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Let Q(a) be the convex kite-shaped quadrilateral with vertices (0, 0), (1, 0),
(0, 1), and (a, a), where a > 1/2. We wish to dissect Q(a) into triangles of
equal areas. What numbers of triangles are possible? Since Q(a) is symmetric
about the line y = x , Q(a) admits such a dissection into any even number
of triangles. In this article, we prove four results describing Q(a) that can be
dissected into certain odd numbers of triangles.

1. Introduction

We wish to dissect a convex polygon K into triangles of equal areas. A dissection
of K into m triangles of equal areas is called an m-equidissection. The spectrum
of K , denoted S(K ), is the set of integers m for which K has an m-equidissection.
Note that if m is in S(K ), then so is km for all k > 0. If S(K ) consists of precisely
the positive multiples of m, we write S(K )= 〈m〉 and call S(K ) principal.

Quite a bit is known about the spectrum of the trapezoid T (a) with vertices
(0, 0), (1, 0), (0, 1), and (a, 1) for a> 0. For example, if a is rational with a= r/s,
where r and s are relatively prime positive integers, then S(T (a)) = 〈r + s〉; if a
is transcendental, then S(T (a)) is the empty set. See [Kasimatis and Stein 1990]
or [Stein and Szabó 1994]. In addition, S(T (a)) is known for many irrational
algebraic numbers a, particularly a satisfying a quadratic polynomial. See [Jepsen
1996; Jepsen and Monsky 2008; Monsky 1996]. For instance, if a= (2r−1)+r

√
3

where r is an integer ≥ 8, then S(T (a))= {4r, 5r, 6r, . . . }.
Less is known about the spectrum of the kite-shaped quadrilateral Q(a) with

vertices (0, 0), (1, 0), (0, 1), (a, a) for a> 1/2. Here certainly S(Q(a)) contains 2
and hence all even positive integers. If a = 1, then Q(a) is a square, and in this
case S(Q(a)) = 〈2〉. See [Monsky 1970].) For other values of a, the question is,
What odd numbers, if any, are in S(Q(a))? In Section 2, we prove four theorems
that answer this question for certain a. In Section 3, we pose some questions that
remain open.
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2. Main results

As in the introduction, Q(a) denotes the quadrilateral with vertices (0, 0), (1, 0),
(0, 1), and (a, a) for a > 1/2. The following two results about Q(a) are shown in
[Kasimatis and Stein 1990, pages 290 and 291]:

(i) Let φ2 be an extension to R of the 2-adic valuation on Q. (See [Stein and Szabó
1994] for a discussion of valuations.) If φ2(a) >−1, then S(Q(a))= 〈2〉. In
particular, if a is transcendental, then S(Q(a))= 〈2〉.

(ii) Let a > 1/2 be a rational number such that φ2(a) ≤−1. That is, a = r/(2s),
where r and s are relatively prime positive integers, r is odd, and r > s. Then
S(Q(a)) contains all odd integers of the form r + 2sk for k ≥ 0.

[Kasimatis and Stein 1990] and [Stein and Szabó 1994] raise two questions:

• Are there rational numbers a with φ2(a) ≤ −1 for which S(Q(a)) contains
odd numbers less than r?

• Are there irrational algebraic numbers a with φ2(a)≤−1 for which S(Q(a))
contains odd numbers? In particular, does S(Q(

√
3/2)) contain odd numbers?

We answer these questions in the affirmative. First we present a slight strength-
ening of statement (ii) above.

Theorem 1. Let a = r/(2s), where r and s are relatively prime positive integers, r
is odd, and r > s. Then S(Q(a)) contains all integers of the form r +2k for k ≥ 0.

