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A Poincaré–Hopf theorem in the spirit of Pugh is proven for compact orbifolds
with boundary. The theorem relates the index sum of a smooth vector field in
generic contact with the boundary orbifold to the Euler–Satake characteristic of
the orbifold and a boundary term. The boundary term is expressed as a sum of
Euler characteristics of tangency and exit-region orbifolds. As a corollary, we
express the index sum of the vector field induced on the inertia orbifold to the
Euler characteristics of the associated underlying topological spaces.

1. Introduction

The Poincaré–Hopf Theorem states that if M is a smooth, compact n-manifold and
X is a vector field on M that points outwards everywhere on ∂M , then Ind(X),
the index of X , is equal to the Euler characteristic χ(M) of M . Pugh [1968] gave
a generalization of this theorem for such manifolds where the vector field X on M
has generic contact with ∂M . This means that the subset 01 of ∂M on which X is
tangent to ∂M is a codimension-1 submanifold of ∂M , the subset02 of01 on which
X is tangent to 01 is a codimension-1 submanifold of 01, etc. This generalization
bears the elegance of associating the index sum with a sum of Euler characteristics
only. Here we show that in the case of a compact orbifold with boundary and a
smooth vector field in generic contact with the boundary, Pugh’s result extends
naturally. A proper introduction to orbifolds and the precise definition we use are
available as an appendix in [Chen and Ruan 2002]. Note that this definition of an
orbifold requires group actions to have fixed-point sets of codimension at least 2
as opposed to other definitions which do not (see, for example, [Thurston 1978]);
we make this requirement as well. By smooth, we always mean C∞.
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The main result we prove is as follows.

Theorem 1.1. Let Q be an n-dimensional smooth, compact orbifold with bound-
ary. Let Y be a smooth vector field on Q that is in generic contact with ∂Q, and
then

Indorb(Y ; Q)= χorb(Q, ∂Q)+
n∑

i=1

χorb(Ri
−
, 0i ). (1-1)

The expressions Indorb and χorb are orbifold analogues of the manifold notions
of the topological index of a vector field and the Euler characteristic, respectively.
The definitions of both of these, along with Ri

−
, 0i , and generic contact, are re-

viewed in Section 2.
In this paper, we follow a procedure resembling Pugh’s original technique, and

we show that many of the same techniques applicable to manifolds can be applied
to orbifolds as well. In Section 2, we explain our notation and review the result
of Satake which relates the orbifold index to the Euler–Satake characteristic for
closed orbifolds. We give the definition of each of these terms. In Section 3, we
show that a neighborhood of the boundary of an orbifold may be decomposed as
a product ∂Q × [0, ε). We then construct the double of Q and charts near the
boundary respecting this product structure. This generalizes well-known results
and constructions for manifolds with boundary. Section 4 provides elementary
results relating the topological index of an orbifold vector field to an orbifold Morse
Index. The orbifold Morse Index is defined in terms of the Morse Index on a
manifold in a manner analogous to Satake’s definition of the topological vector field
index. These results generalize corresponding results for manifolds. In Section 5,
we use the above constructions to show that a smooth vector field on Q may be
perturbed near the boundary to form a smooth vector field on the double whose
index can be computed in terms of the data given by the original vector field. We
use this to prove Theorem 1.1. We also prove Corollary 5.2, which gives a similar
formula where the left side is the orbifold index of the induced vector field on the
inertia orbifold and on the right side, the Euler–Satake characteristics are replaced
with the Euler characteristics of the underlying topological spaces.

Another generalization of the Poincaré–Hopf Theorem to orbifolds with bound-
ary is explored in [Seaton 2008] and follows as a corollary to Satake’s Gauss–
Bonnet Theorem for orbifolds with boundary [Satake 1957]. In each of these
cases, the boundary term is expressed by evaluation of an auxiliary differential
form representing a global topological invariant of the boundary pulled back via
the vector field. The generalization given in our paper expresses the boundary term
in terms of Euler–Satake characteristics of suborbifolds determined by the vector
field.
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2. Preliminaries and definitions

Satake proved a Poincaré–Hopf Theorem for closed orbifolds; however, he worked
with a slightly different definition of orbifold, the so-called V-manifold [Satake
1956; 1957]. A V-manifold corresponds to an effective or reduced (codimension-
2) orbifold, an orbifold such that the group in each chart acts effectively [Chen
and Ruan 2002]. That is, the only group element that acts trivially is the identity
element. We adopt the language of his result and use it here.

