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Consider the space of vertical parabolas in the plane interpreted generally to
include nonvertical lines. It is proved that an injective map from a closed region
bounded by one such parabola into the plane that maps vertical parabolas to
other vertical parabolas must be the composition of a Laguerre transformation
with a nonisotropic dilation. Here, a Laguerre transformation refers to a linear
fractional or antilinear fractional transformation of the underlying dual plane.

1. Introduction

A familiar result in complex analysis is that in the extended complex plane, Ĉ =

C ∪ {∞}, the Möbius transformations map circles and lines to other circles and
lines. In a beautiful paper from 1937, reprinted in [Blair 2000], Carathéodory
proved the following converse result.

Theorem 1 ([Carathéodory 1937]). Every arbitrary one-to-one correspondence
between the points of a circular disc C and a bounded point set C ′ by which circles
lying completely in C are transformed into circles lying in C ′ must always be either
a direct or inverse transformation of Möbius.

So not only are the circle preserving maps of Ĉ the Möbius transformations, but
even locally, these are the only transformations that can map circles to circles.

In this paper we consider the analogous problem for the extended dual plane,
D̂= D∪ L∞, where

D= {z = x + j y : x, y ∈ R, j2
= 0} and L∞ = {(α j)−1

: α ∈ R}.

Here, the linear fractional transformations are the Laguerre transformations. They
map vertical parabolas and nonvertical lines to other vertical parabolas and non-
vertical lines. We prove the following.
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Theorem 2. Every injective map from a closed region bounded by a vertical para-
bola or nonvertical line that maps vertical parabolas and nonvertical lines to ver-
tical parabolas and nonvertical lines is the composition of a nonisotropic dilation
dλ : (x, y)→ (λx, λ2 y), 0 6= λ ∈ R, with a direct or indirect Laguerre transforma-
tion.

This theorem arose from work that two of the authors did to solve a Beckman–
Quarles-type theorem for the dual plane. In particular, they proved:

Theorem 3 ([Ferdinands and Kavlie 2009]). Suppose T is a bijective mapping on
the space of vertical parabolas so that for vertical parabolas A, B,

δ(A, B)= 1 if and only if δ(T (A), T (B))= 1.

Then T is induced by a Laguerre transformation of the dual plane.

Here, δ is the distance between (intersecting) parabolas and is measured as the
difference in slopes at their point of intersection. An important step in the proof of
this theorem uses a simpler version of Theorem 2 that has a very different proof.

We mention that planar Laguerre geometry often refers to a geometry of oriented
circles where distance is measured as the length of the common tangent. The
connection to dual numbers is made clear in Yaglom [1968]. We mention, too,
that the transformations we call Laguerre transformations can also be interpreted
as parabolic Möbius transformations. See, for instance, the recent survey by Kisil
[2007].

2. Geometry in the extended dual plane

Here we summarize the properties and geometry of the dual numbers. A compre-
hensive account is given by Yaglom [1968].

A dual number z ∈ D is a formal expression z = x + j y where x, y ∈ R and
j2
= 0. These numbers form a commutative algebra over R where addition and

multiplication are done in the obvious way. One identifies dual numbers with
points in the real plane via x + j y ∈ D ↔ (x, y) ∈ R2, just as in the case of
complex numbers. The coordinates of z = x + j y are the real part and dual part,
respectively. So x = Real (x + j y) and y = Dual (x + j y). Figure 1 illustrates the
geometry of the dual plane. In particular, addition in D is done by adding position
vectors. Multiplication is done by multiplying the real parts and adding the slopes
of the position vectors. Because of this, the modulus and argument of z are usually
defined by |z| def

= |x | and arg z def
= y/x .

The direct and indirect Laguerre transformations are the linear fractional and
antilinear fractional transformations,

µ(z)=
az+ b
cz+ d

and µ(z)=
az+ b
cz+ d

,
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Figure 1. Addition and multiplication of dual numbers.

respectively, where a, b, c, d ∈ D and ad − bc = 1. The condition ad − bc = 1
acts as a normalization and has no effect on the transformation itself. It is just
necessary that Real (ad − bc) 6= 0, or else µ maps D̂ to a line or point.

