of GVQVI (1).
But the converse is not true in general.

Remark 2.2. If T (x, x)= T (x) and K = I (where I is the identity mapping) for
any x ∈ E , then GVQVI (1) and (2) reduce to the following generalized vector
variational inequalities (for short, GVVI), respectively:

(I) find x∗ ∈ E and t∗ ∈ T (x∗) such that

〈t∗, η(y, x∗)〉+ h(y, x∗) 6∈ − int C, for all y ∈ E; (3)

(II) find x∗ ∈ E and t∗ ∈ T (x∗) such that

〈t∗, η(y, x∗)〉+ h(y, x∗) 6∈ −C\{0}, for all y ∈ E . (4)

GVVI (3) and (4) were studied by Li and He [2005].

Remark 2.3. If η(x, y) = x − y and h(x, y) = 0 for any x, y ∈ E , then GVVI
(3) and (4) reduce to the following multivalued vector variational inequalities (for
short, MVVI), respectively:

(I) find x∗ ∈ E and t∗ ∈ T (x∗) such that

〈t∗, y− x∗〉 6∈ − int C, for all y ∈ E; (5)

(II) find x∗ ∈ E and t∗ ∈ T (x∗) such that

〈t∗, y− x∗〉 6∈ −C\{0}, for all y ∈ E . (6)

MVVI (5) and (6) were studied by Yang and Yao [2002].

In the rest of this section, let Rl be an l-dimensional vector space, and let

Rl
+
= {(r1, . . . , rl) ∈ Rl

| ri ≥ 0, i = 1, 2, . . . , l}

be the nonnegative orthant of Rl . Let Y = Rl and C = Rl
+

. Now we introduce
some gap functions for GVQVI (1) and (2). Set

S = {x ∈ E | x ∈ K (x)}.



186 XIAN JUN LONG AND NAN JING HUANG

Definition 2.1. φ : S→ R is said to be a gap function for GVQVI (1) (resp. (2))
if it satisfies the following properties:

(i) φ(x)≤ 0 for all x ∈ S;

(ii) φ(x∗)= 0 if and only if x∗ solves GVQVI (1) (resp. (2)).

Let x ∈ S, y ∈ K (x) and t ∈ T (x, x). Denote

〈t, η(y, x)〉+ h(y, x)= ([〈t, η(y, x)〉+ h(y, x)]1, . . . , [〈t, η(y, x)〉+ h(y, x)]l).

Now, we introduce the mappings ϕ1 : S×L(X, Rl)→ R and ϕ : S→ R as follows:

ϕ1(x, t)= min
y∈K (x)

max
1≤i≤l

(〈t, η(y, x)〉+ h(y, x))i

and

ϕ(x)=max{ϕ1(x, t) | t ∈ T (x, x)}. (7)

Since K (x) is compact, η is continuous and h is continuous with respect to the
first argument respectively, ϕ1(x, t) is well-defined. By Lemma 2.1, ϕ(x) is well-
defined. For any x ∈ S and t ∈ T (x, x), it is easy to see that

ϕ1(x, t)= min
y∈K (x)

max
1≤i≤l

(〈t, η(y, x)〉+ h(y, x))i ≤ 0.

Theorem 2.1. The function ϕ(x) defined by Equation (7) is a gap function for
GVQVI (1).

Proof. Since

ϕ1(x, t)≤ 0, for all x ∈ S, t ∈ T (x, x), (8)

it follows that

ϕ(x)=max{ϕ1(x, t) | t ∈ T (x, x)} ≤ 0, for all x ∈ S.

If ϕ(x∗)= 0, then there exists a t∗ ∈ T (x∗, x∗) such that ϕ1(x∗, t∗)= 0. Thus,

min
y∈K (x∗)

max
1≤i≤l

(〈t∗, η(y, x∗)〉+ h(y, x∗))i = 0.

