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Oscillation criteria for two-dimensional difference systems of first-order linear
difference equations are generalized and extended to arbitrary dynamic equa-
tions on time scales. This unifies under one theory corresponding results from
differential systems, and includes second-order self-adjoint differential, differ-
ence, and q-difference equations within its scope. Examples are given illustrat-
ing a key theorem.

1. Prelude

Jiang and Tang [2007] have established sufficient conditions for the oscillation of
the linear two-dimensional difference system

1xn = pn yn, 1yn−1 =−qnxn, n ∈ Z, (1-1)

where {pn}, {qn} are nonnegative real sequences and 1 is the forward difference
operator given via 1xn = xn+1− xn; see also [Li 2001]. The system (1-1) may be
viewed as a discrete analogue of the differential system

x ′(t)= p(t)y(t), y′(t)=−q(t)x(t), t ∈ R, (1-2)

investigated in [Lomtatidze and Partsvania 1999].
Oscillation questions in difference and differential equations are an interesting

and important area of study in modern mathematics. Furthermore, within the past
two decades, these two related but distinct areas have begun to be combined under a
powerful, more robust and general theory titled dynamic equations on time scales, a
theory introduced by Hilger [1990]. For example, equations (1-1) and (1-2) would
take the form

x1(t)= p(t)y(t), y∇(t)=−q(t)x(t), t ∈ T, (1-3)
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where T is an arbitrary time scale (any nonempty closed set of real numbers)
unbounded above, with the special cases of T = Z and T = R yielding systems
(1-1) and (1-2), respectively, as important corollaries. In this general time-scale
setting, 1 represents the delta (or Hilger) derivative [Bohner and Peterson 2001,
Definition 1.10], and ∇ represents the nabla derivative, introduced in [Atici and
Guseinov 2002, Section 2]:

x1(t) := lim
s→t

x(σ (t))− x(s)
σ (t)− s

, x∇(t) := lim
s→t

x(ρ(t))− x(s)
ρ(t)− s

,

where σ(t) := inf{s ∈ T : s > t} is the forward jump operator and ρ(t) := sup{s ∈
T : s < t} is the backward jump operator. Moreover, µ(t) := σ(t)− t is the forward
graininess function, and ν(t) := t − ρ(t) is the backward graininess function. In
particular, if T = R, then σ(t) = t = ρ(t) and x1 = x ′ = x∇ , while if T = hZ for
any h > 0, then σ(t)= t + h and ρ(t)= t − h, so that

x1(t)=
x(t + h)− x(t)

h
and x∇(t)=

x(t)− x(t − h)
h

,

respectively. A function f :T→R is right-dense continuous provided it is contin-
uous at each right-dense point t ∈ T (a point where σ(t) = t) and has a left-sided
limit at each left-dense point t ∈T (a point where ρ(t)= t). The set of right-dense
continuous functions on T is denoted by Crd(T). It can be shown that any right-
dense continuous function f has an antiderivative (a function F : T→ R with the
property F1(t)= f (t) for all t ∈ T). The Cauchy delta integral of f is defined by∫ t1

t0
f (t)1t = F(t1)− F(t0),

where F is an antiderivative of f on T. Similar notions hold for left-dense contin-
uous functions and the Cauchy nabla integral. For example, if T = Z, then∫ t1

t0
f (t)1t =

t1−1∑
t=t0

f (t) and
∫ t1

t0
f (t)∇t =

t1∑
t=t0+1

f (t),

and if T = R, then ∫ t1

t0
f (t)1t =

∫ t1

t0
f (t)dt =

∫ t1

t0
f (t)∇t.

Throughout we assume that t0< t1 are points in T, and define the time-scale interval
[t0, t1]T = {t ∈T : t0 ≤ t ≤ t1}. Other time-scale intervals are defined similarly. For
convenience, the composition x ◦ σ is denoted xσ , and x ◦ ρ is denoted xρ . For
more on time scales and time-scale notation, see the fundamental texts [Bohner
and Peterson 2001; 2003].
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System (1-3) is a generalization of a key second-order linear dynamic equation.
To see this, suppose the potential p is nabla differentiable and strictly positive.
Then we have

x1∇(t)= [p(t)y(t)]∇ = pρ(t)y∇(t)+ p∇(t)y(t)=−pρ(t)q(t)x(t)+
p∇(t)
p(t)