The direct Laguerre transformations form a group that is isomorphic to SL2(D).
Similar to Möbius transformations, they are generated by the following types:

(i) [translation] : µ(z)= z+ b for b ∈ D;

(ii) [rotation and isotropic dilation] : µ(z)= az for a ∈ D, Real (a) 6= 0;

(iii) [inversion] : µ(z)= 1/z.

These transformations preserve angles (measured as differences in slope); the in-
direct Laguerre transformations reverse angles.

Both the direct and indirect transformations preserve the space of vertical para-
bolas and nonvertical lines. (By a vertical parabola we mean that the axis of sym-
metry is vertical. The vertical parabolas and nonvertical lines can be described
collectively as the graphs y = r x2

+ sx + t for r, s, t ∈ R.) This fact can be
verified for the direct transformations by considering the three kinds of motions
mentioned above. It then follows for indirect transformations, too, since obviously
the conjugation z→ z = x − j y preserves the space.

By using stereographic projection, the extended dual plane D̂=D∪ L∞ can be
viewed as an infinite cylinder as shown in Figure 2. (Laguerre transformations that
do not arise as translations or similarities correspond with affine symmetries of the
cylinder.) In this model, the set L∞ = {(α j)−1

: α ∈ R} corresponds with a line
of points at infinity. By using the transformation µ(z) = 1/z one can see that the
parabola y = r x2

+ sx+ t intersects L∞ at the point −1/(r j), where r, s, t ∈R. In
particular, nonvertical lines are the parabolas that intersect L∞ at 1/(0 j).

3. Proof of Theorem 2

The proof is modeled on Carathéodory’s [Blair 2000]. We begin with an injective
transformation T : D → D′ that maps vertical parabolas and nonvertical lines
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Figure 2. Representation of the dual plane on the Blaschke cylinder.

completely in D to other vertical parabolas and nonvertical lines in D′. Here,
D and D′ are regions in D̂ bounded by a single vertical parabola or nonvertical
line. By using a preliminary (direct or indirect) Laguerre transformation, we may
assume that D is the closed region bounded above by the parabola y = x2; that is,
D = {y ≤ x2

}.

3.1. Preliminary remark. Using injectivity, it follows that the number of inter-
section points of two parabolas contained completely in D is preserved by T . For
instance, if parabolas p0 and p1 intersect exactly once in D, and are therefore
tangent, then the parabolas T (p0) and T (p1) also intersect exactly once in D′,
and are therefore tangent. (If they intersected twice, then one intersection point
is the image of distinct points on p0 and p1.) Simply put, injectivity means that
intersection points of parabolas cannot be created or destroyed.

3.2. First normalization. By postcomposing T with a direct or indirect Laguerre
transformation, we may also assume:

(i) T (0)= 0,

(ii) T
(
(0 j)−1

)
= (0 j)−1,

(iii) T : {y = 0} → {y = 0},

(iv) T : {y = x2
} → {y = x2

}.

To see this, suppose that the original transformation is T0, and T0(0) = w0 and
T0
(
(0 j)−1

)
=w1. Ifµ1(w)= (w−w0)/(w−w1), then T1

def
=µ1◦T0 satisfies T1(0)=

0 and T1
(
(0 j)−1

)
= (0 j)−1. We must determine a further Laguerre transformation

µ2 so that T def
= µ2 ◦ T1 satisfies (i)–(iv).

Since T1((0 j)−1)= (0 j)−1, it already follows that T1 maps nonvertical lines to
nonvertical lines.
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Figure 3. Intermediate configurations during normalization:
cases (i) and (ii).

If p0 = {y = 0} and p1 = {y = x2
}, then in fact, T1 maps p0 to a nonvertical

line p′0 through the origin and p1 to a parabola p′1 tangent to p′0 at the origin.
See Figure 3 for the two possible cases. The set of Laguerre transformations that
preserve 0 and (0 j)−1 have the form µ2(z)= az or µ2(z)= az, where a ∈ D and
Real (a) 6= 0.

For case (i), we use a direct transformation µ2(z)=az where arg(a) is chosen so
that µ2(p′0)= {y = 0} and then |a| is chosen so that µ2(p′1)= {y = x2

}. For case
(ii), we use an indirect transformation µ2(z) = az where the initial conjugation
results in a configuration like case (i), and then a is chosen as just described. In
both cases, T def

= µ2 ◦ T1 satisfies (i)–(iv), and we have exhausted our supply of
Laguerre transformations.