From which it follows that, for any y ∈ K (x∗),

max
1≤i≤l

(〈t∗, η(y, x∗)〉+ h(y, x∗))i ≥ 0,

which implies that for any y ∈ K (x∗),

〈t∗, η(y, x∗)〉+ h(y, x∗) 6∈ − int Rl
+
,

that is, x∗ is a solution of GVQVI (1).
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Conversely, if x∗ is a solution of GVQVI (1), then there exists a t∗ ∈ T (x∗, x∗)
such that

x∗ ∈ K (x∗) and 〈t∗, η(y, x∗)〉+ h(y, x∗) 6∈ − int Rl
+
, for all y ∈ K (x∗).

It follows that for any y ∈ K (x∗),

max
1≤i≤l

(〈t∗, η(y, x∗)〉+ h(y, x∗))i ≥ 0.

Hence, we have

ϕ1(x∗, t∗)= min
y∈K (x∗)

max
1≤i≤l

(〈t∗, η(y, x∗)〉+ h(y, x∗))i ≥ 0. (9)

It follows from (8) and (9) that ϕ1(x∗, t∗)= 0. Again, from (8), we obtain

ϕ1(x∗, t)≤ 0, t ∈ T (x∗, x∗).

Therefore, ϕ(x∗)= 0. This completes the proof. �
From Remark 2.1 and Theorem 2.1, it is easy to see that the following result

holds.

Corollary 2.1. If x∗ is a solution of GVQVI (2), then ϕ(x∗)= 0.

3. Existence theorems for generalized vector quasivariational inequalities

Let X and Y be two Hausdorff topological vector spaces and E be a nonempty
subset of X . Let L(X, Y ) be a set of all the continuous linear operators from X
into Y . Let C : E→ 2Y be a set-valued mapping such that for any x ∈ E , C(x) is a
point, closed and convex cone in Y with int C(x) 6=∅. Assume that K : E→2E and
T : E×E→2L(X,Y ) are two set-valued mappings, η : E×E→ E and h : E×E→Y
are two vector-valued functions. In this section, we consider GVQVI with moving
cone C(x): find x∗ ∈ E and t∗ ∈ T (x∗, x∗) such that x∗ ∈ K (x∗) and

〈t∗, η(y, x∗)〉+ h(y, x∗) 6∈ − int C(x∗), for all y ∈ K (x∗). (10)

The following problems are special cases of GVQVI (10).
(1) If T (x, x)=T (x) and K = I (where I is the identity mapping) for any x ∈ E ,

then problem (10) reduces to the following problem: find x∗ ∈ E and t∗ ∈ T (x∗)
such that

〈t∗, η(y, x∗)〉+ h(y, x∗) 6∈ − int C(x∗), for all y ∈ E, (11)

which was considered by Lee and Lee [2000] and Li and He [2005].
(2) If η(y, x) = y − x and h(y, x) = 0 for any x, y ∈ E , then problem (11)

reduces to the following problem: find x∗ ∈ E and t∗ ∈ T (x∗) such that

〈t∗, y− x∗)〉 6∈ − int C(x∗), for all y ∈ E, (12)
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which was considered by Konnov and Yao [1997].
(3) If T is a single-valued mapping, then problem (12) reduces the to following

problem: find x∗ ∈ E such that

〈T (x), y− x∗)〉 6∈ − int C(x∗), for all y ∈ E, (13)

which was considered by Chen [1992] and Yu and Yao [1996].
(4) If T is a single-valued mapping, η(y, x)= y− g(x) and h(y, x)= 0 for any

x, y ∈ E , where g : E→ E , then problem (11) reduces to the following problem:
find x∗ ∈ E such that

〈T (x), y− g(x)〉 6∈ − int C(x∗), for all y ∈ E, (14)

which was considered by Siddiqi et al. [1997].
In order to prove our main results, we need the following definitions and lemma.

Definition 3.1 ([Fan 1960/1961]). A multivalued mapping G : X→ 2X is called a
KKM-mapping if for any finite subset {x1, x2, . . . , xn} of X , co{x1, x2, . . . , xn} is
contained in

⋃n
i=1 G(xi ), where coA denotes the convex hull of the set A.