x1(t),

which we can rewrite in the (formally) self-adjoint form( 1
p

x1
)∇
(t)+ q(t)x(t)= 0, t ∈ T; (1-4)

see [Bohner and Peterson 2003, Section 4.3]. Thus the system (1-3) is an extension
of the second-order self-adjoint Equation (1-4), and many important equations are
included under the rubric of our discussion below, including the second-order self-
adjoint differential equation( 1

p
x ′
)′
(t)+ q(t)x(t)= 0, t ∈ R,

the second-order self-adjoint difference equation

1
( 1

pn−1
1xn−1

)
+ qnxn = 0, n ∈ Z,

and the second-order self-adjoint q-difference (quantum) equation (q > 1)

Dq
( 1

p(t)
Dq x(t)

)
+ q(t)x(t)= 0, t ∈ qZ,

where

Dq x(t)=
x(t)− x(t/q)

t − t/q
and Dq x(t)=

x(qt)− x(t)
qt − t

(1-5)

are the quantum backward and forward derivatives, respectively.

2. Preliminary results on oscillation

Let T be a time scale that is unbounded above, and let t0 ∈ T. In (1-3), assume
p :T→R is right-dense continuous with p> 0 on [t0,∞)T, and q :T→R is con-
tinuous with q ≥ 0 on [t0,∞)T; then p is delta integrable and q is integrable. Note
the stronger continuity condition on the potential q; from the right-hand equation
in (1-3), we then have that y∇ is continuous, so that y is delta differentiable as
well, with y1 = y∇σ = −qσ xσ . An alternative approach would be to use only
delta derivatives in (1-3), with p and q both right-dense continuous functions. The
results in the sequel would be analogous to those derived below, but would not
incorporate the self-adjoint form (1-4), nor directly extend (1-1). Our techniques
are modelled after those found in [Jiang and Tang 2007; Lomtatidze and Partsvania
1999] and the references therein.
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A solution (x, y) of (1-3) is oscillatory if both component functions x and y
are oscillatory, that is to say neither eventually positive nor eventually negative;
otherwise, the solution is nonoscillatory. The dynamic system (1-3) is oscillatory
if all its solutions are oscillatory.

Lemma 2.1. The component functions x and y of a nonoscillatory solution (x, y)
of (1-3) are themselves nonoscillatory.

Proof. Assume to the contrary that x oscillates but y is eventually positive. Then
x1= py> 0 eventually, so that x(t)> 0 or x(t)< 0 for all large t ∈T, a contradic-
tion. The case where y is eventually negative is similar. Likewise, assuming that y
oscillates while x is eventually positive or eventually negative leads to comparable
contradictions. �

Lemma 2.2. If ∫
∞

t0
p(r)1r =∞ and

∫
∞

ρ(t0)
q(s)∇s =∞, (2-1)

then each solution of (1-3) is oscillatory.

Proof. Let (x, y) be a nonoscillatory solution of (1-3). Without loss of generality,
we may assume that x > 0; then y∇ = −qx ≤ 0, and in view of Lemma 2.1, y
must be of constant sign eventually. If y(t1) < 0 for some t1 ∈ [t0,∞)T, then y< 0
on [t1,∞)T and x1 = py < 0 on [t1,∞)T; after delta integrating from t1 to t , we
have

x(t)= x(t1)+
∫ t

t1
p(r)y(r)1r.

Since y is negative and nonincreasing, by the first assumption in (2-1) the right-
hand side tends to −∞, in contradiction with x > 0. Consequently, y > 0 with
y∇ ≤ 0 on [t0,∞)T, and x1 > 0 on [t0,∞)T by the first equation of (1-3). Thus
there exists a constant c > 0 and t1 ∈ [t0,∞)T such that x(t)≥ c for t ∈ [t1,∞)T.
Nabla integrating the second equation of (1-3), we obtain

c
∫
∞

t1
q(s)∇s ≤ y(t1) <∞,

and this contradicts the second assumption in (2-1). �

Lemma 2.3. If ∫
∞

t0
p(r)1r <∞ and

∫
∞

ρ(t0)
q(s)∇s <∞, (2-2)

then the system (1-3) is nonoscillatory.
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Proof. Suppose that (2-2) holds. Then there exists t1 ∈ [t0,∞)T such that∫
∞

t1
p(r)

(
1+ 2

∫
∞

r
q(s)∇s

)
1r < 1. (2-3)

Let B = Crd(T) be the Banach space of right-dense continuous functions on T,
with norm ‖x‖ = supt≥t1,t∈T |x(t)| and the usual pointwise ordering ≤. Define a
subset S of B by

S=
{

x ∈B : 1≤ x(t)≤ 2, t ∈ [t1,∞)T
}
.

