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In her Ph.D. Thesis, Czarneski began a preliminary study of the coefficients of
the reciprocal of the Ihara zeta function of a finite graph. We give a survey of the
results in this area and then give a complete characterization of the coefficients.
As an application, we give a (very poor) bound on the number of Eulerian circuits
in a graph. We also use these ideas to compute the zeta function of graphs which
are cycles with a single chord. We conclude by posing several questions for
future work.

1. Introduction

Ihara wrote two papers [1966a; 1966b] in which he set forth the framework to
define the Ihara zeta function of a finite k-regular graph. Then Bass [1992] gave
an expression for the zeta function that applied to all graphs, regardless of the
regularity. Since then a great deal of work has been done on this function. We
refer the reader to the series [Stark and Terras 1996; 2000; Terras and Stark 2007]
for a very comprehensive overview. In general, the zeta function of a graph is
the reciprocal of a polynomial and can be computed in polynomial time. The aim
of this paper is to study the coefficients of this polynomial with an eye towards
relating each coefficient to a specific structure in the graph.

Answering this question opens the door to some very interesting questions for
future study. By understanding the polynomial, we have a solid ground to investi-
gate families of graphs which are uniquely determined by their zeta functions. This
type of question is addressed in a survey by Noy [2003] for several other important
polynomial invariants. In addition, the roots of this polynomial connect to the
Ramanujan condition on a graph [Bass 1992; Stark and Terras 1996; Kotani and
Sunada 2000], and it would be very interesting to be able to construct polynomials

MSC2000: 00A05.
Keywords: Ihara zeta, polynomial coefficient, graph zeta, Eulerian circuit, graph, digraph, oriented

line graph.
This work was done while Scott was at Dartmouth College. Storm is supported in part by Dartmouth
College.

217

http://pjm.math.berkeley.edu/inv
http://dx.doi.org/10.2140/inv.2008.1-2


218 GEOFFREY SCOTT AND CHRISTOPHER STORM

which are reciprocals of Ihara zeta functions and then to find which graph gives
rise to it. We pose some of these questions at the end of the paper.

For the rest of this section, we give a definition of the Ihara zeta function and
then survey the work that has been done on the coefficients. We also present our
main result at the end of this section. In Section 2, we give Kotani and Sunada’s
“oriented line graph” construction [2000], which will allow us to write the zeta
function as

det(I − uT )−1,

where T is the adjacency operator on the oriented line graph. Our results come
from analyzing this determinant expression, much as Biggs [1994] analyzed the
coefficients of the characteristic polynomial. In Section 2, we explicitly compute
the zeta function of graphs which are cycles with a single chord. In addition, we
give a rough bound on the number of Eulerian circuits in a graph in Section 3.
Finally, we conclude by posing several questions for future work.

We begin by defining graphs, digraphs, and the symmetric digraph associated
to a graph. All structures treated here are finite. We refer the reader to the books
[Harary 1969b; Chartrand and Lesniak 1986] for a good overview of these struc-
tures.

A graph X = (V, E) is a finite nonempty set V of vertices and a finite multiset E
of unordered pairs of vertices, called edges. If {u, v} ∈ E , we say that u is adjacent
to v and write

u ∼ v.

A graph X is simple if there is no edge of the form {v, v} and if there is no repeated
edge.

A directed graph or digraph D = (V, E) is a finite nonempty set V of vertices
and a finite multiset E of ordered pairs of vertices, called arcs. For an arc e =
(u, w), we define the origin of e to be o(e)=u and the terminus of e to be t (e)=w.
The inverse arc of e, written as e, is the arc formed by switching the origin and
terminus of e: e= (w, u). In general, the inverse arc of an arc need not be present
in the arc set of a digraph.