Theorem 2.1 (Satake’s Poincaré–Hopf Theorem for Closed Orbifolds). Let Q be
an effective, closed orbifold, and let X be a vector field on Q that has isolated
zeros. Then

Indorb(X; Q)= χorb(Q).

Note that the requirement that Q is effective is unnecessary; as mentioned in
[Chen and Ruan 2002], an ineffective orbifold can be replaced with an effective
orbifold Qred, and the differential geometry of the tangent bundle (or any other
good orbifold vector bundle) is unchanged.

The orbifold index Indorb(X; p) at a zero p of the vector field X is defined in
terms of the topological index of a vector field on a manifold. Let a neighborhood
of p be uniformized by the chart {V,G, π} and choose x ∈ V with π(x)= p. Let
Gx ≤G denote the isotropy group of x . Then π∗X is a G-invariant vector field on
V with a zero at x . The orbifold index at p is defined by

Indorb(X; p)=
1
|Gx |

Ind
(
π∗X; x

)
,

where Ind
(
π∗X; x

)
is the usual topological index of the vector field π∗X on the

manifold V at x [Guillemin and Pollack 1974; Milnor 1965]. Note that this defi-
nition does not depend on the chart, nor on the choice of x . We use the notation

Indorb(X; Q)=
∑

p∈Q,X (p)=0

Indorb(X; p).

The Euler–Satake characteristic χorb(Q) is most easily defined in terms of an
appropriate simplicial decomposition of Q. In particular, let T be a simplicial
decomposition of Q such that the isomorphism class of the isotropy group is
constant on the interior of each simplex (such a simplicial decomposition always
exists; see [Moerdijk and Pronk 1999]). For each simplex σ ∈T, the (isomorphism
class of the) isotropy group on the interior of σ is denoted Gσ . The Euler–Satake
characteristic of Q is then defined by

χorb(Q)=
∑
σ∈T

(−1)dim σ 1
|Gσ |

.
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This coincides with Satake’s Euler characteristic of Q as a V-manifold. Note that
it follows from this definition that if Q = Q1 ∪ Q2 for orbifolds Q1 and Q2 with
Q1 ∩ Q2 a suborbifold, then

χorb(Q)= χorb(Q1)+χorb(Q2)−χorb(Q1 ∩ Q2). (2-1)

In the case that Q has boundary, χorb(Q) is defined in the same way. We let

χorb(Q, ∂Q)= χorb(Q)−χorb(∂Q).

This coincides with Satake’s inner Euler characteristic of Q as a V-manifold with
boundaries. The reader is warned that there are many different Euler characteristics
defined for orbifolds; both the topological index of a vector field and the Euler–
Satake characteristic used here are generally rational numbers.

Vector fields in generic contact with the boundary have orbifold exit regions,
which we now describe. Let Q be a compact n-dimensional orbifold with boundary
and X a smooth vector field on Q. In Lemma 3.1, we show that, as with the case
of manifolds, there is a neighborhood of ∂Q in Q diffeomorphic to ∂Q × [0, ε).
Given a metric, the tangent bundle of Q on the boundary decomposes with respect
to this product so that there is a well-defined normal direction to the boundary. Let
R1
−

be the closure of the subset of ∂Q where X points out of Q. Analogously, let
R1
+

be the closure of the subset of ∂Q where X points into Q. We require that R1
−

and R1
+

are (n−1)-dimensional orbifolds with boundary. The subset of ∂Q where
the vector field is tangent to ∂Q is denoted 01; we require that 01 be a suborbifold
of ∂Q of codimension 1. Note that, by the continuity of X , the component of the
vector field pointing outward must approach zero near the boundary of R1

−
and R1

+
.

Hence 01
= ∂R1

−
= ∂R1

+
.