Lemma 3.1 ([Fan 1960/1961]). Let M be a nonempty subset of a Hausdorff topo-
logical vector space X. Let G : M → 2X be a KKM-mapping such that G(x) is
closed for any x ∈M and is compact for at least one x ∈M. Then

⋂
y∈M G(y) 6=∅.

Definition 3.2. Let h : E × E → Y be a vector-valued mapping. Then h(·, x) is
said to be C(x)-convex on E for a fixed x ∈ E if, for any y1, y2 ∈ E and λ∈ [0, 1],

h(λy1+ (1− λ)y2, x) ∈ λh(y1, x)+ (1− λ)h(y2, x)−C(x).

Remark 3.1. It is easy to say that h(·, x) is C(x)-convex if and only if for any
given x ∈ E ,

h(
n∑

i=1

λi yi , x) ∈
n∑

i=1

λi h(yi , x)−C(x),

for any yi ∈ E and λi ∈ [0, 1] (i = 1, 2, . . . , n) with
∑n

i=1 λi = 1.

Theorem 3.1. Assume that the following conditions hold:

(i) E is a compact subset of X and E ∩ K (x) is nonempty and convex for any
x ∈ E ;

(ii) K is a closed mapping and K−1(y) is open in E for any y ∈ E ;

(iii) for any x ∈ E , η(x, x)= h(x, x)= 0;

(iv) for any x ∈ E , the mapping y→ h(y, x) is C(x)-convex;

(v) for any fixed x, y ∈ E and each t ∈ T (x, x), the mapping y→ 〈t, η(y, x)〉 is
C(x)-convex;
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(vi) for any y ∈ E , {x ∈ E : ∃t ∈ T (x, x), 〈t, η(y, x)〉 + h(y, x) 6∈ − int C(x)} is
closed.

Then GVQVI (10) has a solution.

Proof. For any x, y ∈ E , set

S = {x ∈ E : x ∈ K (x)},

P(x)= {z ∈ E : 〈T (x, x), η(z, x)〉+ h(z, x)⊂− int C(x)},

ϕ(x)=
{

K (x)∩ P(x), if x ∈ S,
E ∩ K (x), if x ∈ E\S

and

Q(y)= E\ϕ−1(y).

First, we show that Q is a KKM-mapping. Indeed, suppose that there exists a finite
subset N = {y1, y2, . . . , yn} ⊆ E and that αi ≥ 0, i = 1, 2, . . . , n with

∑n
i=1 αi = 1

such that x =
∑n

i=1 αi yi 6∈
⋃n

i=1 Q(yi ). Then, x 6∈ Q(yi ); that is, yi ∈ ϕ(x) for
i = 1, 2, . . . , n. If x ∈ S, then

ϕ(x)= K (x)∩ P(x).

Thus, yi ∈ P(x), i = 1, 2, . . . , n, which implies that

〈T (x, x), η(yi , x)〉+ h(yi , x)⊂− int C(x).

It follows that
n∑

i=1

αi 〈T (x, x), η(yi , x)〉+
n∑

i=1

αi h(yi , x)⊂− int C(x). (15)

By conditions (iii)–(v) of Theorem 3.1 and (15), we have for any x ∈ E and
t ∈ T (x, x)

0= 〈t, η(x, x)〉+ h(x, x)

∈

n∑
i=1

αi 〈t, η(yi , x)〉−C(x)+
n∑

i=1

αi h(yi , x)−C(x)

⊆− int C(x)−C(x)−C(x)

⊆− int C(x).

Therefore, 0 ∈ − int C(x), which is a contradiction. So, the only possibility is
x ∈ E\S. By the definition of S, x 6∈ K (x). On the other hand, for i = 1, 2, . . . , n

yi ∈ ϕ(x)= E ∩ K (x).
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Hence,

x =
n∑

i=1

αi yi ∈ K (x),

represents another contradiction. Thus, Q is a KKM-mapping.
Next, we show that Q(y) is a closed set for any y ∈ E . In fact, we have

ϕ−1(y)= {x ∈ S : y ∈ K (x)∩ P(x)} ∪ {x ∈ E\S : y ∈ K (x)}

= {x ∈ S : x ∈ K−1(y)∩ P−1(y)} ∪ {x ∈ E\S : x ∈ K−1(y)}

= [S ∩ K−1(y)∩ P−1(y)] ∪ [(E\S)∩ K−1(y)]

= [(E\S)∪ P−1(y)] ∩ K−1(y).

