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The mosaic of the integer n is the array of prime numbers resulting from iterating
the Fundamental Theorem of Arithmetic on n and on any resulting composite
exponents. In this paper, we generalize several number theoretic functions to
the mosaic of n, first based on the primes of the mosaic, second by examining
several possible definitions of a divisor in terms of mosaics. Having done so, we
examine properties of these functions.

1. Introduction

Mosaics. Mullin, in a series of papers [1964, 1965, 1967a, 1967b], introduced the
number theoretic concept of the mosaic of n and explored several ideas related
to it.

Definition 1.1. The mosaic of the integer n is the array of prime numbers resulting
from iterating the Fundamental Theorem of Arithmetic (FTA) on n and on any
resulting composite exponents.

The following example illustrates this definition.

n = 1,024,000,000 L99 use the FTA to find the prime factorization of n

= 216
· 56 L99 apply FTA to composite exponents 16 and 6

= 224
· 52·3 L99 apply FTA again to composite number 4

= 2222

· 52·3. L99 the mosaic of the integer; only primes remain

Mullin introduced several functions on the mosaic, the first of which was ψ(n),
the product of all of the primes in the mosaic of n. As an example, we have

ψ
(
2173
· 355)

= 2 · 17 · 3 · 3 · 5 · 5= 7650.
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In number theory, a function is multiplicative if and only if f (mn)= f (m) f (n)
whenever m and n are relatively prime. Mullin extended this concept to mosaics
by saying that f is generalized multiplicative if and only if f (mn) = f (m) f (n)
whenever the mosaics of m and n have no primes in common. He showed thatψ(n)
is generalized multiplicative and that any multiplicative function is also generalized
multiplicative. He also generalized the Möbius function µ(n) to the generalized
Möbius function:

µ∗(n)=


1 if n = 1,

0 if the mosaic of n > 1 has any prime number repeated,

(−1)k if the mosaic of n > 1 has no prime repeated, where k is

the number of distinct primes in the mosaic of n.

Similarly, Mullin generalized the concept of additivity: a function f is gener-
alized additive if and only if f (mn) = f (m)+ f (n) whenever the mosaics of m
and n have no primes in common. He defined ψ∗(n) as the sum of the primes
in the mosaic of n and showed that this function was generalized additive. As an
example,

ψ∗
(
523
·7
· 111319)

= 5+ 2+ 3+ 7+ 11+ 13+ 19= ψ∗
(
523
·7)
+ψ∗

(
111319)

.

Levels of the mosaic of n. Following Mullin’s work, Gillman [1990, 1992] defined
new functions on the mosaic of n. He used the concept of levels of the mosaic to
describe the different tiers of exponentiation.

Suppose

n = 23·57
· 172319

·291311
·89
,

then the 2 and 17 are on the first level, the 3, 5, 23 and 29 are on the second level,
the 7, 19, 13, and 89 are on the third level, and the 11 is on the fourth level of the
mosaic.

Using this idea, Gillman generalized the Möbius function as follows:

µi (n)=



1 if n = 1,

0 if the mosaic of n has duplicate primes in the first i levels

(including multiplicities at the i-th level),

(−1)k if the mosaic of n consists of k distinct primes in the first

i levels.

With this definition,

µ∞ = µ
∗ and µ1 = µ.
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Gillman also extended Mullin’s concept of generalized multiplicative to include
the levels of the mosaic.

Definition 1.2. A function f is i -multiplicative if and only if f (mn)= f (m) f (n)
when m and n have no primes in common in the first i levels of their mosaic.

Gillman proved µi is i-multiplicative for all i . He then extended Mullin’s work
on ψ(n) by generalizing it to depend on the levels of the mosaic.

Definition 1.3. For a fixed i and j such that j > i , the functionψ j,i (n) is computed
as follows: Expand n through the first j levels of its mosaic; for each prime p on
the i-th level of this expansion, multiply p by the product of the primes in the
(i+1)-th through j-th levels above p, including multiplicities of the primes at the
j-th level.

The following examples illustrate these computations:

ψ6,3
(
235711·132

· 32·53·7)
= 235·7·11·13·2

· 32·53·7
,

ψ∞,1(n)= product of all primes in the mosaic= ψ(n).

Gillman also introduced the concept of i-relatively prime mosaics. That is, two
integers, m and n, are i -relatively prime when they have no primes in common in
the first i levels of their mosaics. Thus, the integers with mosaics 235

and 7113
are

2-relatively prime, but not 3-relatively prime.