The vector field X is tangent to 01, and so it may be considered a vector field
on the orbifold 01. We again require this vector field to have orbifold exit regions.
Call R2

−
the closure of the subset of 01 where the vector field points out of R1

−
, and

R2
+

the closure of the subset where it points into R1
−

. The subset of 01 where the
vector field is tangent to 01 is denoted 02, and is required to be a codimension-1
suborbifold of 01.

In the same way, we define 0i , Ri
−

, Ri
+

, requiring that these sets form a chain
of closed suborbifolds {0i

}
n
i=1 and compact orbifolds with boundary {Ri

−
}

n
i=1. We

require that dim Ri
−
= dim Ri

+
= n−i and dim0i

= n−i−1. Since each successive
0i has strictly smaller dimension, we eventually run out of space, and so both of
these sequences terminate. The last entry in the sequence of 0i is 0n , which is
necessarily the empty set.
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3. Formation of the double orbifold

In the proof of Theorem 1.1, we pass from an orbifold with boundary to a closed
orbifold in order to employ Theorem 2.1. In this section, we construct the double
of an orbifold with boundary. In the process, we develop charts near the boundary
of a specific form which are required in the sequel. The construction of the double
is similar to the case of a manifold [Munkres 1963].

Let Bx(r) denote the ball of radius r about x in Rn where Rn has basis {ei }
n
i=1.

For convenience, B0 denotes the ball of radius 1 centered at the origin in Rn . We
let Rn

+
= {x1, . . . , xn : xn ≥ 0} where the xi are the coordinates with respect to the

basis {ei }, B+x (r) = Bx(r)∩Rn
+

, and B+0 = B0 ∩Rn
+

. Also, Bk
0 denotes the ball of

radius 1 about the origin in Rk .
Let Q be a compact orbifold with boundary. For each point p∈Q, we choose an

orbifold chart {Vp,G p, πp} where Vp is B0 or B+0 and πp(0)= p. Let Up denote
πp(Vp)⊆ Q for each p, and then the Up form an open cover of Q. Choose a finite
subcover of the Up, and on each Vp corresponding to a Up in the subcover, we put
the standard Riemannian structure on Vp so that the {∂/∂xi } form an orthonormal
basis. Endow Q with a Riemannian structure by patching these Riemannian metrics
together using a partition of unity subordinate to the finite subcover of Q chosen
above.

Now, let p ∈ Q, and then there is a geodesic neighborhood Up about p uni-
formized by {Vp,G p, πp} where Vp=B0(r) or B+0 (r) for some r > 0, and G p acts
as a subgroup of O(n) [Chen and Ruan 2002]. Identifying Vp with a subset of T0Vp

via the exponential map, we can assume as above that {ei } forms an orthonormal
basis with respect to which coordinates are denoted {xi }. In the case with boundary,
B+0 (r) corresponds to points with xn ≥ 0. We call such a chart a geodesic chart of
radius r at p. Note that in such charts, the action of γ ∈ G p on Vp and the action
of dγ = D(γ )0 on a neighborhood of 0 in T0Vp (or in half-space in the case with
boundary) are identified via the exponential map.

Lemma 3.1. At every point p in ∂Q, there is a geodesic chart at p of the form
{Vp,G p, πp} where G p fixes en . On the boundary, the tangent space T Q|∂Q is
decomposed orthogonally into (T ∂Q)⊕ ν where ν is a trivial 1-bundle on which
each group acts trivially.

Proof. Let p ∈ ∂Q, and let a neighborhood of p be uniformized by the geodesic
chart {Vp,G p, πp} so that Vp=B+0 (r). Let 〈·, ·〉0 denote the inner product on T0Vp.
Let T+0 correspond to the half-space in T0Vp corresponding to vectors with non-
negative (∂/∂xn)-component. The exponential map identifies an open ball about
0 ∈ T+0 with Vp.
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Suppose γ is an arbitrary element of G p so that dγ acts on T0Vp. Any v ∈ T+0
satisfies 〈

v,
∂

∂xn

〉
0
≥ 0.

Furthermore, (dγ )v ∈ T+0 , so〈
(dγ )v,

∂

∂xn

〉
0
≥ 0 or equivalently

〈
v, dγ−1 ∂

∂xn

〉
0
≥ 0,

for all v ∈ T+0 .
We claim that G p fixes ∂/(∂xn). Pick j 6= n; since ∂

∂x j
∈ T+0 ,〈

∂

∂x j
, dγ−1 ∂

∂xn

〉
0
≥ 0.