A digraph D is called symmetric if whenever (u, w) is an arc of D, its inverse
arc (w, u) is as well. There is a natural one-to-one correspondence between the set
of symmetric digraphs and the set of graphs, given by identifying an edge of the
graph to an arc and its inverse arc on the digraph on the same vertices. We denote
by D(X) the symmetric digraph associated with the graph X . We give an example
in Figure 1.

To define the Ihara zeta function, we need several cycle definitions. Let X be a
graph and D(X) its symmetric digraph. A cycle c of length n in X is a sequence
c= (e1, . . . , en) of n arcs in D(X) such that t (ei )= o(ei+1) for 1≤ i ≤ n− 1 and
t (en) = o(e1). We say that c has backtracking if ei+1 = ei for some i satisfying
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Figure 1. The complete graph minus an edge and its symmetric digraph.

1≤ i ≤ n−1. Also, c has a tail if e1= en . We will primarily be interested in cycles
with no backtracking or tail.

The r-multiple of the cycle c is the cycle cr formed by going r times around
c. We say a cycle is primitive if it is not the r -multiple of some other cycle b for
r ≥ 2. We impose an equivalence relation on cycles via cyclic permutation; that
is, two cycles b = (e1, . . . , en) and c = ( f1, . . . , fn) are equivalent if there is a
fixed α ∈ Z/nZ such that ei = fi+α for all i ∈ Z/nZ (all indices are considered
modulo n). Note that the direction of travel does matter so traversing a cycle in
the opposite direction does not give a cycle equivalent to the original one. A prime
cycle is the equivalence class of primitive cycles which have no backtracking or
tail, written as [c].

The Ihara zeta function of a graph X is defined as a function of u ∈ C for |u|
sufficiently small by

Z X (u)=
∏
[c]

(1− ul(c))−1,

where the product is over the prime cycles in X and l(c) is the length of the cycle
c. Typically, this is an infinite product; however, the function is always rational. In
fact, Z X (u) is always the reciprocal of a polynomial of maximum degree 2|E |.

For a graph X , we let n = |V | and m = |E |. We write

1
Z X (u)

= Z X (u)−1
= c0+ c1u+ c2u2

+ c3u3
+ · · ·+ c2mu2m .

We are concerned with determining the coefficients ci in terms of structure in the
graph X . We cite the known results and then give our main result.

From the definition of Z X (u), it is immediate that c0 = 1. The first result in this
area was given by Kotani and Sunada [2000], which is an expression for c2m .

Theorem 1. Let X be a graph and Z X (u) its Ihara zeta function as written above.
We take n = |V | and m = |E |. We denote by d(v) the degree of vertex v which is
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the number of edges to which v is incident. Then,

c2m = (−1)m−n
∏
vi∈V

(d(vi )− 1).

Czarneski computed c1 in her dissertation [2005]:

Theorem 2. Let X be a graph and Z X (u) its Ihara zeta function as written above.
Then the coefficient c1 is the negative of twice the number of loops in X.

In his dissertation, Storm [2007] computed c3 from the number of triangles in X .
The method used in the next section for an arbitrary coefficient is an extension of
the one used for this theorem. We will look at it in more detail in the next section.

Theorem 3. Let X be a simple graph and Z X (u) its Ihara zeta function as written
above. Then the coefficient c3 is the negative of twice the number of triangles in X.

The final result in this area comes from Horton’s dissertation [2006]. It encom-
passes Theorem 3; however, it is harder to generalize to realize the other coeffi-
cients. He shows that the girth of X can be recovered from the zeta function and
relates a coefficient of the zeta function to this. We give two definitions and then
his theorem.

Definition 4. Let X be a graph. The girth of X is the length of the shortest cycle in
X . A k-gon in X is a subgraph of X which is isomorphic to the cycle graph Ck–Ck

is the connected graph on k vertices such that the degree of every vertex is 2.

Theorem 5. Let g be the girth of a simple connected graph X with zeta function
Z X (u) written as above. Then, ck = 0 for 1≤ k < g. Moreover, cg is the negative
of twice the number of g-gons in X.