Motivation. In this paper, we will introduce new families of functions on the mo-
saic of n and determine which of these are i-multiplicative or i-additive. In Section
2, the functions will depend only on the primes present in the first i levels and
their multiplicities. In Section 3, we evaluate previous attempts to generalize the
concept of a divisor to the mosaic, and in Section 4 we introduce a new definition
of a mosaic divisor that we believe will be more useful.

2. Mosaic functions

The functions �, ω, and λ are number theoretic functions that can be easily gen-
eralized to the mosaic of n. We discuss their generalizations because they are
either i-multiplicative or i-additive. We also introduce a new function, ψ∗, which
is interesting since it is either i-multiplicative or i-additive depending on the value
of i .

The functions�i andωi . �(n) is the total number of primes in the factorization of
n, including repetitions. We generalize this idea with the function �i (n), the total
number of primes in the first i levels of the mosaic of n, including multiplicities
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on the i-th level. Thus, as an example,

�2
(
237
· 5116)

=�2(23·3·3·3·3·3·3
· 511·11·11·11·11·11)= 15,

�3

(
7575
·19
· 19137·113)

=�3
(
757·7·7·7·7

·19
· 19137·11·11·11)

= 14.

Gillman [1990] proved that if f is i-multiplicative then f is j-multiplicative for
all j ≥ i . This is because if there are no primes in common in the first j levels of
m and n, then there will clearly be no primes in common in the first i levels of m
and n when j ≥ i . This property is used to prove the following theorem.

Theorem 2.1. For all i , �i is j -additive for all j .

Proof. Let m and n be 1-relatively prime. Then �i (mn) is summing the number of
prime divisors of the product mn and the number of primes in levels two though i
of the mosaic of mn, including multiplicities at the i-th level. Since m and n are
1-relatively prime, the first term of this sum can be written as the number of prime
divisors of m plus the number of prime divisors of n. Similarly, the second term
can be written as the number of primes in levels two through i of the mosaic of
m plus the number of primes in levels two through i of the mosaic of n, including
multiplicities at the i-th level in each of these sums. Rearranging these sums results
in �i (m)+�i (n). Thus �i is 1-additive and therefore j-additive for all j . �

The following two examples illustrate that it is necessary and sufficient that the
first level of the mosaics have distinct primes in order that �i be i-additive, as
suggested by the previous proof:

�2
(
235
· 33)
= 8= 6+ 2=�2

(
235)
+�2(33),

�2
(
335
· 33)
=�2(32·3·41)= 4 6= 8= 6+ 2=�2

(
335)
+�2(33).

Similarly, ω(n), the number of distinct primes in the prime factorization of n,
can be generalized as ωi (n), the number of distinct primes in the first i levels of
the mosaic of n.

Since

ω4
(
711·13532

· 2917892 )
= 9= 5+ 4= ω4

(
711·13532 )

+ω4
(
2917892 )

and

ω4
(
115·11

· 7193
·5357 )

= 6 6= 2+ 5= ω4(115·11)+ω4
(
7193
·5357 )

as counterexamples, ωi is not 1-additive and therefore not j-additive for all j .
Rather, as the following theorem demonstrates, it is j-additive for j ≥ i .

Theorem 2.2. For all i , ωi is j -additive for j ≥ i .
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Proof. Let m and n be i-relatively prime. Then ωi (mn) is summing the number of
prime divisors of the product mn and the distinct primes in levels two though i of
the mosaic of mn (which must also be distinct from the prime divisors). Since m
and n are relatively prime, the first term of this sum can be written as the prime
divisors of m plus the prime divisors of n. Similarly, the second term can be written
as the number of distinct primes in levels two through i of the mosaic of m plus
the number of distinct primes in levels two through i of the mosaic of n. Thus
ωi (mn) = ωi (m)+ ωi (n) and therefore ωi is i-additive. This implies that ωi is
j-additive for j ≥ i . �

The function λi . The Liouville function, λ(n)= (−1)�(n), also generalizes easily
in the obvious way as λi (n) = (−1)�i (n). This leads to the following theorem,
again recalling that i-multiplicative implies j-multiplicative for j ≥ i .

Theorem 2.3. For all i , λi is j -multiplicative for all j ≥ i .

Proof. Assume m and n are 1-relatively prime. It follows that

λi (mn)= (−1)�i (mn)
= (−1)�i (m)+�i (n)

= (−1)�i (m)(−1)�i (n) = λi (m)λi (n).