However, − ∂
∂x j

is also a vector in T+0 , and so〈
−
∂

∂x j
, dγ−1 ∂

∂xn

〉
0
≥ 0.

By the linearity of the inner product, this is only possible if〈
∂

∂x j
, dγ−1 ∂

∂xn

〉
0
= 0.

Furthermore, since j 6= n was arbitrary, this implies that dγ−1(∂/∂xn) has no
component in the direction of any (∂/∂x j ), j 6= n. Since dγ−1 is an isometry,

dγ−1 ∂

∂xn
=±

∂

∂xn
,

but because dγ−1T+0 = T+0 , it must be the case that

dγ−1 ∂

∂xn
=

∂

∂xn
.

As γ ∈ G p was arbitrary, this implies G p fixes ∂/(∂xn).
Now, for each p ∈ ∂Q, pick a geodesic chart {Vp,G p, πp} at p and let Np

denote the constant vector field ∂/(∂xn) on Vp. Recall from [Satake 1957] that
T̃0Vp denotes the dG p-invariant tangent space of T0Vp on which the differen-
tial of πp is invertible. If q ∈ πp(Vp) ⊂ Q with geodesic chart {Vq ,Gq , πq} at
q , then the fact that D(πq)

−1
p ◦ D(πp)0 : T̃0Vp → T̃0Vq maps T̃0∂Vp to T̃0∂Vq

and preserves the metric ensures that the value of Nq(0) coincides with that of
D(πq)

−1
p ◦ D(πp)0[Np(0)] up to a sign. The sign is characterized by the property

that for any curve c : (−1, 1)→ Vp with derivative c′(t) = Np, there is an ε > 0
such that c(t) is in the interior of Vp for t ∈ (0, ε); a curve in Vq with derivative
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D(πq)
−1
p ◦ D(πp)0[Np(0)] has the same property. With this, we see that the Np

patch together to form a nonvanishing section of T Q|∂Q that is orthogonal to T ∂Q
at every point; hence, it defines a trivial subbundle ν orthogonal to T ∂Q. Clearly,
T Q = (T ∂Q)⊕ ν. �

Let Q′ be an identical copy of Q. In order to form a closed orbifold from the
two, the boundaries of these two orbifolds are identified via

∂Q 3 x←→ x ′ ∈ ∂Q′. (3-1)

The resulting space inherits the structure of a smooth orbifold from Q as is demon-
strated below.

Note by Lemma 3.1 that for each point p ∈ ∂Q, a geodesic chart {Vp,G p, πp}

can be restricted to a chart {C+p ,G p, φp} where C+p = Bn−1
0 (r/2)× [0, εp), φp is

the restriction of πp to C+p , and φp(Bn−1
0 × {0}) = ∂φp(C+p ). We refer to such a

chart as a boundary product chart for Q.
It follows, in particular, that there is a neighborhood of ∂Q in Q that is diffeo-

morphic to ∂Q×[0, ε] for some ε >0 and that the metric respects the product struc-
ture. This can be shown by forming a cover of ∂Q of sets uniformized by charts
of the form {C+,G p, φp}, choosing a finite subcover, and setting ε =min{εp/2}.

Lemma 3.2. The glued set Q̂, that is, the set of equivalence classes under the iden-
tification made by Equation (3-1), may be made into a smooth orbifold containing
diffeomorphic copies of both Q and Q′ such that Q ∩ Q′ = ∂Q = ∂Q′.

Proof. For each point p ∈ ∂Q, form a boundary product chart {C+p ,G p, φp}.
Then glue each chart of the boundary of Q to its corresponding chart of Q′ in the
following way. Let α :Rn

→Rn be the reflection that sends en 7→−en and fixes all
other coordinates. A point p in the boundary is uniformized by two corresponding
boundary product charts on either side of ∂Q, {C+p ,G p, φp} and {C+′p ,G ′p, φ

′
p}.

From these two charts, a new chart {C p,G p, ψp} for a neighborhood of p in Q̂ is
constructed where C p = Bn−1

0 (r/2)× (−εp, εp), and

ψp(x)=
{
φp(x), xn ≥ 0,
φ′p ◦α(x), xn < 0.

