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We seek to classify the sets of zero-divisors that form ideals based on their
zero-divisor graphs. We offer full classification of these ideals within finite
commutative rings with identity. We also provide various results concerning the
realizability of a graph as a zero-divisor graph.

1. Definitions and notation

We will begin by introducing the necessary definitions and notation that will be
used throughout the paper. In Section 2, we will determine when the zero-divisors
form an ideal in a finite commutative ring with identity, and Section 3 partially
generalizes these results to the cases where R is infinite or lacks identity. Section 4
is concerned with the realizability of graphs as zero-divisor graphs.

Given a commutative ring R, an element x ∈ R is a zero-divisor if there exists a
nonzero y ∈ R such that xy = 0. We denote the set of zero-divisors as Z(R), and
the set of nonzero zero-divisors denoted by Z(R)∗. For x ∈ R, the annihilator of
x , denoted ann(x), is {y ∈ R | xy = 0}. It can be shown that the annihilator of any
element in a ring is an ideal. An element x is nilpotent if xn

= 0 for some n ∈ N.
The set of all units in R is denoted U (R). If x, y ∈ R where R is integral domain,
we say x and y are associates if x = uy, where u ∈U (R). A ring R is a local ring
if and only if R has a unique maximal ideal.

For a graph G, we define V (G) and E(G) to be the sets of vertices and edges of
G, respectively. Two elements x, y ∈ V (G) are defined to be adjacent, denoted by
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x–y, if there exists an edge between them. A path between two elements

a1, an ∈ V (G)

is an ordered sequence of distinct vertices of G, {a1, a2, . . . , an}, such that ai−1–ai .
The length of a path between x and y is the number of edges crossed to get from
x to y in the path. The distance between x, y ∈ G, denoted d(x, y), is the length
of a shortest path between x and y, if such a path exists; otherwise, d(x, y)=∞.
For the purposes of this paper, we define d(x, x)= 0. The diameter of a graph is
diam(G)=max{d(x, y) | x, y ∈ V (G)}. An element x ∈ V (G) is said to be looped
if there exists an edge from x to itself. A graph G is called complete bipartite if
there exist disjoint subsets A, B of V (G) such that A ∪ B = V (G), x/–y for any
distinct x, y ∈ A or x, y ∈ B, and x–y for any x ∈ A and y ∈ B. Finite complete
bipartite graphs are denoted as K m,n , where |A| = m and |B| = n. A graph G
is said to be complete bipartite reducible if and only if there exists a complete
bipartite graph G ′ such that V (G ′) = V (G) and E(G ′) ( E(G). A graph G is a
star graph if G = K 1,n . A graph G is said to be star-shaped reducible if and only
if there exists a g ∈ V (G) such that g is adjacent to all other vertices in G and g is
looped. More information about graph theory may be found in [Wilson 1972]. We
define the zero-divisor graph of R, denoted 0(R), as follows: x ∈ V (0(R)) if and
only if x ∈ Z(R)∗, and x–y if and only if xy = 0. We will allow loops in 0(R),
which is a change from other definitions of zero-divisor graphs as in [Anderson and
Livingston 1999; Axtell et al. 2006; Lucas 2006; Redmond 2007].

As an illustration of zero-divisor graphs, we show 0(Z12):
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2. Finite rings with identity

In this section, we will ascertain when Z(R) is an ideal in a finite commutative ring
with identity by using 0(R), and we will determine the nature of loops in 0(R).
Note that to show Z(R) is an ideal, we need only show it is closed under addition.

The following lemma is well known.

Lemma 2.1. In a finite commutative ring with identity, every element is either a
unit or a zero divisor.
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Lemma 2.2. Let R be a commutative ring. Given any finite set

{p1, p2, . . . , pn} ⊂ R,

where all pi are nilpotent, there exists a nonzero a ∈ R such that api = 0 for all
1≤ i ≤ n.

Proof. Since p1 is nilpotent, there exists a minimal m1 such that pm1
1 = 0. Let

a1 = pm1−1
1 . Clearly, a1 p1 = 0, and a1 6= 0. Inductively, since pi is nilpotent, and

ai−1 6= 0, there exists mi –1 (possibly zero, in which case, ai = ai−1), such that
ai = ai−1 pmi−1

i 6= 0, but ai pi = 0. Let a = an . By construction, a annihilates every
pi . �

Theorem 2.3. Let R be a finite commutative ring with identity. Then the following
are equivalent:

(1) Z(R) is an ideal;
(2) Z(R) is a maximal ideal;
(3) R is local;
(4) Every x ∈ Z(R) is nilpotent;
(5) There exists b ∈ Z(R) such that bZ(R)= 0, and hence 0(R) is star-shaped

reducible.