To state our more general result, we need a few more digraph definitions. The
indegree of a vertex v, in(v), in a digraph D is the number of arcs with terminus
v. Similarly, the outdegree of v, out (v), is the number of arcs with origin v. A
subgraph of a digraph D is a digraph having all of its vertices and arcs in D. A
spanning subgraph is a subgraph containing all of the vertices of D. Finally, a
linear subgraph of a digraph D is a spanning subgraph in which each vertex has
indegree one and outdegree one. A linear subgraph is thus a disjoint spanning
collection of directed cycles.

Definition 6. Let D be a digraph. We denote by Sk(D) the set of subgraphs of D
which have exactly k vertices. For an element D̃ of Sk(D), we denote by Ek(D̃)
the number of linear subgraphs of D̃ which consists of an even number of cycles
of even length. Similarly we denote by Ok(D̃) the number of linear subgraphs of
D̃ with an odd number of cycles of even length.

We now state our main theorem:
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Theorem 7. Let X be a connected graph with oriented line graph Lo X (defined
in the next section) and Z X (u) its Ihara zeta function as before. We also take the
notation of Definition 6 as applied to the digraph Lo X. Then for 1 ≤ k ≤ 2m, the
coefficient ck can be realized as

ck =
∑

D ∈Sk(Lo X)

(−1)k(Ek(D)−Ok(D)).

We prove this theorem in the next section and explore some of its consequences.
In particular, we can realize Theorems 3 and 5 as corollaries to this. We will also
give a practical list of things the Ihara zeta function must determine about a graph
as a consequence of this theorem. In particular, Corollary 14 points out that the
Ihara zeta function of a simple graph determines the number of triangles, squares,
and pentagons in the graph.

2. Explicit representation of the coefficients

The first step to analyzing the coefficients of the zeta function is to realize the zeta
function as a determinant expression. To do this, we construct an oriented line
graph, a technique which was first proposed by Kotani and Sunada [2000].

We begin with a graph X and form its symmetric digraph D(X). Hence D(X)
has 2|E(X)| arcs. Now we construct the oriented line graph Lo X = (VL , Eo

L) by

VL = E(D(X)),

Eo
L =

{
(ei , e j ) ∈ E(D(X))× E(D(X)); ei 6= e j , t (ei )= o(e j )

}
.

We give an example of this construction in Figure 2. The intuitive idea is that
we are building a digraph which models all of the “legal” moves we could take
to get prime cycles in X . It is for this reason that we disallow going from an arc
to its inverse arc. We are particularly concerned with the adjacency matrix of this
digraph.

Definition 8. Let D be a digraph with n vertices, written as {v1, . . . , vn}. The
adjacency matrix T of D is the n× n matrix given by setting the (i, j)-entry Ti, j

to be 1 if there is an arc with origin vi and terminus v j , and zero otherwise.

Thus for the oriented line graph, the matrix T is a 2|E(X)| × 2|E(X)| matrix
which catalogues whether it is legal for an arc in D(X) to feed into another arc.
This matrix is given several different names in the zeta function literature. Stark
and Terras [1996] refer to it as an “edge routing matrix”. Kotani and Sunada [2000]
call it the Perron–Frobenius matrix.

The following proposition, found in [Kotani and Sunada 2000], makes it clear
why we are concerned with the oriented line graph and its adjacency matrix.
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Figure 2. Construction of an oriented line graph of K4 minus an edge.

Proposition 9. There is a one-to-one correspondence between primitive cycles
with no backtracking or tail in X and primitive cycles in Lo X. Moreover, if X
is a connected graph, the zeta function Z X (u) can be written as

Z X (u)= det(I − uT )−1,

where T is the adjacency matrix of the oriented line graph Lo X.

Studying this determinant expression will give us insight into the coefficients.
For the rest of this section we let m = |E(X)|. We first note that the coefficients of
the characteristic polynomial of T and those of the reciprocal of the zeta function
are intimately related.