These charts cover a neighborhood of ∂Q = ∂Q′ in Q̂. By taking a geodesic
chart at each point on the interiors of Q and Q′ together with these new charts, the
entire set Q̂ is covered. Injections of charts at points in the interior of Q or Q′ into
charts of the form {C+p ,G p, φp} induce injections into {C p,G p, ψp}. Hence, Q̂ is
given the structure of a smooth orbifold with the desired properties. �

Again, it follows that a neighborhood of ∂Q⊂ Q̂ admits a tubular neighborhood
diffeomorphic to ∂Q×[−ε, ε] such that the metric respects this product structure.
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4. The Morse Index of a vector field on an orbifold

The definition of the Morse Index and its relation to the topological index of a
vector field extend readily to orbifolds.

Let Q be a compact orbifold with or without boundary, and let X be a vector field
on Q that does not vanish on the boundary. Suppose X (p)= 0 for p ∈ Q. We say
that p is a nondegenerate zero of X if there is a chart {V,G, π} for a neighborhood
Up of p and an x ∈ V with π(x)= p such that π∗X has a nondegenerate zero at x ;
that is, D(π∗X)x has trivial kernel. As in the manifold case, nondegenerate zeros
are isolated in charts and hence isolated on Q. The Morse Index λ(π∗X; x) of
π∗X at x is defined to be the number of negative eigenvalues of D(π∗X)x [Milnor
1963]. Since the Morse Index is a diffeomorphism invariant, this index does not
depend on the choice of chart nor on the choice of x . Since the isomorphism-
class of the isotropy group does not depend on the choice of x , the expression
|G p| is well-defined. Hence, for simplicity, we may restrict to charts of the form
{Vp,G p, πp} where πp(0)= p and G p acts linearly. We define the orbifold Morse
Index of X at p to be

λorb(X; p)=
1
|G p|

λ(π∗p X; 0).

Note that this index differs from that recently defined in [Hepworth 2007]; however,
it is sufficient for our purposes. We have

Indorb(X; p) = 1
|G p|

Ind(π∗p X; 0)

=
1
|G p|

(−1)λ(π
∗
p X;0).

Suppose X has only nondegenerate zeros on Q. For each λ ∈ {0, 1, . . . , n}, we
let {pi : i = 1, . . . , kλ} denote the points in Q at which the pullback of X in a chart
has Morse Index λ. Then we let

Cλ =
kλ∑

i=1

1
|G pi |

count these points, where the orbifold-contribution of each zero pi is 1/|G pi |. Note
that as nondegenerate zeros are isolated, there is a finite number on Q.

As in the manifold case, we define

6orb(X; Q)=
n∑
λ=0

(−1)λCλ,
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and we have

6orb(X; Q) =
∑n

λ=0(−1)λ
∑kλ

i=1
1
|G pi |

=
∑

p∈Q,X (p)=0
1
|G p |

(−1)λ(π
∗
p X;0)

=
∑

p∈Q,X (p)=0 Indorb(X; p)

= Indorb(X; Q).

In the case that Q is closed, this quantity is equal to χorb(Q) by Theorem 2.1.
We summarize these results as follows.

Proposition 4.1. Let X be a smooth vector field on the compact orbifold Q that
has nondegenerate zeros only, none of which occurring on ∂Q. Then

6orb(X; Q)= Indorb(X; Q).

If ∂Q =∅, then
6orb(X; Q)= χorb(Q).

Remark 4.2. If Q is a compact orbifold (with or without boundary) and X a
smooth vector field on Q that is nonzero on some compact subset 0 of the interior
of Q, then X may be perturbed smoothly outside of a neighborhood of 0 so that it
has only isolated, nondegenerate zeros. This is shown in [Waner and Wu 1986] for
the case of a smooth global quotient M/G using local arguments, and so it extends
readily to the case of a general orbifold by working in charts.