Proof. Since R is finite, every element is either a zero-divisor or a unit by Lemma
2.1. Hence, whenever Z(R) is an ideal, it must be maximal, since any ideal that
properly contains Z(R) must contain a unit and must therefore contain all of R.
Also, whenever Z(R) is a maximal ideal, it must be the only one; for consider
another ideal I of R. Then either I ( Z(R), in which case it is not maximal, or else
it contains a unit and is not proper. If R is local, then it has a single maximal ideal
M . By Lemma 2.1, every element is either a unit or a zero-divisor. In addition,
every nonunit is in M , since M is maximal, and every unit is not in M , so M is the
set of zero-divisors. Hence the zero-divisors form an ideal. Thus, (1), (2), and (3)
are all equivalent.

(1⇒ 4) Assume Z(R) is an ideal. Suppose x ∈ Z(R). Then there exist minimal
i > j >0 such that x i

= x j . Then, x i
−x j
=0 implies x j (x i− j

−1)=0. Thus x j
=0

or x i− j
− 1 ∈ Z(R). In the latter case, since Z(R) is an ideal and x i− j

∈ Z(R), we
get (x i− j

−1)− x i− j
=−1 ∈ Z(R), which implies that Z(R)= R, a contradiction.

Thus x j
= 0.

(4 ⇒ 5) Assume every element of Z(R) is nilpotent. If Z(R) = {0}, then
condition (5) holds vacuously. Otherwise, by Lemma 2.2 there exists a b ∈ Z(R)

such that bZ(R)= 0.
(5⇒ 1) Assume 0(R) is star-shaped reducible and let b be the center of 0(R).

Let x, y be any two elements of Z(R). Then, b(x−y)=bx−by=0, so x−y∈ Z(R).
Thus, Z(R) is an ideal. �
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Corollary 2.4. If R is a finite commutative ring with identity and diam 0(R)= 3,
then the zero-divisors do not form an ideal.

Proof. If the diam(0(R)) = 3, then 0(R) is not star-shaped reducible. Thus, by
Theorem 2.3, Z(R) is not an ideal. �

Theorem 2.5. For any commutative ring R, if Z(R) is an ideal, then

0(R) 6= K m,n, m, n > 1.

Proof. Assume Z(R) is an ideal. Suppose 0(R)= K m,n, m, n > 1. Let the partition
of 0(R) be A= {a1, a2, . . . , am} and B = {b1, b2, . . . , bn}. Since Z(R) is an ideal,
a1+b1 ∈ Z(R). If a1+b1 = 0, then a1 =−b1, and hence b1b2 = 0, a contradiction.
Thus, without loss of generality, we may assume that a1+b1 ∈ A. So, a1+b1 = ai

for some i ≥ 2. Since 0(R) is complete bipartite,

0= ai b2 = (a1+ b1)b2 = a1b2+ b1b2 = b1b2,

a contradiction. Thus 0(R) 6= K m,n, m, n > 1. �

For the remainder of this section we assume that 0(R) is a star graph K 1,n with
center a. First, we show that the center element of 0(R) is almost always not
looped.

Lemma 2.6. If 0(R)= K 1,n , then the center element of the star graph a is looped
if and only if

R ∼= Z4, Z8, Z9, Z2[x]/(x2), Z2[x]/(x3), Z3[x]/(x2), or Z4[x]/(2x, x2
− 2).

Proof. (⇒) By [Redmond 2007], observe that for n = 0, 1, 2, we have star graphs
with looped centers:

Z4, Z8, Z9, Z2[x]/(x2), Z2[x]/(x3), Z3[x]/(x2), and Z4[x]/(2x, x2
− 2),

respectively. By [Anderson and Livingston 1999, Corollary 2.6], |0(R)|> 3, and
0(R) = K 1,n, n > 2 if and only if R ∼= Z2× F , where F is a field. This implies
that the center element of the star graph is (1, 0), and (1, 0) is not looped.

(⇐) Trivial. �

The previous lemma is useful for determining whether a given graph is a potential
zero-divisor graph: if it is a star graph with more than 3 vertices and the center
element is looped, then it cannot be a zero-divisor graph.