3.3. Parallel lines. Recall that the nonvertical lines are exactly those parabolas
that intersect L∞ at the point (0 j)−1. After the first normalization, T preserves
(0 j)−1, so it follows that T maps nonvertical lines to other nonvertical lines. Since
T also preserves 0, it follows that T maps lines through the origin to other lines
through the origin. (We used this fact in the second step of the normalization in
Section 3.2.) Finally, parallel nonvertical lines intersect exactly once — the in-
tersection occurs at (0 j)−1. Since T preserves this point, and since T preserves
the number of intersection points among parabolas (Section 3.1), it follows that
T maps parallel nonvertical lines to other parallel nonvertical lines. As a special
case, T preserves {y = 0}, and so it also follows that T maps horizontal lines to
horizontal lines.

3.4. Inscribed and circumscribed parabolas for a special unbounded polygon. It
is a rather curious fact that the parabolas y= x2 and y= x2

−1/4 arise as inscribed
and circumscribed parabolas for a special unbounded polygon. The polygon is
constructed from the lines tangent to the parabola y = x2 at points that have inte-
ger valued coordinates. See Figure 4. Clearly, the parabola y = x2 inscribes the
polygon. To demonstrate that y= x2

−1/4 circumscribes the polygon, we show that
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Figure 4. Inscribed and circumscribed parabolas for a special polygon.

the points of intersection of consecutive tangent lines to y= x2 lie on its graph. The
line tangent at (k, k2) has equation y = 2kx − k2. An easy calculation then shows
that the lines tangent at (k, k2) and (k+ 1, (k+ 1)2) intersect at (k+ 1/2, k2

+ k).
Another easy calculation shows this point lies on y = x2

− 1/4.

3.5. Second normalization. By further composing with a nonisotropic dilation
dλ : (x, y) → (λx, λ2 y), we assume T (1, 1) = (1, 1). This is possible for the
following reason. If after the first normalization the transformation is T0, then
T0(1, 1) = (ρ, ρ2) for 0 6= ρ ∈ R since T0 preserves {y = x2

}. If λ = ρ−1 then
T def
= dλ ◦ T0 preserves (1, 1). Furthermore, dλ preserves 0, (0 j)−1, {y = 0}, and
{y = x2

}. So T continues to satisfy conditions (i)–(iv) from Section 3.2.
Given that T maps horizontal lines to horizontal lines (Section 3.3) and now

T (1, 1)= (1, 1), it follows that T preserves {y= 1}. But T also preserves {y= x2
},

so it follows that T preserves both intersection points. In particular, T (−1, 1) =
(−1, 1).

Following the two normalizations (which identify the Laguerre transformation
and nonisotropic dilation) we mention that the proof of Theorem 2 will be complete
once we show that T is the identity transformation. We first prove that T reproduces
the configuration in Figure 4.

To do this, notice that y = x2 and y = x2
− 1/4 are tangent parabolas — they

intersect only at the point −(1 j)−1
∈ L∞. Since T preserves {y = x2

}, and since
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intersection points cannot be created or destroyed (Section 3.1), it follows that T
transforms the parabola y = x2

−1/4 to a parabola y = r x2
+ sx+ t for r, s, t ∈R

with s2
− 4(r − 1)t = 0. (This is the required condition for a single intersection

with y = x2.)
Next, T maps tangent parabolas to tangent parabolas (Section 3.1) and non-

vertical line segments to nonvertical line segments (Section 3.3). It also preserves
{y= x2

} as well as the points (−1, 1), (0, 0), and (1, 1). It follows that the parabola
y= r x2

+sx+t must contain the points of intersection of consecutive lines tangent
to y = x2 at (xk, x2

k ) for a sequence of real numbers

. . . , x−2, x−1 =−1, x0 = 0, x1 = 1, x2, . . . .

We will verify that together with the required condition for single intersection, this
demands r = 1, s = 0, t =−1/4, and xk = k for k ∈ Z.