5. Proof of Theorem 1.1

Proof. Let Y be a vector field in generic contact with ∂Q that has isolated zeros on
the interior of Q. Define Ŷ on Q̂ by letting Ŷ coincide with Y on each copy of Q.
Unfortunately, Ŷ has conflicting definitions on ∂Q. However, as in the manifold
case treated in [Pugh 1968], the vector field may be perturbed near the boundary to
form a well-defined vector field using the product structure. We give an adaptation
of Pugh’s result to orbifolds.

Proposition 5.1. Given a smooth vector field Y in generic contact with ∂Q with
isolated zeros, none of which on ∂Q, there is a smooth vector field X on the double
Q̂ such that

(i) outside of a tubular neighborhood Pε of ∂Q containing none of the zeros of
Y , X coincides with Y on Q and Q′;

(ii) X |∂Q is tangent to ∂Q;

(iii) on 01, X coincides with Y and in particular defines the same 0i , Ri
−

, and Ri
+

for i > 1;
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(iv) the zeros of X are those of Y on the interior of Q and Q′ and a collection of
isolated zeros on ∂Q which are nondegenerate as zeros of X |∂Q .

Proof. As above, Ŷ is defined everywhere on Q̂ except on ∂Q. Let Pε be a normal
tubular ε-neighborhood of ∂Q in Q̂ of the form ∂Q × [−ε, ε] which we param-
eterize as {(x, v) : x ∈ ∂Q, v ∈ [−ε, ε]}. We assume that Pε is small enough so
that it does not contain any of the zeros of Ŷ . On Pε , decompose Ŷ respecting the
product structure of Pε into

Ŷ = Ŷh + Ŷv.

These are the horizontal and vertical components of Ŷ , respectively. The horizon-
tal component Ŷh is well-defined, continuous, and smooth when restricted to the
boundary. However, Ŷv has conflicting definitions on the boundary, although they
only differ by a sign. Note that the restriction of Ŷh to ∂Q may not have isolated
zeros. However, as Y does not have zeros on ∂Q and Ŷh ≡ Y on 01, none of the
zeros of Ŷh|∂Q occur on 01.

Define Zh to be a smooth vector field on ∂Q that coincides with Ŷh on an open
subset of ∂Q containing 01 and has only nondegenerate zeros (see Remark 4.2).
Let f (x, v) be the parallel transport of Zh(x, 0) along the geodesic from (x, 0) to
(x, v), and then Zh is a horizontal vector field on Pε . For s ∈ (0, ε), let φs : R→

[0, 1] be a smooth bump function which is one on [−s/2, s/2] and zero outside of
[s, s].

Define the vector field Xs to be Ŷ outside of Pε and

Xs(x, v)= φs(v)
(

f (x, v)+ |v|Ŷv(x, v)
)
+ (1−φs(v))Ŷ (x, v)

on Pε . Note that Xs is smooth. By picking s sufficiently small, it may be ensured
that the zeros of X are the zeros of Ŷ and the zeros of Zh|∂Q only. We prove this
as follows.

On points (x, v) where x ∈ 01 and |v| ≤ s, the horizontal component of X is
φs(v) f (x, v)+ (1− φs(v))Ŷh(x, v). Note that f (x, 0) = Ỹh(x, 0) for x ∈ 01 and
f (x, 0) 6= 0 on 01. Let m > 0 be the minimum value of ‖ f (x, 0)‖ on the compact
set 01, and then as 01

×[−ε, ε] is compact and Ỹh(x, v) continuous, there is an s0

such that
‖Ŷh(x, 0)− Ŷh(x, v)‖ = ‖ f (x, 0)− Ŷh(x, v)‖< m/2

whenever |v|< s0. Hence, for such v and for any t ∈ [0, 1],

‖t f (x, v)+ (1− t)Ŷh(x, v)‖ = ‖Ŷh(x, v)+ t[ f (x, v)− Ŷh(x, v)]‖

≥ ‖Ŷh(x, v)‖− t‖ f (x, v)− Ŷh(x, v)‖

> m− tm
2

≥
m
2 > 0.



THE INDEX OF A VECTOR FIELD ON AN ORBIFOLD WITH BOUNDARY 171

Therefore, the horizontal component is nonvanishing, implying that Xs(v, h) does
not vanish here.