For any subset Q of S, we have that inf Q ∈ S and sup Q ∈ S. Let L : S→ B be
the functional given via

(Lx)(t)= 1+
∫ t

t1
p(r)

(
1+

∫
∞

r
q(s)x(s)∇s

)
1r, t ∈ [t1,∞)T.

By the assumptions on x ∈ S and p and q , (Lx)(t)≥ 1 for all t ∈ [t1,∞)T, and

(Lx)(t)≤ 1+
∫ t

t1
p(r)

(
1+

∫
∞

r
2q(s)∇s

)
1r ≤ 2

by (2-3). Moreover,

(Lx)1(t)= p(t)
(

1+
∫
∞

t
q(s)x(s)∇s

)
> 0, (2-4)

ensuring that L : S→ S is increasing. By Knaster’s fixed-point theorem [Knaster
1928], we can conclude that there exists an x ∈ S such that x = Lx . If we let

y(t)= 1+
∫
∞

t
q(s)x(s)∇s, t ∈ [t1,∞)T

using the fixed point x ∈ S, then we have

x1(t)= (Lx)1(t)= p(t)y(t) and y∇(t)=−q(t)x(t)

for t ∈ [t1,∞)T by using (2-4). Thus (x, y) is a nonoscillatory solution of (1-3). �

In light of Lemmas 2.2 and 2.3, respectively, we could assume that either∫
∞

t0
p(r)1r =∞ and

∫
∞

ρ(t0)
q(s)∇s <∞ (2-5)

or ∫
∞

t0
p(r)1r <∞ and

∫
∞

ρ(t0)
q(s)∇s =∞;
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in fact, we will focus on (2-5). Moreover, in preparation for what follows, we
introduce the following notation. Let

P(t) :=
∫ t

t0
p(r)1r. (2-6)

Lemma 2.4. Assume that (2-5) holds, P is given by (2-6), and λ ∈ [0, 1) is a real
number. If

lim
t→∞

µ(t)p(t)
P(t)

= 0,
(

equivalently, lim
t→∞

Pσ (t)
P(t)

= 1
)

(2-7)

then given ε > 0 there exists a t1 ≡ t1(ε) ∈ (t0,∞)T such that for any t ∈ [t1,∞)T,∫
∞

t

[
(Pλ)1(r)

]2
p(r)Pλ(r)

1r ≤
λ2

1− λ
(1+ ε)2−λ Pλ−1(t), and (2-8)∫

∞

t

p(r)
P2−λ(r)

1r ≤
(1+ ε)2−λ

1− λ
Pλ−1(t). (2-9)

Proof. For r ∈ (t0,∞)T, by the chain rule [Bohner and Peterson 2001, Theorem
1.90] we have

(Pλ)1(r)=


Pλ(σ (r))−Pλ(r)

µ(r)
if µ(r) > 0,

λp(r)Pλ−1(r) if µ(r)= 0.

By [Bohner and Peterson 2001, Theorem 1.16 (iv)], µP1 = Pσ − P , so that
µp = Pσ − P on T. If r ∈ (t0,∞)T is a right-scattered point, then µ(r) > 0 and,
suppressing the r ,[

(Pλ)1
]2

pPλ
=

p
µ2 p2 Pλ

(
(Pσ )λ− Pλ

)2
=

p
Pλ

(
(Pσ )λ− Pλ

Pσ − P

)2

MVT
=

p
Pλ

(
λξλ−1)2

, ξ ∈
(
P(r), Pσ (r)

)
R

≤
pλ2

Pλ
P2λ−2, λ− 1< 0

= λ2 pPλ−2.