Lemma 10. Let T be the adjacency matrix of the oriented line graph associated
with the connected graph X. We write the characteristic polynomial of T as

χT (u)= det(T − uI )= u2m
+ c1u2m−1

+ · · ·+ c2m .

Then the reciprocal of the Ihara zeta function of X can be written as

1
Z X (u)

= Z X (u)−1
= 1+ c1u+ c2u2

+ c3u3
+ · · ·+ c2mu2m .

Proof. We begin by considering χT (u)= det(T − uI ). We rewrite this as

det(T − uI )= (−u)2m det
(

I − 1
u

T
)
.

We now replace u by 1/u and the result follows. �

This is very helpful since the coefficients of characteristic polynomials are very
well understood as the sum of the principal minors of the matrix involved.
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Definition 11. A principal minor of a square matrix M is the determinant of a
submatrix of M formed by selecting a subset of the matrix’s rows and the columns
indexed by the same subset.

We make use of a useful linear algebra fact:

Lemma 12. Let M be an n× n square matrix with characteristic polynomial

χM(u)= un
+ c1un−1

+ · · ·+ cn.

Then the coefficient ci is (−1)i times the sum of all i × i principal minors of M.

We wish to apply Lemma 12 to the characteristic polynomial of the adjacency
matrix T of the oriented line graph of X . This will then give us the information
we need about coefficients of the reciprocal of the Ihara zeta function.

How can we interpret a principal minor of the matrix T ? We let I be the index
set which determines which rows we are keeping when we pass to the principal
minor. Each row and the corresponding column represent a vertex in the oriented
line graph. These vertices in turn represent arcs in the symmetric digraph D(X).
Then by reducing the matrix T to only keeping the rows and columns indexed by I ,
we are in fact looking at the matrix T̃ we would get by taking the subgraph induced
on D(X) by the arcs indexed by I and then forming the submatrix’s oriented line
graph and adjacency matrix. Thus an i × i principal minor can be computed by
taking the appropriate subgraph of D(X) induced by i edges, forming its T̃ matrix,
and then taking the determinant.

This leaves only the question: how can we compute the determinant of the
adjacency matrix of a digraph? Fortunately Harary [1962] answers this by

Lemma 13. Let D be a digraph whose linear subgraphs are Di , for i = 1, . . . , n,
and suppose each Di has ei even cycles. Then

det A =
n∑

i=1

(−1)ei ,

where A is the adjacency matrix of D.

Proof of Theorem 7. We consider the coefficient ck for 2≤ k < 2m. By Lemma 12,
we must consider all of the k×k principal minors of T . Each such principal minor
corresponds to picking k vertices of Lo X and then taking the subdigraph induced
by those vertices. Such a subgraph is then a member of Sk(Lo X). We call this
subgraph D̃.

Then the principal minor corresponds to the determinant of the adjacency opera-
tor T̃ of D̃. To take this determinant, we use Lemma 13. We let D̃i for i = 1, . . . , j
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be the linear subgraphs of D̃. Then

det T̃ =
j∑

i=1

(−1)ei ,

where ei is the number of even cycles in D̃i . Using the notation of Definition 6,
we have

det T̃ = Ek(D̃)−Ok(D̃).

We combine this statement with Lemma 12 to get the result

ck =
∑

D̃∈Sk(Lo X)

(−1)k
(
Ek(D̃)−Ok(D̃)

)
. �

With this theorem it is fairly easy to compute the coefficients of smaller powers
of u. We use Proposition 9 to take information about cycles in the oriented line
graph back to information about cycles in the graph. In particular, notice that a
linear subgraph of Lo X corresponds to an edge-disjoint collection of backtrack-
free, tailless cycles in the symmetric digraph of the original graph. Therefore,
each subgraph of the symmetric digraph that has k edges and consists only of
edge-disjoint backtrackfree, tailless cycles contributes to the coefficient ck . This
approach, of course, is not a practical way to compute higher powers; fortunately,
we can get a great deal of information from the lower powers. We first give a very
explicit statement; then, we give a second corollary which is more general.