λi is 1-multiplicative and therefore j-multiplicative for all j . �

The function ψ∗
j,i . Mullin defined the function ψ as the product of all primes in

a mosaic. Gillman later extended this to the levels of the mosaic by introducing
the function ψ j,i . Mullin also defined the function ψ∗ as the sum of the primes in
a mosaic. To generalize this idea to the levels of the mosaic as well, we define the
function ψ∗j,i .

Definition 2.4. For fixed i and j , such that j ≥ i , compute ψ∗j,i (n) as follows:
Expand n through the first j levels of its mosaic; for each prime p on the i-th level
of this expansion, add p to the sum of the primes in the (i + 1)-th through j-th
levels above p, including the multiplicities of the primes at the j-th level, then
convert multiplication on the i-th level to addition.

Again, two examples help to illustrate this computation:

ψ∗4,2
(
171137

·19
· 23235 )

= 1711+3+7+19
· 232+3+5,

ψ∗4,1
(
3523
·7)
= 3+ 5+ 2+ 3+ 7= 20.

Similar to the previous functions, ψ∗j,1 is 1-additive, and therefore:

Theorem 2.5. ψ∗j,1(n) is k-additive for all j and k.
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Proof. Let m and n be integers which are 1-relatively prime. ψ∗j,1(mn) is the sum
of primes in the first j levels of the mosaic of mn, including multiplicities on the
j-th level. This is equivalent to the sum of prime divisors of mn plus the sum of
the primes in levels two through j of the mosaic of mn including multiplicities at
the j-th level. Since m and n are relatively prime, the sum of prime divisors of mn
can be written as the sum of prime divisors of m plus the sum of prime divisors
of n. Similarly, the second term can be written as the sum of primes in levels two
through j of the mosaic of m plus the number of primes in levels two through j of
the mosaic of n including multiplicities at the j-th level in each. Rearranging these
sums results in ψ∗j,1(m)+ψ

∗

j,1(n). Thus ψ∗j,1 is 1-additive and therefore k-additive
for all k. �

Interestingly, while ψ∗j,i is k-additive for all j and k when i = 1, for any i > 1,
ψ∗j,i is 1-multiplicative and therefore k-multiplicative for all j and k.

Theorem 2.6. For all i > 1 and j ≥ i , ψ∗j,i (n) is k-multiplicative for all k.

Proof. Let m and n be 1-relatively prime integers with prime factorizations

pα1
1 pα2

2 · · · p
αr
r and qβ1

1 qβ2
2 · · · q

βs
s ,

respectively. Because m and n are 1-relatively prime,

mn = pα1
1 pα2

2 · · · p
αr
r qβ1

1 qβ2
2 · · · q

βs
s .

Further, because i > 1, ψ∗j,i (mn) has the same first (i − 1) levels as the mosaic
of mn and the i-th level is equal to the i-th level of ψ j,i (mn) with multiplication
converted to addition. Thus the unchanged first level can be partitioned into the
parts that have the same first (i−1) levels as m and n and with the i-th levels equal
to the i-th levels of ψ j,i (m) and ψ j,i (n) respectively with multiplication converted
to addition. That is,

ψ∗j,i (mn)= pa1
1 pa2

2 · · · p
ar
r qb1

1 qb2
2 · · · q

bs
s

= (pa1
1 pa2

2 · · · p
ar
r )(q

b1
1 qb2

2 · · · q
bs
s )

= ψ∗j,i (m)ψ
∗

j,i (n),

where a∗ and b∗ are the second through i-th levels of the mosaic, with the (i +1)-
th to j-th levels brought down to the i-th level with multiplication converted to
addition. Thus ψ∗j,i (mn) is 1-multiplicative and therefore k-multiplicative for all k.

�
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3. Early attempts at mosaic divisors

Many number theoretic functions are defined in terms of the divisors of n, so an
analogous concept is needed for the mosaic. In this section, we examine two early
attempts at this.

Submosaics. A mosaic can be viewed as a connected graph where the primes in
the mosaic are the vertices and there is an edge between vertices if one prime is
multiplied by the other or one is an exponent of the other. Mullin [1965] introduced
the concept of submosaics as the mosaic corresponding to a connected subgraph of
the graph of the full mosaic. Therefore, submosaics seems like a natural candidate
for a mosaic divisor.