If r ∈ (t0,∞)T is a right-dense point, then µ(r)= 0 and[
(Pλ)1

]2
pPλ

=

[
λpPλ−1

]2
pPλ

= λ2 pPλ−2.
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It follows that in either case,[
(Pλ)1(r)

]2
p(r)Pλ(r)

≤ λ2 p(r)Pλ−2(r), r ∈ (t0,∞)T. (2-10)

Similarly, if r ∈ (t0,∞)T is a right-scattered point, then once again µ(r) > 0 and,
suppressing the r ,

−(Pλ−1)1 =
−p
µp

(
(Pσ )λ−1

− Pλ−1)
=−p

(
(Pσ )λ−1

− Pλ−1

Pσ − P

)
MVT
= p(1− λ)ηλ−2, η ∈

(
P(r), Pσ (r)

)
R

≥ p(1− λ)(Pσ )λ−2.

If r is a right-dense point, then Pσ = P , µ(r)= 0, and p(1−λ)Pλ−2
=−(Pλ−1)1.

Summarizing, in either case we have

−(Pλ−1)1 ≥ p(1− λ)(Pσ )λ−2, r ∈ (t0,∞)T. (2-11)

Combining (2-10) and (2-11), we see that[
(Pλ)1(r)

]2
p(r)Pλ(r)

≤
λ2

1− λ

(
P(r)

Pσ (r)

)λ−2 [
−(Pλ−1)1(r)

]
.

By (2-7), given ε > 0 there exists a t1 ∈ [t0,∞)T such that Pσ/P ≤ (1+ ε) on
[t1,∞)T. Consequently, for any t ∈ [t1,∞)T,∫

∞

t

[
(Pλ)1(r)

]2
p(r)Pλ(r)

1r ≤
λ2

1− λ
(1+ ε)2−λ

∫
∞

t

[
−(Pλ−1)1(r)

]
1r

(2-5),(2-6)
=

λ2

1− λ
(1+ ε)2−λ Pλ−1(t),

which is (2-8). Moreover, again for any r ∈ [t1,∞)T,

p(r)
P2−λ(r)

=
p(r)

P2−λ(σ (r))
P2−λ(σ (r))

P2−λ(r)
≤ (1+ ε)2−λ

p(r)
P2−λ(σ (r))

(2-11)
≤

(1+ ε)2−λ

λ− 1
(Pλ−1)1(r). (2-12)

Delta integrating (2-12) from t to infinity, we obtain∫
∞

t

p(r)
P2−λ(r)

1r ≤
(1+ ε)2−λ

λ− 1

∫
∞

t
(Pλ−1)1(r)1r

(2-5),(2-6)
=

(1+ ε)2−λ

1− λ
Pλ−1(t),

which is (2-9). �

Note that if T = R, then (2-7) is automatically satisfied, as µ(t)≡ 0.
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Lemma 2.5. Assume that (2-5) holds, that P is given by (2-6), and that (2-7) holds.
If for some real number λ < 1 we have∫

∞

t1
qσ (r)Pλ(r)1r =∞ for t1 > σ(t0), (2-13)

then the system (1-3) is oscillatory.

Proof. By Lemma 2.3, we can focus on λ∈ (0, 1). Assume that (x, y) is a nonoscil-
latory solution of the system (1-3); without loss of generality, assume that x > 0
on [t0,∞)T. As in the proof of Lemma 2.2, y > 0 with y∇ ≤ 0 and x1 > 0 on
[t0,∞)T. Let w := y/x . Then w > 0, and suppressing the argument, we have by
the delta quotient rule and (1-3) that on [t0,∞)T,

w1 =
xy1− yx1

xxσ
=−qσ − pwy/xσ ≤−qσ − pwwσ < 0. (2-14)

In fact this gives us
w1 ≤−qσ − p(wσ )2, (2-15)

and from the previous line we obtain on [t0,∞)T that( 1
w

)1
=
−w1

wwσ
≥

qσ + pwwσ

wwσ
≥ p;

delta integrating from t0 to t we see that

1> 1−
w(t)
w(t0)

≥ w(t)
∫ t

t0
p(r)1r = w(t)P(t)≥ 0, t ∈ [t0,∞)T. (2-16)

Again by the mean value theorem, (Pλ)1 ≤ λpPλ−1 for λ ∈ (0, 1). Recall that
q is assumed to be continuous, so qσ is right-dense continuous, and thus delta
integrable. Multiplying (2-15) by Pλ and delta integrating from t1>σ(t0) to t gives∫ t

t1
qσ (r)Pλ(r)1r

≤−

∫ t

t1
Pλ(r)w1(r)1r−

∫ t

t1
p(r)Pλ(r)(wσ )2(r)1r

parts
=−Pλ(t)w(t)+Pλ(t1)w(t1)+

∫ t

t1
(Pλ)1(r)wσ (r)1r−

∫ t

t1
p(r)Pλ(r)(wσ )2(r)1r

≤−Pλ(t)w(t)+Pλ(t1)w(t1)