Corollary 14. Let X be a connected graph with Ihara zeta function as above.

(1) If X has loops, the coefficient c1 can be computed by Theorem 2.

(2) If X does not have loops, then the coefficient c2 is the negative of twice the
number of primitive cycles of length 2 in X. Also, the coefficient c3 is the
negative of twice the number of triangles in X. In addition, c4 is the number of
primitive cycles of length 2 plus twice the number of pairs of primitive cycles
of length 2 that share an edge plus four times the number of edge disjoint pairs
of primitive cycles of length 2 minus twice the number of squares in X.

(3) If X is a simple graph, the coefficients c3, c4, and c5 are the negative of twice
the number of triangles, squares, and pentagons in X respectively. Also, c6 is
the negative of twice the number of hexagons in X plus four times the number
of pairs of edge disjoint triangles plus twice the number of pairs of triangles
with a common edge, while c7 is the negative of twice the number of heptagons
in X plus four times the number of edge disjoint pairs of one triangle and one
square plus twice the number of pairs of one triangle and one square that
share a common edge.
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Figure 3. The complete graph K4.

Proof. We leave the proof as an exercise to the reader. Particular care should be
taken to get the coefficient c4 as detailed in the second statement. The possible
ways to orient the smaller cycles show up in the number of subgraphs on 4 vertices
of the oriented line graph. �

Corollary 14 provides a very concrete way to compute the coefficients of smaller
powers of u. We give a definition and then a more general statement.

Definition 15. Let X be a graph with two cyclic subgraphs Cn and Cm . We call
Cn and Cm compatible if it is possible to orient the edges of X so that Cn and Cm

both become oriented cycles.

Example 16. We consider the complete graph K4 shown in Figure 3. For our first
cycle, we choose the cycle which goes from v1 to v2 to v3 to v4 and back to v1.
This is a copy of C4. Now consider the copy of C3 given by going from v1 to
v2 to v3 and back to v1. These two cycles are compatible. Any orientation which
makes our copy of C4 into an oriented cycle will work so long as we orient the
edge {v1, v3} correctly.

Let’s look at an example of some cycles which are not compatible. We keep
the same graph and the same initial copy of C4. Now we choose a second copy
of C4 given by going from v1 to v2 to v4 to v3 and back to v1. These two cycles
are not compatible. Orient the first cycle so that you get an oriented cycle. Now
either the edge {v1, v2} or {v3, v4} will not be oriented correctly to make the second
cycle into an oriented cycle, irrespective of how the edges {v1, v3} and {v2, v4} are
oriented.

Compatible cycles play an important role in this analysis since, whenever two
cycles are compatible, they give rise to edge-disjoint cycles in the symmetric di-
graph — simply take one cycle as oriented then reverse the edge orientations for the
other cycles so that neither of them ever use an edge in the same direction. These
edge-disjoint cycles then show up in the oriented line graph as disjoint unions of
cycles, exactly the structures that contribute to the coefficients of the zeta function.
Now that we have this connection in general, we can state a more general corollary.
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Corollary 17. Let X be a connected graph with girth g and Ihara zeta function as
above.

(1) Whenever 0< i < g, the coefficient ci equals 0.

(2) Whenever g ≤ i < 2g, the coefficient ci is the negative of twice the number of
i-gons in X.

(3) Whenever 2g ≤ i < 3g, the coefficient ci is the sum of the following terms:

• the negative of twice the number of i-gons in X ,
• four times the number of edge disjoint pairs of a k-gon and a (ci −k)-gon

for g ≤ k < 2g,
• twice the number of pairs of a k-gon and a (ci−k)-gon that share at least

one edge and are compatible for g ≤ k < 2g, and
• twice the number of edge disjoint pairs of a k1-gon and a k2-gon that

have a path of length 1
2(ci − k1 − k2) between them and are compatible

for k1+ k2 < 3g.