The next lemma determines when Z(R) is an ideal if 0(R) is a star graph.

Lemma 2.7. If 0(R)= K 1,n , then Z(R) is an ideal if and only if

R ∼= Z4, Z8, Z9, Z2[x]/(x2), Z2[x]/(x3), Z3[x]/(x2), or Z4[x]/(2x, x2
− 2).
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Proof. (⇒) Let a be the center of 0(R). Let b ∈ Z(R)∗. Then a+b ∈ Z(R). Thus,
0= a(a+ b)= a2

+ ab = a2. Thus a is looped. By Lemma 2.6,

R ∼= Z4, Z8, Z9, Z2[x]/(x2), Z2[x]/(x3), Z3[x]/(x2), or Z4[x]/(2x, x2
− 2)

(⇐) Trivial. �

Theorem 2.8. Let R be a finite commutative ring with identity such that

0(R)= K 1,n

with center a. Then the following are equivalent:

(1) Z(R) is an ideal;
(2) a2

= 0;
(3) R ∼= Z4, Z8, Z9, Z2[x]/(x2), Z2[x]/(x3), Z3[x]/(x2), or Z4[x]/(2x , x2

− 2).

3. General commutative rings

In this section, we will examine the structure of Z(R) with respect to 0(R) in
the general case where R does not necessarily have identity or is infinite. By
[Anderson and Livingston 1999, Theorem 2.3], we know that diam(0(R)) ≤ 3
for any zero-divisor graph 0(R). We consider each possible diameter of 0(R)

separately.
The diameter 0 and 1 cases have already been investigated thoroughly in [Axtell

et al. 2006]. In particular, diam(0(R)) = 0 if and only if R ∼= Z4 or Z2[x]/(x2).
In each case, Z(R) forms an ideal. Also, if diam(0(R))= 1, then Z(R) is an ideal
if and only if R 6∼= Z2×Z2.

We now expand on the existing results regarding the diameter 2 case and present
new results in the diameter 3 case.

The following lemma adds the reverse direction to Lemma 2.3 in [Axtell et al.
2006]; the proof of the forward direction is taken from the same source.

Lemma 3.1. Let R be a commutative ring such that diam(0(R))= 2. Then Z(R)

is an ideal if and only if for all x, y ∈ Z(R), there exists a nonzero z such that
xz = yz = 0.

Proof. (⇒) Let x, y ∈ Z(R). If x = 0, y = 0, or x = y, the choice of z to satisfy
the statement is clear. Therefore, assume x and y are distinct and nonzero. Since
diam(0(R))= 2, whenever xy 6= 0, there exists z ∈ Z(R)∗ such that xz = yz = 0.
Thus, assume xy = 0. If x2

= 0, then z = x yields the desired element, and
likewise if y2

= 0. Suppose x2, y2
6= 0. Let X ′ = {x ′ ∈ Z(R)∗ | xx ′ = 0} and

Y ′ = {y′ ∈ Z(R)∗ | yy′ = 0}. Observe that x ∈ Y ′ and y ∈ X ′, so X ′ and Y ′ are
nonempty. If X ′ ∩ Y ′ 6= ∅, choose z ∈ X ′ ∩ Y ′. We show X ′ ∩ Y ′ 6= ∅. Consider
x+ y. Clearly x+ y 6= x and x+ y 6= y. Also if x+ y = 0, then x2

= 0 and we are
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done. If x+y 6= 0, since Z(R) is an ideal and thus a subring, we have x+y ∈ Z(R)∗.
As x2, y2

6= 0, we see that x + y /∈ X ′ and x + y /∈ Y ′. Because diam(0(R))= 2,

there exists w ∈ X ′ such that the following path exists: x −w − (x + y). Then
0=w(x+ y)=wx+wy =wy and so w ∈ Y ′. Thus, there exists a nonzero z such
that xz = yz = 0.

(⇐) Let x, y∈ Z(R). By hypothesis, there exists z∈ Z(R)∗ such that xz= yz=0.
Thus, (x + y)z = xz+ yz = 0, and x + y ∈ Z(R). Therefore Z(R) is an ideal. �

Recall Corollary 2.4, which states that there are no finite rings with identity and
zero-divisor graph of diameter 3 where Z(R) forms an ideal. This however does
not hold for the infinite case. In [Lucas 2006], an example has been given of an
infinite ring R in which Z(R) forms an ideal and diam(0(R)) = 3. We present
what we consider to be a more constructive example.