Mullin tried to show that functions of the form

F(n)=
∑

f (d),

where the sum is over the set of submosaics of n, are generalized multiplicative
when f is generalized multiplicative. Unfortunately, this is not true. If we let C(n)
be the set of all submosaics of n, Mullin assumed that C(mn)=C(m)×C(n), but
this is not true as shown in the example:

2 ∈ C(132), 17 ∈ C(175), 2 · 17 6∈ C(132
· 175).

Givisors. The givisor, from Gillman’s divisor, was Gillman’s attempt to generalize
the concept of a divisor for mosaics. We examine this concept and its implications
in this subsection and the next.

Definition 3.1. Let n= pα1
1 pα2

2 · · · p
αk
k . Each pαi

i is a prime givisor. Then a givisor
of n is

(a) 1,

(b) a prime givisor, or

(c) a product of 1-relatively prime givisors from part (b).

We denote the set of all givisors of n by G(n) and, as an example, consider

n = 235
· 3517
· 5.

The givisors of n are

G
(
235
· 3517
· 5
)
=
{
1, 235

, 3517
, 5, 235

· 3517
, 235
· 5, 3517

· 5, 235
· 3517
· 5
}
.

Gillman selected this structure because the mosaic above each prime in the first
level is fixed, and the structure of the remaining mosaic does not change when a
mosaic is divided by a givisor; we are simply splitting the mosaic into two parts.
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In particular, givisors solve the fundamental problem that submosaics have, as we
see in the following lemma.

Lemma 3.2. For all i , G(mn) = G(m) × G(n) when m and n are i-relatively
prime.

Proof. Let the prime-power factorizations of m and n be

pa1
1 pa2

2 · · · p
as
s and qb1

1 qb2
2 · · · q

bt
t ,

respectively. Since m and n are i-relatively prime, the set of primes in the first
level of m and the set of primes in the first level of n have no common elements.
Therefore, the prime-power factorization of mn is

mn = pa1
1 pa2

2 · · · p
as
s qb1

1 qb2
2 · · · q

bt
t .

If d ∈ G(mn), then
d = pe1

1 pe2
2 · · · p

es
s q f1

1 q f2
2 · · · q

ft
t

where ei is either 0 or ai for i = 1, 2, . . . , s and f j is either 0 or b j for j =
1, 2, . . . , t . Now let

d1 = gcd(d,m) and d2 = gcd(d, n).

Then
d1 = pe1

1 pe2
2 · · · p

es
s and d2 = q f1

1 q f2
2 · · · q

ft
t .

It follows that d1 ∈ G(m) and d2 ∈ G(n). Since d = d1d2, d ∈ G(m)×G(n)
Similarly, if d1 ∈ G(m) and d2 ∈ G(n), then d1d2 ∈ G(m)×G(n) and d1d2 ∈

G(mn). Thus the sets are the same. �

Theorem 3.3. If f is an i-multiplicative function, then

F(n)=
∑

d∈G(n)

f (d)

is also i-multiplicative.

Proof. To show that F is an i-multiplicative function, we must show that when m
and n are i-relatively prime, F(mn) = F(m)F(n). So assume that m and n are
i-relatively prime. We know

F(mn)=
∑

d∈G(mn)

f (d).

By the lemma, each givisor of mn can be written as the product d = d1d2 where
d1 ∈ G(m) and d2 ∈ G(n), and d1 and d2 are i-relatively prime. So

F(mn)=
∑

d1∈G(m),d2∈G(n)

f (d1d2).
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Because f is i-multiplicative, and d1 and d2 are i-relatively prime, we see that

F(mn) =
∑

d1∈G(m)

∑
d2∈G(n)

f (d1) f (d2) =
∑

d1∈G(m)

f (d1)
∑

d2∈G(n)

f (d2)= F(m)F(n). �

Functions defined by givisors. Givisors provide a mechanism for generalizing
functions dependent on the concept of a divisor, and in this subsection we gener-
alize three of these: τ — the number of divisors of n, σ — the sum of the positive
divisors of n, and φ— the number of integers less than n relatively prime to n.

The function gτ(n) counts the number of givisors of n, and hence can be com-
puted by the formula

gτ(n)=
∑

d∈G(n)

1.

The value of gτ will always be a power of two with the exponent equal to
the number of prime divisors of n. Using Theorem 3.3 with f (d) = 1, which is
obviously i-multiplicative, we obtain:

Corollary 3.4. gτ is i -multiplicative for all i .