Corollary 17 thus encompasses Theorems 3 and 5. It also makes it possible to
write down the zeta function of certain graphs, particularly graphs which have very
few cycles. The fewer the number of cycles, the easier it is to identify where the
linear subgraphs are showing up in the calculations of Theorem 7. We look at the
graphs Cn and the graphs which are a cycle with a single chord. The zeta function
of Cn is easy to compute directly from the definition, but it is instructive to apply
the corollary to these graphs.

Example 18. Consider the graph Cn which is the graph that is a cycle on n vertices.
Then its zeta function is given by

ZCn (u)
−1
= 1− 2un

+ u2n.

The graph Cn has girth n, so all of the coefficients up to cn are zero. In addition,
there is a single n-gon, so the coefficient cn is given by −2. There are no other
k-gons, so all of the rest of the coefficients up to c2n must be zero. Finally, c2n

can be computed by Czarneski’s result or as a consequence of there being only one
n-gon and no primitive cycle of length 2n.

Cycles which have exactly one chord are a bit more delicate since there are
more cycles to consider. With due care, we can still work out the zeta function.
We define the graph CHn,k by starting with the cycle graph Cn and adding an
additional edge so that the smallest cycle in CHn,k has length k+ 1. We illustrate
CH10,4 in Figure 4.
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Figure 4. CH10,4.

Corollary 19. The zeta function of CHn,k is given by

ZCHn,k (u)
−1
= 1− 2uk+1

− 2un−k+1
− 2un

+ 2u2n−k+1

+2un+2
+ 2un+k+1

+ u2k+2
+ u2n−2k+2

+ u2n
− 4u2n+2.

Proof. By inspection, it is easy to see that there are exactly six backtrackfree, tail-
less cycles in the symmetric digraph D(CHn,k). Specifically, D(CHn,k) contains
clockwise and counterclockwise copies of Cn , Cn−k+1, and Ck+1. Taken individu-
ally, these cycles contribute the second, third and fourth term of ZCn,k (u)

−1 above.
There are nine different subgraphs of the symmetric digraph that consist of exactly
two of these cycles; these subgraphs contribute the next six terms. Finally there
are four linear subgraphs of the oriented line graph of CHn,k , giving us the final
u2n+2 term. We leave it to the reader to find these four linear subgraphs and verify
that they break up into an odd number of cycles. There is no further backtrackfree,
tailless cycle in D(CHn,k). �

Example 20. We return to the example of CH10,4. By direct calculation, using the
formula det(I − uT ), we see that

ZCH10,4(u)
−1
= 1− 2u5

− 2u7
− u10

+ 2u12
+ u14

+ 2u15
+ 2u17

+ u20
− 4u22.

Corollary 19 would have us write the function as

ZCH10,4(u)
−1
= 1−2u5

−2u7
−2u10

+2u17
+2u12

+2u15
+u10

+u14
+u20

−4u22.

By collecting common powers in the second expression, we see that we do have
the same polynomial.
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Thus the reciprocal of the Ihara zeta function of a graph encodes a great deal
of structural information about the graph, particularly about the graph’s primitive
cycles. We have high hopes that, in general, it encodes enough information to
allow us to conclude that certain families of graphs are determined by their zeta
functions. We will pose this question and a few others in the next section.

3. Conclusion

In this section, we first explore the question of bounding the number of Eulerian
circuits in an Eulerian graph. Recently, the problem of counting the number of
Eulerian circuits has been shown to be #P-complete in the class of undirected
graphs by Brightwell and Winkler [2004]. There has been very little success at even
bounding this number. We give a fairly rough bound, which is very inaccurate.