Before we present this example, some notation, definitions, and lemmas are
needed. The following definitions are for an integral domain R. An irreducible
element p is a nonzero, nonunit element that cannot be divided, that is, if p = qr ,
then q or r is a unit. A unique factorization domain is an integral domain in which
each nonzero nonunit can be factored uniquely, up to associates, as a product of
irreducible elements.

Consider the ring R = Z2[x, y, z1, z2, . . .]. Note that R is a unique factorization
domain. Define the set A = {p ∈ R | p ∈ Z2[x, y] and p is irreducible with zero
constant term}. Notice that there are infinitely many such irreducible polynomials
in x and y. Indeed, the polynomials x , x + y, x + y2, . . . are all irreducible. To see
this, consider Z2[x, y] in the equivalent form (Z2[y])[x]. Since x + yn has degree
1 in x , it can only be factored into something of the form ( f (y)x + g(y)) · (h(y)).
Since the coefficient of x in x + yn is 1, we must have f (y), h(y) = ±1. Thus,
one of the factors of x + yn , namely h(y), has to be a unit, and thus, x + yn is
irreducible.

Since {zi } and A are countably infinite, there exists a bijection between them,
that is, zi → pi . Now consider the ideal Q = (X1, X2) where X1= {zi z j | i, j ∈N}

and X2 = {zi pi (x, y) | i ∈ N}.

Lemma 3.2. f (x, y, zi1, . . . , zin )+Q ∈ Z(R/Q) if and only if f (x, y, zi1, . . . , zin )

has a zero constant term.

Proof. (⇐) If f (x, y, zi1, . . . , zin ) has a zero constant term, then

f (x, y, zi1, . . . , zin )+ Q

can be written in the form

fxy + zi1 f1+ · · ·+ zin fn + Q,



ZERO-DIVISOR IDEALS AND REALIZABLE ZERO-DIVISOR GRAPHS 23

where for every k, fxy and fk are functions in x and y only. Notice that fxy is either
irreducible with zero constant term or can be factored into irreducibles, at least one
of which has zero constant term, since Z2[x, y] is a unique factorization domain.
So, there is a z j such that z j fxy + Q = 0+ Q. Thus,

z j f (x, y, zi1, . . . , zin )+ Q = 0+ Q,

and hence f + Q is a zero-divisor in R/Q.
(⇒) Consider the contrapositive, and assume f has a nonzero constant term.

Thus, f +Q cannot be a zero-divisor, since R is an integral domain and no element
of Q has a nonzero constant term. �

Proposition 3.3. In R/Q, Z(R/Q) is an ideal.

Proof. Since it suffices to show closure under addition, let f (x, y, zi1, . . . , zin )+Q,
g(x, y, z j1, . . . , z jm )+ Q ∈ Z(R/Q). Then

( f + g)+ Q = h(x, y, zi1, . . . , zin , z j1, . . . , z jm )+ Q,

where h is a polynomial with a zero constant term since f and g both have zero
constant terms by Lemma 3.2. �

Theorem 3.4. In R/Q, diam(0(R/Q))= 3.

Proof. Consider the polynomials x̄ = x + Q, ȳ = y+ Q ∈ R/Q. Clearly x̄ and ȳ
∈ Z(R/Q), and xy 6= 0̄. Therefore the d(x̄, ȳ) ≥ 2. Suppose d(x̄, ȳ) = 2. Then
there exists ḡ = g+ Q ∈ R/Q such that x̄ ḡ = ȳ ḡ = 0̄. By Lemma 3.2, ḡ can be
written in the form gxy + zi1 g1 + zi2 g2 + . . .+ z1n gn + Q for some n ∈ N. Thus,
x̄ ḡ = xgxy+ xzi1 g1+ xzi2 g2+· · ·+ xzin gn+Q. Clearly xgxy /∈ Q unless gxy ∈ Q.
Thus ḡ = zi1 g1 + zi2 g2 + · · · + zin gn + Q. However, by construction, there is a
unique z̄x term such that x̄ z̄x = 0̄. Therefore, ḡ = ḡzx , since for any z̄i 6= z̄x , we
have x̄ z̄i 6= 0̄. An analogous argument holds for ȳ. Hence, ḡ = ḡzy . Therefore,
z̄x = z̄y , a contradiction, since R is a unique factorization domain, and we have a
bijection between the indeterminates and the irreducible polynomials. Therefore,
d(x̄, ȳ)= 3 by [Anderson and Livingston 1999]. Thus, diam(0(R/Q))= 3. �

Categorizing infinite graphs of diameter 3 for which Z(R) is an ideal is still
unresolved.