Now let {xi : i = 1, . . . , k} be the zeros of Zh on ∂Q. Each xi is contained in a
ball Bεi ⊂ ∂Q whose closure does not intersect 01. Hence, Ŷv(x, 0) 6= 0 on each
Bεi . Therefore, for each i , there is an si such that Ŷv(x, v) 6= 0 on Bεi × (−si , si ).
This implies that the vertical component of Xs(x, v), and hence Xs(x, v) itself,
does not vanish on Bεi × (−si , si ) except where v = 0; i.e. on ∂Q.

Letting s be less than the minimum of {s0, s1, . . . , sk}, we see that Xs does not
vanish on Pε except on ∂Q, where it coincides with Zh . Therefore, X = Xs is the
vector field which was to be constructed. �

It follows that the index of the vector field X constructed in the proof of Propo-
sition 5.1 is

Indorb(X; Q̂)= 2Indorb(Y ; Q)+
∑
p∈∂Q

Indorb(X; p). (5-1)

Let p be a zero of X on ∂Q, i.e. it is a zero of Zh . We express the index of X at
p in terms of the index of Zh .

Because of Lemma 3.1, the isotropy group of p as an element of Q is the same
as the isotropy group of p as an element of ∂Q, and so we may refer to G p without
ambiguity. For a neighborhood of p in Q small enough to contain no other zeros
of X , choose a boundary product chart {C+p ,G p, φp}. Then, as in Lemma 3.2,
{C p,G p, ψp} forms a chart about p in Q̂. The product structure (y, w) of

C p = Bn−1
0 (r/2)× (−εp, εp)

coincides with that of Pε near the boundary, so within the preimage of

∂Q×[−s/2, s/2]

by ψp, we have that

ψ∗p X = ψ∗p f + |w|ψ∗pŶv.

Note that ψp(0, 0)= p, and then

D(ψ∗p X)(0,0) =

(
D(ψ∗p Zh)0

( ∂ψ∗p f
∂w

)
0

D
(
(|w|ψ∗pŶv)|∂C p

)
0

(
∂
∂w |w|ψ

∗
pŶv

)
0

)

=

(
D(ψ∗p Zh)0 0

0 ψ∗pŶv(0, 0)

)
.
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As ψ∗pŶv(0, 0) is positive if p ∈ R1
+

and negative if p ∈ R1
−

, we see that

λ
(
ψ∗p X; (0, 0)

)
=

{
λ
(
ψ∗p X |∂C p ; 0

)
, p ∈ R1

+
,

λ
(
ψ∗p X |∂C p ; 0

)
+ 1, p ∈ R1

−
.

Hence

Ind
(
ψ∗p X; (0, 0)

)
=

{
Ind

(
ψ∗p Zh|∂C p ; 0

)
, p ∈ R1

+
,

−Ind
(
ψ∗p Zh|∂C p ; 0

)
, p ∈ R1

−
.

Therefore, for p ∈ R1
+

,

Indorb(X, p) = 1
|G p |

Ind
(
ψ∗p X; 0

)
=

1
|G p |

Ind
(
ψ∗p Zh|∂C+; 0

)
= Indorb(Zh; p

)
,

and similarly
Indorb(X; p

)
=−Indorb(Zh; p

)
,

for p ∈ R1
−

.
With this, Equation (5-1) becomes

Indorb(X; Q̂)= 2Indorb(Y ; Q)+ Indorb(Zh; R1
+
)− Indorb(Zh; R1

−
).

By Theorem 2.1 and Equation (2-1), Indorb(X; Q̂)=2χorb(Q)−χorb(∂Q), with
the result that

2χorb(Q)−χorb(∂Q)= 2Indorb(Y ; Q)+ Indorb(Zh; R1
+
)− Indorb(Zh; R1

−
).

Note that ∂Q is also a closed orbifold, so

χorb(∂Q)= Indorb(X; ∂Q)= Indorb(X; R1
+
)− Indorb(X; R1

−
).