We let X be an (undirected) Eulerian graph and denote by eul X the number of
Eulerian circuits on X . An Eulerian circuit is a cycle which uses every edge of X
exactly once. As such, it is a primitive cycle of length m where m is the number of
edges in X . When counting Eulerian circuits, we do distinguish direction of travel,
so given one circuit, we can get another by traversing the same edge sequence by
in reverse order. Thus the cycle graphs Cn satisfy eul Cn = 2.

To state our bound, we need to define the permanent of a matrix M .

Definition 21. Let M = (mi, j ) be an n × n square matrix. The permanent of M
the “signless determinant”, that is,

perm M =
∑
σ∈Sn

n∏
i=1

mi,σ (i),

where Sn is the symmetric group over the set {1, . . . , n} (the group of permutations
of this set).

The permanent shows up in several interesting ways in graph theory. For in-
stance, it gives the number of perfect matchings of a bipartite graph [Harary 1969a].
For a general (0, 1)-square matrix, the same reference gives us a useful expression
connecting the permanent to linear subgraphs of a digraph:

Lemma 22. We use the notation from Definition 6. Let D be a digraph with n
vertices and adjacency matrix A. Then the permanent of A is given by

perm A = En(D)+On(D).

In other words, the permanent of A counts the number of linear subgraphs of D.

With this interpretation, it is easier to be persuaded of the validity of the next result:
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Theorem 23. Let X be an Eulerian graph with oriented line graph Lo X. We let T
be the adjacency matrix of Lo X. Then

eul X ≤ det T + perm T .

We will use the notation ϑ(X)= det T + perm T .

Proof. For a particular Eulerian circuit c, we denote by c the Eulerian circuit
formed by traversing the edges in the opposite direction. Thus the pair of Eulerian
circuits c and c induce a linear subgraph of the oriented line graph Lo X . This linear
subgraph is composed of exactly 2 cycles. They are either both even or both odd
cycles. In either case, this linear subgraph contributes positive 1 to the computation
of det T .

We can think of the determinant of T as the sum of the positive contribution
minus the negative contribution. The permanent, however, is the sum of the positive
contribution plus the negative contribution. Thus if we take det T + perm T , we
get twice the positive contribution. Since two Eulerian circuits add exactly 1 to the
positive contribution, we get the desired result. �

There is a fairly serious flaw with this bound. In general, computing the per-
manent of a (0, 1)-matrix is a #P-complete problem [Valiant 1979], so we do not
seem to have really improved matters. Fortunately, there are polynomial proba-
bilistic algorithms that can compute the permanent within a specific amount of
error [Jerrum et al. 2004]. As there is no known polynomial algorithm to even
estimate the number of Eulerian circuits in a graph, we have actually managed to
say something.

We present in Table 1 the results of computing the number of Eulerian circuits
as well as the sum of the determinant and the permanent of the adjacency matrix of
the oriented line graph for all connected Eulerian graphs on 6 vertices. We denote
by n the number of vertices, by m the number of edges, by −χ the negative of the
Euler number (which is n−m), by eul the exact number of Eulerian circuits, and
by ϑ the given bound. The graphs here are given in graph6 format. We use the
program Nauty [McKay 2007] to generate the graphs. All calculations were done
in SAGE [Stein 2008]. The exact number of Eulerian circuits was computed using
an algorithm that is currently being worked on by Klyve and Storm. The graphs
are small enough and the algorithm is developed well enough so we are certain of
the calculations presented.

From the data presented, we see that this bound fluctuates wildly in terms of
error and would be completely ineffective for a graph with decent size.

This work suggests a great many problems for further research. We present a
few of them here, in no particular order of perceived difficulty.
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Graph n m −χ eul ϑ error

EqGW 6 6 0 2 2 0
E@ro 6 7 1 4 6 2
E lw 6 8 2 12 90 78
E?∼o 6 8 2 12 90 78
EElw 6 9 3 32 702 670
ET\w 6 10 4 88 6642 6554
Er\w 6 11 5 264 58806 58542
E}lw 6 12 6 744 532170 531426

Table 1. Computations for all connected Eulerian graphs on 6 vertices.