4. Realizable zero-divisor graphs

In this section, we will analyze the realizability of graphs as zero-divisor graphs
of commutative rings with identity through endpoint and cut vertex analysis. We
define an endpoint to be a vertex that is adjacent to only one other vertex.

Observe that if 0 is a graph on two vertices, it is realizable as a zero-divisor
graph of a commutative ring if both endpoints are looped, as can be seen in Z9 or
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Z3[x]/(x2). A two-vertex graph where neither endpoint is looped can be realized
as the graph of Z2×Z2. If 0 is a graph on two vertices and only one endpoint is
looped, then it is not realizable as a zero-divisor graph, as shown by [Redmond
2007].

Theorem 4.1. Let G be a graph such that |G| > 2. If G has at least one looped
endpoint, then G is not realizable as the zero-divisor graph of a commutative ring.

Proof. Assume G = 0(R) for some commutative ring R with identity. Suppose a
is a looped endpoint adjacent to a vertex b, and c is a vertex adjacent to b distinct
from a in 0(R). Since a(a+b)= a2

+ab= 0, we must have a+b= a, a+b= b,
or a+ b = 0. If a+ b = a, then b = 0, a contradiction. If a+ b = b, then a = 0,
another contradiction. If a+ b = 0, then a =−b which means any c adjacent to b
is adjacent to a, a contradiction. �

A vertex a of a connected graph G is a cut vertex if G can be expressed as a union
of two subgraphs X and Y such that E(X) 6=∅, E(Y ) 6=∅, E(X)∪E(Y )= E(G),
V (X)∪V (Y )= V (G), V (X)∩V (Y )= {a}, X\{a} 6=∅, and Y\{a} 6=∅. In other
words, the removal of a cut vertex and its incident edges results in an increase in
the number of connected components.

Theorem 4.2. If 0(R) is partitioned into two subgraphs X and Y with cut vertex a
such that X\{a} is a complete subgraph, then I = V (X)∪ {0} is an ideal.

Proof. Choose b ∈ X\{a} such that a − b. Since X\{a} is a complete subgraph
and ab = 0, we have bx = 0 = by for all x, y ∈ V (X) ∪ {0}. So, b(x + y) = 0,
and hence, x + y ∈ V (X). Similarly, if r ∈ R, we have b(r x)= r(bx)= 0, and so
r x ∈ V (X)∪ {0}. �

The converse of Theorem 4.2 is false. Let R = Z2 × Z4. Then (1, 0) is a cut
vertex. The set {(0, 0), (1, 0), (0, 2), (1, 2)} forms an ideal of R; however, their
corresponding subgraph is not complete:

(1, 0) (0, 2) (1, 2)

(0, 1)

(0, 3)

Theorem 4.3. Let R be a commutative ring with identity such that 0(R) is parti-
tioned into two subgraphs X and Y with cut vertex a and |X |> 2. If X is a complete
subgraph, then every vertex of X is looped.
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Proof. Assume X is a complete subgraph with cut vertex a. Let b ∈ X such that
b 6= a. Suppose b2

6= 0. If b2
= b, then b(b−1)= 0, implying b−1∈ Z(R)∩V (X).

Let c ∈ V (X). Thus, 0 = c(b − 1) = cb − c implies c = 0, a contradiction. If
b2
6= b, then ann(b)⊆ ann(b2), implying b2

∈ V (X). Thus, b(b2)= 0 since X is
complete. So, b2(b2

− b)= 0, implies b2
− b ∈ Z(R). By assumption, b2

− b 6= 0,
so b2

− b ∈ X . Now, 0= b(b2
− b)= b3

− b2
=−b2 yielding b2

= 0.
Now consider the zero-divisor a+b. Clearly a+b 6= a, b and since b(a+b)= 0,

a+ b ∈ V (X)∪ {0}. Since X is complete, 0= a(a+ b)= a2. �

Theorem 4.4. Let 0(R) have partitions X and Y with cut vertex a. Then {0, a} is
an ideal.