Hence, restricting X to ∂Q,

Indorb(Y ; Q)= χorb(Q)+1/2
(
−χorb(∂Q)+Indorb(X; R1

−
)−Indorb(X; R1

+
)
)

= χorb(Q)+1/2
[
−χorb(∂Q)+2Indorb(X; R1

−
)

−
(
Indorb(X; R1

+
)+Indorb(X; R1

−
)
)]

= χorb(Q)+1/2
(
−2χorb(∂Q)+2Indorb(X; R1

−
)
)

= χorb(Q)−χorb(∂Q)+Indorb(X; R1
−
)

= χorb(Q, ∂Q)+Indorb(X; R1
−
). (5-2)

Because X coincides with Y on 01, it defines the same 0i that Y does. Since
X is a smooth vector field defined on R1

−
that does not vanish on ∂R1

−
= 01, we
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may recursively apply this formula to higher and higher orders of Ri
−

until Ri
−

is
empty, and there is no longer an index sum term. Hence,

Indorb(X; R1
−
)=

n∑
i=1

χorb(Ri
−
, 0i ).

Along with Equation (5-2), this completes the proof of Theorem 1.1. �

Let Q̃ denote the inertia orbifold of Q and π : Q̃→ Q the projection (see [Chen
and Ruan 2004]). It is shown in [Seaton 2008] that a vector field Y on Q induces
a vector field Ỹ on Q̃, and that Ỹ

(
p, (g)

)
= 0 if and only if Y (p)= 0.

For each point p ∈ Q and g ∈ G p, a chart {Vp,G p, πp} induces a chart

{V g
p ,C(g), πp,g} at

(
p, (g)

)
∈ Q̃,

where V g
p denotes the points in Vp fixed by g and C(g) denotes the centralizer of

g in G p. Clearly, ∂V g
p = (∂Vp)∩ V g

p . An atlas for Q̃ can be taken consisting of
charts of this form, so it is clear that ∂ Q̃ = ∂̃Q.

Let p ∈ ∂Q and pick a boundary product chart {C+p ,G p, φp}. Then for g ∈G p,
there is a chart {(C+p )

g,C(g), φp,g} for (p, (g)) ∈ Q̃. As the normal component to
the boundary of C+p is G p-invariant,

(C+p )
g
=
(
Bn−1

0 (r/2)×[0, εp)
)g

=
(
Bn−1

0 (r/2)
)g
×[0, εp),

and so
T0(C+p )

g
= T0

(
Bn−1

0 (r/2)
)g
×R.

It follows that Ỹ points out of ∂ Q̃ at
(

p, (g)
)

if and only if Y points out of ∂Q at
p. With this, applying Theorem 1.1 to Ỹ yields

Indorb
(

Ỹ ; Q̃
)
= χorb

(
Q̃, ∂ Q̃

)
+
∑n

i=1 χorb

(
R̃i
−, 0̃

i
)

= χorb

(
Q̃)−χorb(∂ Q̃

)
+
∑n

i=1 χorb

(
R̃i
−

)
−χorb

(
0̃i
)
.

(5-3)

Each of the 0i and ∂Q are closed orbifolds, so it follows from the proof of Theo-
rem 3.2 in [Seaton 2008] (note that the assumption of orientability is not used to
establish this result) that

χorb(0̃i )= χ(X0i ),

and
χorb(∂ Q̃)= χorb(∂̃Q)= χ(X∂Q), (5-4)

where X0i and X∂Q denote the underlying topological spaces of 0i and ∂Q, re-
spectively, and χ the usual Euler characteristic.
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Letting Q̂ denote, as above, the double of Q, it is easy to see that ˆ̃Q= ˜̂Q. Hence,
applying the same result to ˆ̃Q yields

χ(XQ̂) = χorb
( ˜̂Q)

= χorb
( ˆ̃Q)

= 2χorb(Q̃)−χorb(∂ Q̃).

(5-5)

However, as
χ(XQ̂) = 2χ(XQ)−χ(X∂Q)

= 2χ(XQ)−χorb(∂ Q̃),

it follows from Equation (5-5) that χorb(Q̃) = χ(XQ). The same holds for each
Ri
−

so that Equation (5-3) becomes the following.

Corollary 5.2. Let Q be an n-dimensional, smooth, compact orbifold with bound-
ary, and let Y be a smooth vector field on Q. If Ỹ denotes the induced vector field
on Q̃, then

Indorb(Ỹ ; Q̃)= χ(XQ,X∂Q)+

n∑
i=1

χ(XRi
−
,X0i ).
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