+

∫ t

t1
λp(r)Pλ−1(r)wσ (r)1r−

∫ t

t1
p(r)Pλ(r)(wσ )2(r)1r

=−Pλ(t)w(t)+Pλ(t1)w(t1)+
∫ t

t1
p(r)Pλ−2(r)

[
P(r)wσ (r)

(
λ−P(r)wσ (r)

)]
1r.



OSCILLATION CRITERIA FOR FIRST-ORDER LINEAR DYNAMIC EQUATIONS 9

Since by (2-16) we have

0< P(t)wσ (t)≤ P(t)w(t) < 1, t ∈ [t0,∞)T, (2-17)

there exists a positive real number k such that∣∣P(r)wσ (r)(λ− P(r)wσ (r)
)∣∣< k.

As a result we have limt→∞−Pλ(t)w(t)= 0 by (2-16) for 0< λ < 1, and∣∣∣∣∫ t

t1
p(r)Pλ−2(r)

[
P(r)wσ (r)

(
λ− P(r)wσ (r)

)]
1r
∣∣∣∣ < k

∫
∞

t1
p(r)Pλ−2(r)1r

(2-9)
≤ k

(1+ ε)2−λ

1− λ
Pλ−1(t1)

for all t ∈ [t1,∞)T. Therefore we get
∫
∞

t1
qσ (r)Pλ(r)1r <∞, in contradiction

with (2-13). �

Due to (2-5) and the establishment of Lemma 2.5, we will henceforth restrict
our analysis to the case where∫
∞

t0
p(r)1r =∞,

∫
∞

t1
qσ (r)Pλ(r)1r <∞ for λ < 1, t1 > σ(t0). (2-18)

We also adopt the following notation. Set

g(t, λ) :=

P1−λ(t)
∫
∞

t qσ(r)Pλ(r)1r if λ < 1,

P1−λ(t)
∫ t

t0
qσ (r)Pλ(r)1r if λ > 1.

Then take

g∗(λ) := lim inf
t→∞

g(t, λ) and g∗(λ) := lim sup
t→∞

g(t, λ).

Lemma 2.6. Assume that (2-18) holds, that P is given by (2-6), and that (2-7)
holds. If (x, y) is a nonoscillatory solution of the system (1-3), then

lim inf
t→∞

w(t)P(t)≥ 1
2

(
1−

√
1− 4g∗(0)

)
, (2-19)

lim sup
t→∞

w(t)P(t)≤ 1
2

(
1+

√
1− 4g∗(2)

)
, (2-20)

where again w := y/x.

Proof. By (2-16), we can introduce the constants

r := lim inf
t→∞

w(t)P(t), R := lim sup
t→∞

w(t)P(t), (2-21)

and by (2-18), we must have
lim

t→∞
w(t)= 0. (2-22)
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From (2-14) we have w1 ≤ −qσ − pwwσ ; delta integrate this from t to ∞, use
(2-22), and multiply by P to see that

w(t)P(t) ≥ P(t)
∫
∞

t
qσ (τ )1τ + P(t)

∫
∞

t
p(τ )w(τ)wσ (τ )1τ (2-23)

holds for t ∈ [t1,∞)T. From (2-21) this yields

r ≥ g∗(0). (2-24)

This time multiply (2-15) by P2 and delta integrate from t1 to t to get∫ t

t1
qσ (τ)P2(τ)1τ

≤−

∫ t

t1
P2(τ)w1(τ)1τ−

∫ t

t1
p(τ)P2(τ)

(
wσ
)2
(τ)1τ

=−P2(t)w(t)+P2(t1)w(t1)+
∫ t

t1
(P2)1(τ)wσ (τ)1τ−

∫ t

t1
p(τ)P2(τ)(wσ )2(τ)1τ

=−P2(t)w(t)+P2(t1)w(t1)

+

∫ t

t1
µ(τ)p2(τ)wσ (τ)1τ+

∫ t

t1
p(τ)P(τ)wσ (τ)

[
2−P(τ)wσ (τ)