Notice that the line tangent to y = x2 at (xk, x2
k ) has equation y = 2xk x − x2

k .
From this, one can check that the point of intersection of the lines tangent to y= x2

at (xk, x2
k ) and (xk+1, x2

k+1) is
(
(xk+ xk+1)/2, xk xk+1

)
. Setting k =−1 and k = 0,

this means the parabola y=r x2
+sx+t must contain points (−1/2, 0) and (1/2, 0).

Together with the condition s2
− 4(r − 1)t = 0, this requires r = 1, s = 0, and

t = −1/4. (The other possibility yields the parabola y = 0. This is ruled out by
injectivity.)

At this point it is established that the parabola y = x2
− 1/4 contains the inter-

section points
(
(xk+ xk+1)/2, xk xk+1

)
. After some algebra, this can be restated as

1 = (xk+1 − xk)
2. So the xk are evenly spaced with xk = k for k = −1, 0, 1. By

injectivity, it follows that xk = k for k ∈ Z.

3.6. Preservation of a dense subset of y = x2. It follows from Section 3.5 that
the normalized transformation T preserves the points

(k, k2) for k = 0,±1,±2,±3, . . . .

Here we show as well that T preserves all points on y = x2 whose coordinates are
dyadic rational, that is, the coordinates have the form k · 2−q for k, q ∈ Z.

To do this, we construct another polygon like the one in Section 3.4. In particu-
lar, for fixed q≥1, we draw lines tangent to y= x2 at the points (k 2−q , k2 2−2q) for
k= 0,±1,±2,±3, . . . . It is a simple matter to check that the points of intersection
of the consecutive tangent lines are

(
(2k+1)2−q−1, k(k+1)2−2q

)
, and the parabola

y = x2
− 2−2q−2 contains these intersection points. As in Section 3.5, T must

transform this configuration to one consisting of the parabola y = x2, lines tangent
to y = x2 at points (xk, x2

k ) for a sequence of real numbers

. . . , x−2, x−1, x0 = 0, x1, x2, . . . ,
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and a parabola y = r x2
+ sx + t that has a single intersection with y = x2. The

parabola y=r x2
+sx+t must also contain the intersection points of the consecutive

lines tangent to y = x2 at the (xk, x2
k ). Since T was normalized so that T (1, 1) =

(1, 1) and T (−1, 1) = (−1, 1), we know that x−2q = −1 and x2q = 1. The claim
will be proved if we show that r = 1, s= 0, t =−2−2q−2, and xk = k 2−q for k ∈Z.

As things are arranged, T (k 2−q , k2 2−2q) = (xk, x2
k ) for k ∈ Z. Since T maps

horizontal lines to horizontal lines, it follows that x2
k = x2

−k , and in particular,
x−k = −xk . This means that the target configuration must be symmetric with
respect to the y-axis. Therefore, s = 0. Already, the single intersection of y = x2

with y = r x2
+ sx+ t requires s2

−4(r−1)t = 0, so now r = 1 or t = 0. The case
t = 0 is ruled out else T transforms the parabola y = x2

− 2−2q−2 to a parabola
y = r x2 that intersects y = 0 exactly once (if r 6= 0) or else infinitely many times
(if r = 0).

We conclude that T transforms y = x2
− 2−2q−2 to a parabola y = x2

+ t for
some 0 6= t ∈ R. In fact, since T preserves {y = 0}, it must be that t < 0. (This
also uses Section 3.1.)

As in Section 3.5, the intersection points of the lines tangent to y= x2 at (xk, x2
k )

have the form
(
(xk + xk+1)/2, xk xk+1

)
and they lie on y = x2

+ t . It follows that
xk xk+1 = (xk + xk+1)

2/4+ t , or equivalently, t = −(xk+1 − xk)
2/4 for k ∈ Z. In

particular, the xk are evenly spaced. Since x0 = 0 and x2q = 1, it follows that the
distance from xk to xk+1 is 2−q , and therefore, xk = k 2−q for k ≥ 1. (This also
uses injectivity.) The same kind of argument applies for k ≤−1. Finally, one finds
easily that t =−(xk+1− xk)

2/4=−2−2q−2.