Similarly, we define gσ(n) as the sum of the givisors of n, and compute it using
the formula

gσ(n)=
∑

d∈G(n)

d.

Again using Theorem 3.3, except with f (d) = d , which is also i-multiplicative,
we have:

Corollary 3.5. gσ is i -multiplicative for all i .

We can generalize the concept of the number theoretic function φ(n), the num-
ber of integers less than n relatively prime to n, but the canonical formula for
computing this,

φ(n)=
∑

d

µ(d)
n
d
,

does not generalize with it. Thus, while we can define φi (n) as the number of
integers less than n that are i-relatively prime to n, it is not computed by the obvious
generalization of the φ function, as given here:

ghi (n)=
∑

d∈G(n)

µi (d)
n
d
.

By letting n = 23, we can compute gh2(n) = 9, but also determine, by listing the
integers, that the number of integers 2-relatively prime to 8 is only 3. In spite of
this significant disappointment, we have:

Theorem 3.6. ghi is i -multiplicative for all i .



74 KRISTEN BILDHAUSER, JARED ERICKSON, CARA TACOMA AND RICK GILLMAN

Proof. ghi (mn)=
∑

d∈G(mn)

µi (d)
mn
d
=

∑
d∈G(m)×G(n)

µi (d)
mn
d

=

∑
d1∈G(m)

∑
d2∈G(n)

µi (d1)µi (d2)
m
d1

n
d2

=

∑
d1∈G(m)

µi (d1)
m
d1

∑
d2∈G(n)

µi (d2)
n
d2
= ghi (m)ghi (n). �

It is worth noticing that givisors are defined independently of the levels of the
mosaic; that is, each positive integer n has the same set of givisors no matter which
level i that we consider. Thus, the values of gτ and gσ do not change as i varies,
and ghi only varies with i because µi changes as i varies.

To make these functions more dependent on the level i of the mosaic being
considered, we might compose them with ψi,1, and examine functions of the form

g fi (n)= g f ◦ψi,1(n).

These functions are also i-multiplicative if g f is, and do vary in value with the
choice of i .

If the integer n is squarefree, then

ghi ◦ψi,1(n)= ghi (n)= φ(n).

Further, the function
gτ ◦ψi,1(n)

will always result in a power of two, but in this case the exponent is equal to the
number of distinct primes in the first i levels of n. Hence, another formula is

gτ ◦ψi,1(n)= 2ωi (n).

4. Mivisors

Neither submosaics nor givisors capture the properties of divisors that are desired.
Submosaics do not effectively partition mosaics, and givisors are not sensitive to
the parameter i representing the levels of the mosaic. With these two concerns in
mind, we turn our investigation to a more promising generalization.

Definition of a mivisor. We define prime i-mivisors, mosaic divisor, as follows.

Definition 4.1. Let n = pα1
1 pα2

2 · · · p
αk
k . For each p j , a prime i-mivisor of n is

pα j
j expanded through i levels with multiplicities above the i-th level truncated,

denoted Pj,i .

Let
P
(a j,1,a j,2,··· ,a j,s j )

j,i
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denote pα j
j expanded through i levels including the multiplicities a j,1,a j,2,. . . ,a j,s j

on the (i + 1)-th level. For example, if

n = 22437
· 511,

then
P1,2 = 22·3 and P

(a1,1,a1,2,··· ,a1,s1 )

1,2 = P (4,7)1,2 = 22437
.

With this notation, we obtain the following definition.

Definition 4.2. If n =
∏k

j=1 P
(a j,1,a j,2,··· ,a j,s j )

j,i , then an i-mivisor of n is

(a) 1,

(b) P
(b j,1,b j,2,··· ,b j,s j )

j,i where 1≤ b j ≤ a j , or

(c) a product of 1-relatively prime i-mivisors from part (b).

We denote the set of all i-mivisors of n by Mi (n) and, as an example, consider

n = 2353
·7
·5
· 37112

.

The prime 3-mivisors of n are 235·7
·5 and 3711

, and the set M3(n) is{
1, 235·7

·5, 2352
·7
·5, 2353

·7
·5, 3711

, 37112

, 235·7
·5
· 3711

, 2352
·7
·5
· 3711

,

2353
·7
·5
· 3711

, 235·7
·5
· 37112

, 2352
·7
·5
· 37112

, 2353
·7
·5
· 37112}

.

We immediately have the following lemma.