Problem 24 (Graphs determined by their zeta functions). Recently, there has been
some good work showing that several infinite families of graphs are determined by
their Tutte polynomials [de Mier and Noy 2004]. One of the keys to these proofs
is that the Tutte polynomial determines the number of triangles and squares in a
graph. We saw in the previous section that the zeta function determines the number
of triangles, squares, and pentagons in a simple graph. This gives us some hope
that some large families of graphs are determined by their zeta functions. This
would be particularly interesting since the Ihara zeta function can be computed in
polynomial time.

A reader interested in this problem may want to start with the survey by Stark
and Terras [1996] to become familiar with the edge zeta function as this function is
necessary to determine if every vertex of a graph has degree greater than or equal
to 2 or not. Cooper [2006] also has some preliminary work towards identifying
other graph invariants determined by the zeta function that could prove useful.

We conjecture that the wheel graphs Wn defined by taking the cycle Cn and
adding a vertex which is adjacency to every other vertex are uniquely determined
by the Ihara zeta function among the connected graphs for which every vertex has
degree at least 2. Through a computer search, we have verified

Theorem 25. Within the family of connected graphs such that the degree of every
vertex in a graph is at least 2, the graphs W3, W4, W5, W6, W7, W8 and W9 are
determined by their Ihara zeta functions. If , instead, we consider the edge zeta
function defined by Stark and Terras [1996], we can remove the condition on the
degrees of the vertices.

In the left half of Table 2, we count the number of connected graphs on n ver-
tices for n = 4, . . . , 8 as well as how many distinct zeta functions, characteristic
polynomials, and pairs of zeta function and characteristic polynomial. In the right
half, we only count graphs which are “md2” — every vertex has degree at least
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Vertices Graphs Distinct
Zetas

Distinct
Spectra

Distinct
Pairs

md2
Graphs

Distinct
Zetas

Distinct
Spectra

Distinct
Pairs

4 6 5 6 6 3 3 3 3
5 21 16 21 21 11 11 11 11
6 112 77 111 112 61 61 61 61
7 853 584 821 850 507 507 494 507
8 11117 10423 8025 11106 7442 7441 7064 7442

Table 2. Graph and zeta function counting.

2 — as these are the more natural classes to consider zeta functions. The column
referring to “Spectra” is counting the number of unique adjacency matrix spectra
which appear. We see that the zeta function does remarkably well at distinguishing
graphs, suggesting that there could be a lot of opportunities to show that families
are uniquely determined.

Problem 26 (The inverse problem). Though we have given a characterization of
the coefficients of the reciprocal of the Ihara zeta function, we have not answered
some important questions.

(1) Given a polynomial p(u), determine if it is the reciprocal of the Ihara zeta
function of some graph.

(2) Given a polynomial p(u)which is the reciprocal of the Ihara zeta function of a
graph, construct an oriented line graph which gives rise to it. This is equivalent
to constructing a graph which gives rise to it, as Cooper’s algorithm [2006]
recovers the graph from its oriented line graph.

(3) Construct a polynomial which satisfies the graph “Riemann” hypothesis (see
[Kotani and Sunada 2000; Stark and Terras 1996] for details) and which is
also the reciprocal of the Ihara zeta function of some graph.

Solving the last two questions would provide a new construction of Ramanujan
graphs. We also suggest [Horton et al. 2006; Murty 2003] for more information
on Ramanujan graphs and their connection to the Ihara zeta function.

Problem 27 (A better Eulerian circuit count bound). It should be possible to give
a better bound than the one found in Theorem 23. In our examination of Eulerian
circuits, we really only scratched the surface of the structure that the zeta function
tells us about. A deeper study may prove fruitful.
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