Therefore,

Q(y)= E\{[(E\S)∪ P−1(y)] ∩ K−1(y)}

= {E\[(E\S)∪ P−1(y)]} ∪ [E\K−1(y)]

= [S ∩ E\P−1(y)] ∪ [E\K−1(y)]. (16)

Since K is closed mapping, S is closed set. From the definition of P(x), we have

E\P−1(y)= {x ∈ E : y 6∈ P(x)}

= {x ∈ E : ∃t ∈ T (x, x), 〈t, η(y, x)〉+ h(y, x) 6∈ − int C(x)},

which is closed by condition (vi). It follows from condition (ii) and (16) that Q(y)
is closed for any y ∈ E . Since E is compact, so is Q(y). Therefore, by Lemma 3.1,
we have that there exists x∗ ∈ E such that

x∗ ∈
⋂
y∈E

Q(y)= E\
⋃
y∈E

ϕ−1(y).

Thus, for any y ∈ E , x∗ 6∈ ϕ−1(y); that is, ϕ(x∗)=∅. If x∗ ∈ E\S, then we have

ϕ(x∗)= E ∩ K (x∗)=∅,

which contradicts condition (i).
If x∗ ∈ S, that is, x∗ ∈ K (x∗), then

∅= ϕ(x∗)= K (x∗)∩ P(x∗).

Thus, for any y ∈ K (x∗), y 6∈ P(x∗). It follows that there exists t ∈ T (x∗, x∗) such
that

〈t, η(y, x∗)〉+ h(y, x∗) 6∈ − int C(x∗), for all y ∈ K (x∗).

This completes the proof. �
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Example 3.1. Let X = Y = R, E = [0, 1], C(x)= R+,

K (x)= [0,
1
2
(x + 1)], for all x ∈ [0, 1],

T (x, x)=

{
[0, 2], if x = 0.5,

[4x, 4], if x 6= 0.5,

η(y, x)=

{
x−y

2 , if x ≥ y,
y−x

2 , if x < y,

h(y, x)= y2
− x2.

It is easy to verify that assumptions (i)–(iii) of Theorem 3.1 are fulfilled and for
any y ∈ E , K−1(y) is an open set which was shown in [Khanh and Luu 2004].
Since

λh(y1, x)+ (1− λ)h(y2, x)− h(λy1+ (1− λ)y2, x)=

= λ(y2
1 − x2)+ (1− λ)(y2

2 − x2)− [(λy1+ (1− λ)y2)
2
− x2
]

= λy2
1 + (1− λ)y

2
2 − x2

− [(λy1+ (1− λ)y2)
2
− x2
]

= λ(1− λ)(y1− y2)
2

≥ 0,

then condition (iv) of Theorem 3.1 is satisfied.
Let λy1+ (1− λ)y2 > x . If y1 > x and y2 > x , then

λ〈t, η(y1, x)〉+ (1− λ)〈t, η(y2, x)〉− 〈t, η(λy1+ (1− λ)y2, x)〉 = 0.

If y1 > x and y2 ≤ x , then we have

λ〈t, η(y1, x)〉+ (1− λ)〈t, η(y2, x)〉− 〈t, η(λy1+ (1− λ)y2, x)〉

= 〈t,
2(1− λ)(x − y2)

2
〉 ≥ 0.

If y1 ≤ x and y2 > x , then

λ〈t, η(y1, x)〉+ (1− λ)〈t, η(y2, x)〉− 〈t, η(λy1+ (1− λ)y2, x)〉

= 〈t,
2λ(x − y1)

2
〉 ≥ 0.