Lemma 4.3. For all i , Mi (mn)= Mi (m)×Mi (n).

Proof. Let m and n be i-relatively prime integers such that m = pα1
1 pα2

2 · · · p
αt
t and

n = qβ1
1 qβ2

2 · · · q
βu
u . After applying the FTA to generate i levels of the mosaics of

m and n, let

m =
t∏

j=1

P
(a j,1,a j,2,··· ,a j,r j )

j,i and n =
u∏

j=1

Q
(b j,1,b j,2,··· ,b j,s j )

j,i .

Since m and n are i-relatively prime,

mn = pα1
1 pα2

2 · · · p
αt
t qβ1

1 qβ2
2 · · · q

βu
u =

t∏
j=1

P
(a j,1,a j,2,··· ,a j,r j )

j,i

u∏
j=1

Q
(b j,1,b j,2,··· ,b j,s j )

j,i .

If d is an i-mivisor of mn, then

d =
v∏

k=1

P
′(ck,1,ck,2,··· ,ck,rk )

k,i

w∏
k=1

Q
′(ek,1,ek,2,··· ,ek,sk )

k,i ,
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where for each k, P ′k,i = Pj,i for some j and 1 ≤ ck,` ≤ a j,` and Q′k,i = Q j,i for
some j and 1≤ ek,` ≤ b j,`. Let d1 be an i-mivisor of m such that

d1 =

v∏
k=1

P
′(ck,1,ck,2,··· ,ck,rk )

k,i .

Let d2 be an i-mivisor of n such that

d2 =

w∏
k=1

Q
′(ek,1,ek,2,··· ,ek,sk )

k,i .

It follows that d1 ∈ Mi (m) and d2 ∈ Mi (n). Then d1 and d2 are i-relatively prime
and d = d1d2, so d ∈ Mi (m)×Mi (n).

Similarly, if d1 ∈ Mi (m) and d2 ∈ Mi (n), then d1d2 ∈ Mi (m) × Mi (n) and
d1d2 ∈ Mi (mn). Therefore the sets are the same. �

Theorem 4.4. If f is an i-multiplicative function, then

F(n)=
∑

d∈Mi (n)

f (d)

is also i-multiplicative.

Proof. Similar to Theorem 3.3. �

The functions mτi and mσi . Similar to previous section, we let mτi count the num-
ber of i-mivisors of n, and it is therefore computed as

mτi (n)=
∑

d∈Mi (n)

1.

By Theorem 4.4, we find

Corollary 4.5. For all i , mτi is i -multiplicative.

mτi (n) can be computed easily, as we see in the following lemma and theorem.

Lemma 4.6. Let p be a prime and α be a positive integer. Then

mτi (pα)= 1+
∏

a j ,

where a j is an element of the unfactored (i + 1) level of pα = P (a1,a2,...,ak)
·,i .

Proof. 1 is an i-mivisor of pα and so is P (b1,b2,...,bk)
·,i where 1 ≤ b j ≤ a j for all

j . Since there are
∏

a j ways to select the set {b1, b2, . . . , b j }, there are 1+
∏

a j

i-mivisors of pα. �
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Theorem 4.7. Let n have the prime factorization n = pα1
1 pα2

2 · · · p
αs
s . Then

mτi (n)=
s∏

k=1

(
1+

∏
a j

)
,

where a j is an element of the unfactored (i + 1) level of pαk
k .

Proof. Because mτi is i-multiplicative for all i , we see that

mτi (n)= mτi (p
α1
1 pα2

2 · · · p
αs
s )= mτi (p

α1
1 )mτi (p

α2
2 ) · · · mτi (pαs

s ).

Inserting the values from Lemma 4.6, we see that

mτi (n)=
s∏

k=1

(
1+

∏
a j

)
. �

Moving forward, we let the function mσi (n) sums the i-mivisors of n,

mσi (n)=
∑

d∈Mi (n)

d.

By using Theorem 4.4 again, we obtain:

Corollary 4.8. mσi is i -multiplicative.

The function mφi . Using i-mivisors, we can generalize the concept of a common
i-mivisor of two integers in the obvious way and more importantly, generalize the
notion of a greatest common divisor.

Definition 4.9. A mosaic d is the greatest common i-mivisor of m and n, when at
least one of them is not 0, if all of these conditions are satisfied:

(a) d is positive;

(b) d is an i-mivisor of a and b;

(c) if c is an i-mivisor of a and b, then c is an i-mivisor of d .