]
1τ

for t ∈ [t1,∞)T, which leads to

w(t)P(t)≤−P−1(t)
∫ t

t1
qσ (τ )P2(τ )1τ

+ P−1(t)
∫ t

t1
µ(τ)p2(τ)wσ(τ)1τ + P−1(t)P2(t1)w(t1)

+ P−1(t)
∫ t

t1
p(τ )P(τ )wσ (τ )

[
2− P(τ )wσ (τ )

]
1τ. (2-25)

Using (2-17), we obtain 0 < (1− Pwσ )2, leading to Pwσ [2− Pwσ ] < 1. Thus,
for large t ∈ T,

P−1(t)
∫ t

t1
p(τ )P(τ )wσ (τ )

[
2− P(τ )wσ (τ )

]
1τ ≤ 1.

Applying l’Hôpital’s rule [Bohner and Peterson 2001, Theorem 1.120], (2-17)
again, and (2-7) we have

0≤ lim
t→∞

∫ t
t1
µ(τ)p2(τ )wσ (τ )1τ

P(t)
= lim

t→∞
µ(t)p(t)wσ (t)≤ lim

t→∞

µ(t)p(t)
P(t)

= 0.

Altogether then, inequality (2-25) implies that
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R ≤ 1− g∗(2). (2-26)

If g∗(0)= 0= g∗(2), then estimates (2-19) and (2-20) follow directly from (2-24)
and (2-26), respectively. Thus we pick a real number ε ∈

(
0,min{g∗(0), g∗(2)}

)
and t2 ∈ [t1,∞)T such that for t ∈ [t2,∞)T,

r − ε < w(t)P(t) < R+ ε, w(t)P(t)≥ P(t)
∫
∞

t
qσ (τ )1τ > g∗(0)− ε,

P−1(t)
∫ t

t0
qσ (τ )P2(τ )1τ > g∗(2)− ε.

From (2-23) and l’Hôpital’s rule we have w(t)P(t) ≥ g∗(0) − ε + (r − ε)2 for
t ∈ [t2,∞)T, Multiply (2-14) by P2 and delta integrate from t1 to t to see that this
leads to

w(t)P(t)≤−P−1(t)
∫ t

t1
qσ (τ )P2(τ )1τ

+ P−1(t)
∫ t

t1
µ(τ)p2(τ)wσ(τ)1τ + P−1(t)P2(t1)w(t1)

+ P−1(t)
∫ t

t1
p(τ )P(τ )wσ (τ ) [2−w(τ)P(τ )]1τ. (2-27)

From (2-27) we have, for t ∈ [t2,∞)T,

w(t)P(t)≤
P2(t1)w(t1)+

∫ t
t1
µ(τ)p2(τ )wσ (τ )1τ

P(t)
−g∗(2)+ε+(R+ε)(2−R−ε),

since wσ P ≤ wP < 1. These two inequalities lead to

r ≥ g∗(0)+ r2, R ≤ R(2− R)− g∗(2). (2-28)

Consequently we have r ≥ 1
2

(
1−
√

1− 4g∗(0)
)

and R≤ 1
2

(
1+
√

1− 4g∗(2)
)
, and

the lemma is proven. �

3. Main oscillation results

We use the lemmas obtained previously to prove our main results.

Theorem 3.1. Assume that (2-18) holds, that P is given by (2-6), and that (2-7)
holds. If

g∗(0)= lim inf
t→∞

P(t)
∫
∞

t
qσ (τ )1τ > 1

4
(3-1)

or

g∗(2)= lim inf
t→∞

1
P(t)

∫ t

t0
qσ (τ )P2(τ )1τ >

1
4
, (3-2)

then every solution of the system (1-3) is oscillatory.
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Proof. Suppose to the contrary that (x, y) is a nonoscillatory solution of (1-3) with
x(t) > 0 for t ∈ [t0,∞)T. Let

r := lim inf
t→∞

w(t)P(t), R := lim sup
t→∞

w(t)P(t),

where w = y/x . By Lemma 2.6 and its proof (in particular (2-28)) and simple
calculus, we have

g∗(0)≤ r − r2
≤

1
4 and g∗(2)≤ R− R2

≤
1
4 ,

in contradiction with both (3-1) and (3-2). �

Theorem 3.2. Assume that (2-18) holds, that P is given by (2-6), and that (2-7)
holds. Let g∗(2)≤ 1

4 , and assume there exists a real number λ ∈ [0, 1) such that

g∗(λ) >
λ2

4(1− λ)
+

1
2

(
1+

√
1− 4g∗(2)

)
. (3-3)

Then every solution of the system (1-3) is oscillatory.