Let λy1+ (1− λ)y2 ≤ x . If y1 ≤ x and y2 ≤ x , then we have

λ〈t, η(y1, x)〉+ (1− λ)〈t, η(y2, x)〉− 〈t, η(λy1+ (1− λ)y2, x)〉 = 0.



192 XIAN JUN LONG AND NAN JING HUANG

If y1 > x and y2 ≤ x , then

λ〈t, η(y1, x)〉+ (1− λ)〈t, η(y2, x)〉− 〈t, η(λy1+ (1− λ)y2, x)〉 =

= 〈t,
2λ(y1− x)

2
〉> 0.

If y1 ≤ x and y2 > x , then we have

λ〈t, η(y1, x)〉+ (1− λ)〈t, η(y2, x)〉− 〈t, η(λy1+ (1− λ)y2, x)〉 =

= 〈t,
2(1− λ)(y2− x)

2
〉> 0.

Therefore, condition (v) of Theorem 3.1 is satisfied.
If x = 0.5, x ≥ y and let t = 2, then

〈t, η(y, x)〉+ h(y, x)= 〈2,
x − y

2
〉+ y2

−
1
4
= (y−

1
2
)2 ≥ 0.

If x = 0.5, x < y and let t = 0, then we have

〈t, η(y, x)〉+ h(y, x)= 〈0,
y− x

2
〉+ y2

−
1
4
= y2
−

1
4
> 0.

If x 6= 0.5, x ≥ y and let t = 4x , then

〈t, η(y, x)〉+ h(y, x)= 〈4x,
y− x

2
〉+ y2

− x2
= (x − y)2 ≥ 0.

If x 6= 0.5, x < y and let t = 4, then we have

〈t, η(y, x)〉+ h(y, x)= 〈4,
y− x

2
〉+ y2

− x2
= (y+ 1)2− (x + 1)2 > 0.

Thus, for any y ∈ E ,

{x ∈ E : ∃t ∈ T (x, x), 〈t, η(y, x)〉+ h(y, x) 6∈ − int C(x)} = [0, 1]

is a closed set. Therefore, all the assumptions of Theorem 3.1 are satisfied. It is
easy to see that x = 1 and t = 4 is a solution of GVQVI (10).

Remark 3.2. Theorem 3.1 extends and unifies corresponding results of [Chen
1992; Konnov and Yao 1997; Lee and Lee 2000; Lee et al. 1996; Li and He
2005; Siddiqi et al. 1997; Yang 2003; Yang and Yao 2002; Yu and Yao 1996].
Furthermore, our proof is different from the methods used in these papers.

Corollary 3.1. Assume that conditions (i)–(v) of Theorem 3.1 hold and the follow-
ing assumptions are satisfied:

(a) if xα → x , yα → y in E and if tα ∈ T (xα, xα), then there exists t ∈ T (x, x)
and subnets xβ , yβ and tβ ∈ T (xβ, xβ) such that (tβ, yβ)→ (t, y);

(b) for any y ∈ E , the mappings x→ η(y, x) and x→ h(y, x) are continuous;
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(c) the mapping x→ Y\(− int C(x)) is closed.

Then GVQVI (10) has a solution.

Proof. By Theorem 3.1, it is sufficient to show that for any y ∈ E , the set

M = {x ∈ E : ∃t ∈ T (x, x), 〈t, η(y, x)〉+ h(y, x) 6∈ − int C(x)}

is closed. Let {xα} ⊂ M and xα→ x∗. Then, there exists tα ∈ T (xα, xα) such that

〈tα, η(y, xα)〉+ h(y, xα) 6∈ − int C(xα).

By assumptions (a) and (b) of Corollary 3.2, there exists t∗∈T (x∗, x∗) and subnets
xβ and tβ ∈ T (xβ, xβ) such that

〈tβ, η(y, xβ)〉+ h(y, xβ)→ 〈t∗, η(y, x∗)〉+ h(y, x∗).

It follows from condition (c) that

〈t∗, η(y, x∗)〉+ h(y, x∗) 6∈ − int C(x∗).