Proof. Partition Q(a) into three triangles as in Figure 1, left. We want to find
nonnegative integers t1, t2, t3 so that the areas A1, A2, A3 of the three triangles
satisfy

A1t = at1, A2t = at2, A3t = at3, (1)

Figure 1
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where t = t1+ t2+ t3. (Note that the area of Q(a) is a.) Then Q(a) can be further
dissected into t triangles each of area a/t . Here A1 =

1
2 b, A2 =

1
2a(1− b), and

A3 =
1
2(a+ ab− b). For k ≥ 0, choose t1 = s, t2 = k, t3 = r − s + k, and

b = r/(r + 2k). Then t = r + 2k, b = r/t , and equations (1) are satisfied. Thus
r + 2k ∈ S(Q(a)). �

Theorem 2. Let a be as in Theorem 1, and suppose r is not a prime number. Then
S(Q(a)) contains odd numbers less than r.

Proof. We know that S(Q(a))= S(Q(a/(2a−1))) for any a [Kasimatis and Stein
1990, pages 284 and 285]. If a = r/(2s), then a/(2a − 1) = r/((2(r − s)). So
replacing s by r− s if necessary, we may assume s is odd. Partition Q(a) into five
triangles as shown in Figure 1, right. We want the areas A1, A2, A3, A4, A5 of the
triangles to satisfy

A1t = at1, A2t = at2, A3t = at3, A4t = at4, A5t = at5, (2)

where t = t1+ t2+ t3+ t4+ t5. In this case, A1 =
1
2 bd , A2 =

1
2a(1−b), A5 =

1
2 c,

A4 =
1
2(c(a− 1)− a(d− 1)), and A3 =

1
2(d(a− b)− a(c− b)). Since r is an odd

composite number, we can write r = r1r2, where 3≤ r1 ≤ r2.

Case (i): s > r2. Choose t1= 1, t2= 1
2(s−r1), t3= 1

2(r1+r2)−1, t4= 1
2(s−r2),

t5= 0, b= r1/s, c= 0, and d = r2/s. Then t = s, and we check that equations (2)
are satisfied. Then s ∈ S(Q(a)) and s < r .

Case (ii): s<r2. Choose t1= 1
2(r1−1), t2= 1

2(r1r2−r1−2s), t3= 1
2(r2+1), t4=0,

and t5 = 1
2(r − r2− 2s). The assumption on s implies that the ti are nonnegative,

and their sum t is r − 2s. Now let b = (t − 2t2)/t = r1/t , c = (2at5)/t , and
d= (2at1)/(bt)= (2at1)/r1. Then s= t t1−r1t5, and again we check that equations
(2) are satisfied. Thus r − 2s ∈ S(Q(a)) and r − 2s < r . �

Theorem 3. Let a =
√

3/2. Then 21 is in S(Q(a)).

Proof. Partition Q(a) into five triangles shown in Figure 2, left. The areas of the
five triangles are in the proportion

3
14
√

3
:

3
14
√

3
:

1
14
√

3
:

7
14
√

3
:

7
14
√

3

or 3 : 3 : 1 : 7 : 7. Hence we can further dissect Q(a) into t = 3+3+1+7+7= 21
triangles each of area 1/(14

√
3)= (1/21)(

√
3/2). �

There are infinitely many radicals besides
√

3/2 that have odd numbers in their
spectra. For example, the next theorem says 11∈ S(Q(

√
5/4)), 15∈ S(Q(

√
21/4),

17 ∈ S(Q(
√

33/4), 21 ∈ S(Q(
√

65/4), and so forth.

Theorem 4. For k ≥ 1, let a =
√
(2k+ 1)(2k+ 3)/(4

√
3). Then 2k + 9 lies in

S(Q(a)).
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Figure 2

Proof. Partition Q(a) into five triangles as shown in Figure 2, right. As before, we
want the areas Ai of the triangles to satisfy equations (2) above. Here A1 =

1
2 b,

A3 =
1
2(c− b)d , A5 =

1
2a(1− c),

A2 =
1
2

(d−1
a−1

)
(a+ ab− b), and A4 =

1
2

(a−d
a−1

)
(a+ ac− c).

Choose t1= t2= t3= 2, t5= 3, and t4= 2k, so t = 2k+9 and 48a2
= (t−8)(t−6).