Proof. Let e ∈ X\{a} such that ea = 0, and let c ∈ Y\{a} such that ac= 0. Clearly,
a+a 6= a. If a+a= b for some b∈ X\{a}, then c(a+a)= cb= 0, a contradiction.
Similarly, a + a /∈ Y\{a}. Thus, a + a = 0. Let r ∈ Z(R). If ra ∈ X\{a}, then
c(ra)= r(ac)= 0, a contradiction. Similarly, ra /∈ Y\{a}. Thus, ra ∈ {a, 0}. �

Theorem 4.5. If 0 is realizable as a zero-divisor graph of a finite commutative ring
with identity, then it is star-shaped reducible, complete bipartite, complete bipartite
reducible, or diameter 3.

Proof. Any finite ring R can be written as R∼= R1×· · ·×Rn×F1×· · ·×Fm , where
each Ri is local and Fi is a field [Dummit and Foote 2004, p. 752]. If n+m=1, then
either R is local or R is a field. If R is local, then zero-divisors form an ideal, and
the graph is star-shaped reducible by Theorem 2.3. If R is a field, then 0(R)=∅.
Now suppose n+m = 2. If R ∼= R1× F , then 0(R) is complete bipartite reducible.
If R ∼= F1× F2, then 0(R) is complete bipartite. If R = R1× R2, where R1 and R2

are local, then let z ∈ Z(R1)
∗, w ∈ Z(R2)

∗. Consider the zero-divisors z1 = (z, 1)

and z2 = (1, w). The shortest path between z1 and z2 must then be of length 3,
and hence diam(0(R))= 3. If n+m ≥ 3, z1 = (0, 1, 1, . . . , 1) is only attached to
(1, 0, 0, . . . , 0), and z2 = (1, 0, 1, . . . , 1) is only attached to (0, 1, 0, . . . , 0). Since
z1 and z2 do not have a common annihilator, diam(0(R))= 3. �

Corollary 4.6. A finite graph with no looped vertices is realizable as 0(R) for
some commutative ring with identity R if and only if it is the graph of a ring which
is a direct product of finite fields.

Proof. (⇒) If in the decomposition of R, we have that R1 is local, then by Theorem
2.3, there exists a k ∈ R1 such that k2

= 0. So, (k, 0, . . . , 0)2
= 0, and thus 0(R)

contains a looped vertex, a contradiction.
(⇐) A direct product of fields contains no nonzero nilpotent elements, and hence,

0(R) has no looped vertices. �
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Corollary 4.7. A finite complete bipartite graph 0 with partitions P and Q is
realizable as the zero-divisor graph of some commutative ring with identity R if and
only if |P| = pn

− 1 and |Q| = qm
− 1 for some m, n ∈ N and primes p, q.

Proof. (⇒) By Theorem 4.5, complete bipartite zero-divisor graphs only arise when
R ∼= F1× F2. These rings always produce graphs with partitions P and Q such
that |P| = pn

− 1, and |Q| = qm
− 1 for m, n ∈ N and primes p, q.

(⇐) The ring R = Fpn × Fqm suffices. �

The following two theorems concern the properties of minimal paths in 0(R).

Theorem 4.8. Let R be a commutative ring. If a–b–c–d is a minimal path from a
to d in 0(R), then ann(a) ( ann(c). Furthermore, ann(a) ann(d)= 0.

Proof. Since ad 6= 0, ann(a) 6= ann(c). Suppose there exists e ∈ R such that ae= 0,
but ce 6= 0. Then a(ce) = (ae)c = 0, and d(ce) = (dc)e = 0, so a − ce− d is a
path of length 2, a contradiction. Thus, ann(a) ( ann(c). Furthermore, suppose
there exists za ∈ ann(a) and zd ∈ ann(d) so that zazd 6= 0. Then a− (zazd)− d is
also a path of length at most 2, a contradiction. �

Theorem 4.9. Let R be a commutative ring, and a, d ∈ Z(R)∗. If a–b–c–d is a
minimal path from a to d, then a and d are not nilpotent.

Proof. Without loss of generality, suppose an
= 0 for some n ∈ N. Consider the

sequence c, ac, a2c, a3c, . . . , anc. By assumption, c 6= 0 and anc = 0. So, there
exists a minimal i such that ai c 6= 0, but ai+1c = 0. Thus ai c is adjacent to both a
and d . So a− ai c− d is a path of length 2, a contradiction. �
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