Proof. Suppose to the contrary that (x, y) is a nonoscillatory solution of (1-3) with
x(t) > 0 for t ∈ [t0,∞)T. By (2-15) we have

qσ (t)≤−w1(t)− p(t)(wσ )2(t), t ∈ [t0,∞)T,

where w = y/x ; multiply this by Pλ and delta integrate from t to infinity to get∫
∞

t
qσ (τ )Pλ(τ )1τ

≤−

∫
∞

t
w1(τ )Pλ(τ )1τ −

∫
∞

t
p(τ )(wσ )2(τ )Pλ(τ )1τ

= Pλ(t)w(t)+
∫
∞

t
(Pλ)1(τ )wσ (τ )1τ −

∫
∞

t
p(τ )Pλ(τ )(wσ )2(τ )1τ

= Pλ(t)w(t)+
1
4

∫
∞

t

(
(Pλ)1

)2
(τ )

p(τ )Pλ(τ )
1τ

−

∫
∞

t

(√
p(τ )Pλ/2(τ )wσ (τ )−

(Pλ)1(τ )
2
√

p(τ )Pλ/2(τ )

)2

1τ

≤ Pλ(t)w(t)+
1
4

∫
∞

t

(
(Pλ)1

)2
(τ )

p(τ )Pλ(τ )
1τ.

It follows that

P1−λ(t)
∫
∞

t
qσ (τ )Pλ(τ )1τ < P(t)w(t)+

P1−λ(t)
4

∫
∞

t

(
(Pλ)1

)2
(τ )

p(τ )Pλ(τ )
1τ. (3-4)
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By (2-8), (2-20), and (3-4),

g∗(λ)≤ 1
2

(
1+

√
1− 4g∗(2)

)
+

λ2

4(1− λ)
,

in contradiction with (3-3). �

Corollary 3.3. Assume that (2-18) holds, that P is given by (2-6), and that (2-7)
holds. If g∗(2) ≤ 1

4 and g∗(0) > 1
2

(
1+
√

1− 4g∗(2)
)
, then every solution of the

system (1-3) is oscillatory.

Theorem 3.4. Assume that (2-18) holds, that P is given by (2-6), and that (2-7)
holds. Let g∗(0), g∗(2)≤ 1

4 , and assume there exists a real number λ ∈ [0, 1) such
that

g∗(0)>
λ(2−λ)

4
and g∗(λ)>

g∗(0)
1−λ

+
1
2

(√
1−4g∗(0)+

√
1−4g∗(2)

)
. (3-5)

Then every solution of the system (1-3) is oscillatory.

Proof. Suppose to the contrary that (x, y) is a nonoscillatory solution of (1-3) with
x(t) > 0 for t ∈ [t0,∞)T. Set

r = lim inf
t→∞

w(t)P(t) and R = lim sup
t→∞

w(t)P(t),

where w = y/x . By (2-19) and (2-20),

r ≥ m := 1
2

(
1−

√
1− 4g∗(0)

)
and R ≤ M := 1

2

(
1+

√
1− 4g∗(2)

)
. (3-6)

Using this and the first inequality in (3-5) we find that m > λ/2, whence given
ε ∈ (0,m− λ/2), there exists a t1 ∈ [t0,∞)T such that

m− ε < w(t)P(t) < M + ε, t ∈ [t1,∞)T. (3-7)

Similar to what we did before (bottom of page 8), we multiply (2-15) by Pλ and
delta integrate from t to infinity to get∫
∞

t
qσ (τ )Pλ(τ )1τ

≤ w(t)Pλ(t)+
∫
∞

t
p(τ )Pλ−2(τ )

[
λwσ (τ )P(τ )−

(
P(τ )wσ (τ )

)2]
1τ ;

this leads to

P1−λ(t)
∫
∞

t
qσ (τ )Pλ(τ )1τ

≤ w(t)P(t)+ P1−λ(t)
∫
∞

t
p(τ )Pλ−2(τ )

[
λwσ (τ )P(τ )−

(
P(τ )wσ (τ )

)2]
1τ.
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Since the function f (x) := λx − x2 is decreasing over the real interval [λ/2,∞),
it follows from the preceding inequality together with (3-7) and Lemma 2.4 that

P1−λ(t)
∫
∞

t
qσ (τ )Pλ(τ )1τ

< M+ε+(m−ε)(λ−m+ε)P1−λ(t)
∫
∞

t
p(τ )Pλ−2(τ )1τ

< M+ε+
(m−ε)(λ−m+ε)(1+ε)2−λ

1−λ
.