Now let b = (4a)/t , c = (t − 6)/t , and d = (4a)/(t − 6− 4a). We show once
again that equations (2) are satisfied. Thus 2k+ 9 ∈ S(Q(a)). �

3. Open questions

While we have answered a few questions about odd numbers in S(Q(a)), many
others remain:

(i) Is the converse of Theorem 2 true? That is, if a is as in Theorem 1 and r is a
prime number, is r the smallest odd number in S(Q(a))?

(ii) Let a be as in Theorem 2. What is the smallest odd number in S(Q(a))? What
are all the odd numbers in S(Q(a))?

(iii) Let a be an irrational algebraic number with φ2(a) ≤ −1. Does S(Q(a))
always contain odd numbers?

(iv) Let a be arbitrary, and let m be an odd number. If m is in S(Q(a)), is m+ 2
in S(Q(a))? (This is the same as, Is S(Q(a)) closed under addition?)

Acknowledgment

This article constitutes part of the output of an undergraduate research project by
Trevor Sedberry and Rolf Hoyer under the direction of Charles Jepsen.



EQUIDISSECTIONS OF KITE-SHAPED QUADRILATERALS 93

References

[Jepsen 1996] C. H. Jepsen, “Equidissections of trapezoids”, Amer. Math. Monthly 103:6 (1996),
498–500. MR 97i:51031 Zbl 0856.51007

[Jepsen and Monsky 2008] C. H. Jepsen and P. Monsky, “Constructing equidissections for certain
classes of trapezoids”, Discrete Math. (2008).

[Kasimatis and Stein 1990] E. A. Kasimatis and S. K. Stein, “Equidissections of polygons”, Discrete
Math. 85:3 (1990), 281–294. MR 91j:52017 Zbl 0736.05028

[Monsky 1970] P. Monsky, “On dividing a square into triangles”, Amer. Math. Monthly 77 (1970),
161–164. MR 40 #5454 Zbl 0187.19701

[Monsky 1996] P. Monsky, “Calculating a trapezoidal spectrum”, Amer. Math. Monthly 103 (1996),
500–501. MR 97i:51032 Zbl 0856.51008

[Stein and Szabó 1994] S. K. Stein and S. Szabó, Algebra and tiling: Homomorphisms in the service
of geometry, Carus Mathematical Monographs 25, Mathematical Association of America, Washing-
ton, DC, 1994. MR 95k:52035 Zbl 0930.52003

Received: 2007-06-10 Accepted: 2008-06-02

jepsen@math.grinnell.edu Department of Mathematics and Statistics, Grinnell College,
Grinnell, IA 50112, United States

sedberry@grinnell.edu Department of Mathematics and Statistics, Grinnell College,
Grinnell, IA 50112, United States

hoyerrol@grinnell.edu Department of Mathematics and Statistics, Grinnell College,
Grinnell, IA 50112, United States

http://www.ams.org/mathscinet-getitem?mr=97i:51031
http://www.emis.de/cgi-bin/MATH-item?0856.51007
http://dx.doi.org/10.1016/j.disc.2007.10.031
http://dx.doi.org/10.1016/j.disc.2007.10.031
http://www.ams.org/mathscinet-getitem?mr=91j:52017
http://www.emis.de/cgi-bin/MATH-item?0736.05028
http://www.ams.org/mathscinet-getitem?mr=40:5454
http://www.emis.de/cgi-bin/MATH-item?0187.19701
http://www.ams.org/mathscinet-getitem?mr=97i:51032
http://www.emis.de/cgi-bin/MATH-item?0856.51008
http://www.ams.org/mathscinet-getitem?mr=95k:52035
http://www.emis.de/cgi-bin/MATH-item?0930.52003
mailto:jepsen@math.grinnell.edu
mailto:sedberry@grinnell.edu
mailto:hoyerrol@grinnell.edu

	1. Introduction
	2. Main results
	3. Open questions
	Acknowledgment
	References