Therefore, x∗ ∈ M . This means M is a closed set. This completes the proof. �

Remark 3.3. Example 2.1 in [Khanh and Luu 2004] illustrates that assumption (a)
is satisfied.

Remark 3.4. If T (x, x) = T (x), η(y, x) = y − g(x) and η(y, x) = 0, where
g : E → E is continuous mapping, then Corollary 3.1 reduces Theorem 2.1 in
[Khanh and Luu 2004].

Corollary 3.2. Assume that all conditions in Theorem 3.1 hold, except the assumed
compactness of E which is replaced by one of the following conditions:

(a) there exists y∗ ∈ E such that E\K−1(y∗) is compact and there exists a com-
pact subset B ⊂ E such that

〈T (x, x), η(y∗, x)〉+ h(y∗, x)⊂− int C(x), for all x ∈ E\B;

(b) there exists y∗ ∈ E such that E\K−1(y∗) is compact and S is compact.

Then GVQVI (10) has a solution.

Proof. From (16), it is sufficient to verify the compactness of S ∩ E\P−1(y∗) so
that the FKKM theorem can be applied.

In case (a), we can obtain E\B ⊂ P−1(y∗). Thus, E\P−1(y∗) ⊂ B. Since
E\P−1(y∗) is closed and B is compact, then both E\P−1(y∗) and S∩E\P−1(y∗)
are compact. For case (b), since S is compact and E\P−1(y∗) is closed, then
S∩E\P−1(y∗) is compact. Therefore, the FKKM theorem can be applied in cases
(a) and (b). By Theorem 3.1, GVQVI (10) has a solution. This completes the
proof. �



194 XIAN JUN LONG AND NAN JING HUANG

References

[Ansari 1995] Q. H. Ansari, “On generalized vector variational-like inequalities”, Ann. Sci. Math.
Québec 19:2 (1995), 131–137. MR 96j:49005 Zbl 0847.49014

[Chen 1992] G. Y. Chen, “Existence of solutions for a vector variational inequality: an exten-
sion of the Hartmann-Stampacchia theorem”, J. Optim. Theory Appl. 74:3 (1992), 445–456. MR
93h:49018 Zbl 0795.49010

[Chen et al. 1997] G. Y. Chen, C. J. Goh, and X. Q. Yang, “On gap functions and duality of vari-
ational inequality problems”, J. Math. Anal. Appl. 214:2 (1997), 658–673. MR 98f:49012 Zbl
0945.49004

[Chen et al. 2005] G. Y. Chen, X. X. Huang, and X. Q. Yang, Vector optimization, vol. 541, Lecture
Notes in Economics and Mathematical Systems, Springer-Verlag, Berlin, 2005. Set-valued and
variational analysis. MR 2007f:90003

[Ding and Tarafdar 2000] X. P. Ding and E. Tarafdar, “Generalized vector variational-like inequal-
ities without monotonicity”, pp. 113–124 in Vector variational inequalities and vector equilib-
ria, Nonconvex Optim. Appl. 38, Kluwer Acad. Publ., Dordrecht, 2000. MR 2001j:49011 Zbl
0991.49009

[Fan 1960/1961] K. Fan, “A generalization of Tychonoff’s fixed point theorem”, Math. Ann. 142
(1960/1961), 305–310. MR 24 #A1120

[Giannessi 1980] F. Giannessi, “Theorems of alternative, quadratic programs and complementarity
problems”, pp. 151–186 in Variational inequalities and complementarity problems (Proc. Internat.
School, Erice, 1978), Wiley, Chichester, 1980. MR 81j:49021 Zbl 0484.90081

[Giannessi 2000] F. E. Giannessi, Vector variational inequalities and vector equilibria, vol. 38,
Nonconvex Optimization and its Applications, Kluwer Academic Publishers, Dordrecht, 2000.
Mathematical theories, Edited by Franco Giannessi. MR 2001f:90003

[Göpfert et al. 2003] A. Göpfert, H. Riahi, C. Tammer, and C. Zălinescu, Variational methods in
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