We write the greatest common i-mivisor of m and n as GCMi (m, n), and have
the following examples:

GCM3
(
235
, 2 · 532)

= 1, GCM3
(
23520

· 3711
, 23510

· 7
)
= 23510

.

Finally, we say that two integers m and n are GCMi relatively prime if and only
if GCMi (m, n)= 1.

We can now generalize the φ function in a natural way, by letting mφi (n) be
the number of integers GCMi relatively prime to n that are less than or equal to n.
Notice that this is very different from the function φi , which counts the number of
integers less than n that are i-relatively prime to n. The latter function only detects
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and responds to the presence of primes in the mosaic, whereas the former function
is sensitive to both the presence and configuration of the primes in the array. Thus,
23 is not 2-relatively prime to 32, but they are GCM2 relatively prime.

Unfortunately, the obvious generalization of the summation formula for φ does
not compute mφi and, worse still, mφi (n) is not an i-multiplicative function, as we
see in this final example:

mφ2(2)= 1, mφ2(3)= 2, mφ2(2 · 3) = 3 6= mφ2(2) · mφ2(3).

5. Conclusion

In conclusion, we have generalized several number theoretic functions in terms
of the levels of the mosaic and explored their properties, building on the work
of Mullin and Gillman. Further, we refined the notion of a divisor for mosaics
so that we could begin to look at a broader class of number theoretic functions
and to develop an arithmetic for mosaics. However, there are still significant open
problems, and the first among these is to look for ways to compute φi and mφi .

References

[Gillman 1990] R. A. Gillman, “Some new functions on the mosaic of n”, J. Natur. Sci. Math. 30:1
(1990), 47–56. MR 93a:11005 Zbl 0702.11004

[Gillman 1992] R. A. Gillman, “k-distributive functions on the mosaic of n”, J. Nat. Sci. Math. 32
(1992), 25–29. Zbl 0768.11003

[Mullin 1964] A. A. Mullin, “On a final multiplicative formulation of the fundamental theorem of
arithmetic”, Z. Math. Logik Grundlagen Math. 10 (1964), 159–161. MR 28 #3000 Zbl 0163.03904

[Mullin 1965] A. A. Mullin, “A contribution toward computable number theory”, Z. Math. Logik
Grundlagen Math. 11 (1965), 117–119. MR 33 #1276 Zbl 0254.10008

[Mullin 1967a] A. A. Mullin, “On Möbius’ function and related matters”, Amer. Math. Monthly 74
(1967), 1100–1102. MR 37 #143 Zbl 0155.08502

[Mullin 1967b] A. A. Mullin, “On new theorems for elementary number theory”, Notre Dame J.
Formal Logic 8 (1967), 353–356. MR 38 #4397 Zbl 0189.04206

Received: 2008-02-08 Accepted: 2008-07-20

kbildh01@saintmarys.edu Saint Mary’s College, Notre Dame, IN 46556, United States

jarederickson2012@u.northwestern.edu
School of Engineering and Applied Science,
Northwestern University, 2145 Sheridan Road Room C210,
Evanston, IL 60208, United States

cara.tacoma@trnty.edu Trinity Christian College, Palos Heights, IL 60463,
United States

rick.gillman@valpo.edu Valparaiso University, Valparaiso, IN 46383, United States

http://www.ams.org/mathscinet-getitem?mr=93a:11005
http://www.emis.de/cgi-bin/MATH-item?0702.11004
http://www.emis.de/cgi-bin/MATH-item?0768.11003
http://www.ams.org/mathscinet-getitem?mr=28:3000
http://www.emis.de/cgi-bin/MATH-item?0163.03904
http://www.ams.org/mathscinet-getitem?mr=33:1276
http://www.emis.de/cgi-bin/MATH-item?0254.10008
http://www.ams.org/mathscinet-getitem?mr=37:143
http://www.emis.de/cgi-bin/MATH-item?0155.08502
http://www.ams.org/mathscinet-getitem?mr=38:4397
http://www.emis.de/cgi-bin/MATH-item?0189.04206
mailto:kbildh01@saintmarys.edu
mailto:jarederickson2012@u.northwestern.edu
mailto:cara.tacoma@trnty.edu
mailto:rick.gillman@valpo.edu

	1. Introduction
	2. Mosaic functions
	3. Early attempts at mosaic divisors
	4. Mivisors
	5. Conclusion
	References