3.7. Preservation of a dense subset of y < x2. Guided by Carathéodory’s argu-
ment [Carathéodory 1937, page 576], we now show that T preserves a set of points
that is dense in y < x2. To do this, we take all lines that are tangent to the parabola
y= x2 at points whose coordinates are dyadic rational. By the previous subsection,
T preserves these points of tangency (Section 3.6) along with the parabola y = x2

(Section 3.2), so it also preserves the lines tangent to y= x2 at these points (Section
3.1, Section 3.3). It then follows that T preserves each point of intersection of these
tangent lines. These intersection points form a dense subset of y < x2.

The set includes, in particular, the points (−.5,−2), (0,−1), and (+.5,−2).
(They arise as the intersection points of the lines tangent at x =−2,−1,+1,+2.)
Since T preserves these points, and since T maps vertical parabolas and nonvertical
lines to vertical parabolas and nonvertical lines, it follows that T preserves the
unique vertical parabola containing these points. In particular, T preserves the
parabola y =−4x2

− 1.

3.8. Completion of the proof of Theorem 2. We next show that T preserves each
point of the parabola y = x2.
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Consider the alternative. Since T preserves {y = x2
}, the alternative is that

there is a (nondyadic) real number b and τ /∈ {0, 1} so that T (b, b2)= (τb, τ 2b2).
By once more replaying the arguments from Section 3.5–3.6, it would follow that
T (d ·b, d2

·b2)= (d ·τb, d2
·τ 2b2) for dyadic rational d . Moreover, T would map

the line tangent to y = x2 at x = d · b to the line tangent to y = x2 at x = d · τb.
Following the argument of Section 3.7, this determines how T would act on

the set of points that arise as the intersection points of lines tangent to y = x2 at
x = d · b for d dyadic rational. On this dense set of points, T (x, y)= (τ x, τ 2 y).

Consider now that d is a fixed (but arbitrary) dyadic rational number. The lines
tangent to y= x2 at x=d ·b and x=−2d ·b intersect at (−d ·b/2,−2d2

·b2), and the
lines tangent to y= x2 at x =−d ·b and x = 2d ·b intersect at (+d ·b/2,−2d2

·b2).
These points determine the horizontal line y = −2d2

· b2. As T maps horizontal
lines to horizontal lines (Section 3.3), and since the intersection points belong to
the set on which T (x, y)= (τ x, τ 2 y), it follows that T would map the horizontal
line y =−2d2

· b2 to the horizontal line y =−2d2
· τ 2b2.

Here lies the contradiction. If τ 2 < 1, choose a dyadic d so that

(2b2)−1 < d2 < (2b2τ 2)−1.

Then the parabola y=−4x2
−1 intersects the line y=−2d2

·b2 twice, but after the
action of T , the parabola y =−4x2

−1 does not intersect the line y =−2d2
·τ 2b2.

This violates Section 3.1.
Similarly, if τ 2 > 1, choose a dyadic d so that (2b2τ 2)−1 < d2 < (2b2)−1. Then

the parabola y =−4x2
− 1 does not intersect the line y =−2d2

· b2, but after the
action of T , the parabola y =−4x2

−1 intersects the line y =−2d2
· τ 2b2. Again

this violates Section 3.1.
There is the remaining case τ =−1. For this we identify an asymmetric parabola

preserved by T . For instance, the lines tangent to y = x2 at x = 0, 0.5, 2, 2.5, 4
determine intersection points (1, 0), (2, 0), and (1.5, 1.25). These points determine
the parabola y=−5x2

+15x−10 that is preserved by T . Next, we choose a dyadic
d so that |4bd−5|<5/

√
3. This condition guarantees that the line tangent to y= x2

at x = d ·b does not intersect y=−5x2
+15x−10, but the line tangent at x =−d ·b

does intersect y = −5x2
+ 15x − 10. Under the action of T , the tangent line at

x = d ·b would be mapped to the tangent line at x =−d ·b, creating an intersection
with y =−5x2

+ 15x − 10. Again the contradiction.
We conclude that T preserves each point of y = x2, and it follows from the

argument in Section 3.7 that T preserves all points below y = x2, since each such
point can be expressed as the intersection of lines tangent to y = x2. That is, T
acts identically on y ≤ x2, and following the remark in Section 3.5, this completes
the proof of Theorem 2.
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