This in tandem with (3-6) yields

g∗(λ)≤ M +
m(λ−m)

1− λ
=

g∗(0)
1− λ

+
1
2

(√
1− 4g∗(0) +

√
1− 4g∗(2)

)
,

in contradiction with the second inequality in (3-5). �

Corollary 3.5. Assume that (2-18) holds, that P is given by (2-6), and that (2-7)
holds. Let 0< g∗(0)≤ 1

4 and g∗(2)≤ 1
4 . If

g∗(0) > g∗(0)+ 1
2

(√
1− 4g∗(0) +

√
1− 4g∗(2)

)
,

then every solution of the system (1-3) is oscillatory.

4. Examples

We illustrate Theorem 3.1 with the following examples.

Example 4.1. Let T = R and ε > 0. Then the continuous linear system

x ′(t)=
1
2

(
ε+ cos2 t

)
y(t), y′(t)=−

1
t2 x(t) (4-1)

is oscillatory on [1,∞).

Since p(t)= 1
2(ε+cos2 t), we have P(t)= 1

8

(
−2−4ε+ t (2+4ε)−sin 2+sin 2t

)
.

Thus

g∗(0)= lim inf
t→∞

P(t)
∫
∞

t
q(r)dr = lim inf

t→∞
P(t)/t = 1

4(1+ 2ε) > 1
4 .

By Theorem 3.1, any solution pair (x, y) oscillates. Let x(1) = 0, x ′(1) = 1.
Numerically generated data for the solutions to (4-1) show a decreasing frequency
in oscillations as ε goes to 0, as one might expect. The table shows the value of ε
and the estimated value of the first zero of x after t = 1.

ε 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2
next zero of x 100 128 171 244 379 666 1424 4321 27498

The results led us to wonder whether 1
4 is sharp for T=R, and to the next example.
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Example 4.2. Let T = R and let p be a positive constant. The continuous linear
system

x ′(t)= py(t), y′(t)=−
1
t2 x(t), t ∈ [1,∞) (4-2)

is nonoscillatory for 0< p ≤ 1
4 and oscillatory for p > 1

4 .

Since p(t)≡ p we have P(t)= p(t − 1). Thus

g∗(0)= lim inf
t→∞

P(t)
∫
∞

t
q(τ )dτ = lim inf

t→∞

p(t − 1)
t

= p.

By Theorem 3.1 and (3-1), any solution (x, y) of (4-2) oscillates if p> 1
4 . Convert-

ing (4-2) to a second-order equation for x , we arrive at a Cauchy–Euler equation
with general solution

x(t)= t (1−
√

1−4p)/2(A+ Bt
√

1−4p).
From elementary analysis we know that x is nonoscillatory for p≤ 1

4 and oscillatory
for p > 1

4 , showing in particular that the 1
4 in (3-1) is sharp when T = R.

5. Future directions: half-linear systems

Let ϕp(x)= |x |p−2x for p > 1 be the one-dimensional p-Laplacian, and consider
the following half-linear equation[

u(t)ϕr
(
x1(t)

)]∇
+w(t)ϕq

(
x(t)

)
= 0, (5-1)

where r, q > 1 and u, w : T→ R satisfy u(t) > 0 and w(t) ≥ 0, respectively. Let
y = uϕr (x1). Then y∇ = −wϕq(x) and x1 = ϕ−1

r (1/u)ϕ−1
r (y), which can be

generalized to the half-linear, p-Laplacian system

x1(t)= v(t)ϕp
(
y(t)

)
, y∇(t)=−w(t)ϕq

(
x(t)

)
, t ∈ T. (5-2)

Here we assume v : T→ R is right-dense continuous with v > 0 on [t0,∞)T, and
w : T→ R is continuous with w ≥ 0 on [t0,∞)T. Future research would take the
earlier results shown valid for (1-3) and try to modify them to cover (5-2) and thus
(5-1) as well.
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