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We study the Fibonacci sequence mod n for some positive integer n. Such a
sequence is necessarily periodic; we introduce a function Q(n) which gives the
ratio of the length of this period to n itself. We compute Q(n) in certain cases
and provide bounds for it which depend on the nature of the prime divisors of n.

1. Introduction

Any sequence of integers which satisfy a recurrence relation becomes periodic
when reduced modulo n for any positive integer n. Here we investigate the behavior
of the length of the period of the Fibonacci sequence modulo n, n ∈ Z+. We shall
denote this length by k(n), and call it the Fibonacci period mod n. This sequence
was first studied by Wall [1960], and since that time many interesting properties
of k(n) have been discovered. For example, if m and n are relatively prime then
k(mn) = lcm(k(m), k(n)). Thus it seems reasonable to compute k(n) using its
prime power factorization: if n = pe1

1 · · · p
et
t then k(n) = lcm(k(pe1

1 ), . . . k(pet
t )).

Assuming one can find the prime power factorization of n in a reasonable amount
of time, two problems remain: there is no known formula for k(p) when p is a
prime, and though it is generally believed that k(pe) = pe−1k(p) it has not been
proven.

While {k(n)} is not an increasing sequence it tends to grow as n does, in the
sense that for {ar } an infinite sequence of positive integers we have that {k(ar )}

is unbounded. A study of k(n) makes it clear that certain such {ar } lead to pe-
riod lengths which blow up much faster that others — two extreme examples being
{2 · 5r } and {Fr } .

In order to study the growth rates of such sequences we introduce the Fibonacci
Q-function. The notion of this ratio is implicit in previous words — often n is
compared to k(n); for example, see [Coleman et al. 2006, Fig. 1] for a plot of k(p)
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versus p, p prime. For all n we define Q(n) to be the ratio of period length to mod-
ulus. We will see that for all r ∈ Z+ we have Q(2 ·5r )= 6 and Q(Fr )→ 0, where
Fr is the r th Fibonacci number. Using new and known results about Fibonacci
periods we will compute Q(n) for many classes of integers, including some classes
of prime numbers as well as Fibonacci and Lucas numbers. Additionally, viewing
Q as a function on positive integers, we will show that the image of Q, denoted
Q, is contained in but not equal to [0, 6]∩Q. It turns out that Q is infinite, as is its
complement in [0, 6]∩Q. It is interesting as well to note that 1, 2, 3, 4, and 6 are
all in Q – Q(24) = 1, Q(60) = 2, Q(20) = 3, Q(5) = 4, and Q(10) = 6 – but
5 /∈ Q.

We also establish bounds for Q(n) which depend on the number t1 of prime
factors of n whose last digits are either 3 or 7. The bounds are given explicitly
and depend on gcd(10, n). These bounds are useful when n has a small number
of such factors, but the bound increases with t1 and eventually exceeds 6. We also
examine the unit disk preimage U =

{
n ∈ Z+ | Q(n) < 1

}
, showing it is closed

under multiplication by relatively prime numbers, and give a sufficient (but not
necessary) criterion for a number to be in U .

We finish with a number of open questions concerning values of Q(n) and topo-
logical properties of Q. Perhaps the most famous conjecture concerning k is that
k(pe)= pe−1k(p) when p is a prime. Using the Q-function the conjecture becomes
Q(pe)= Q(p), and it is no surprise that our conjecture is equivalent the one on k.
We will show that this conjecture holds in the case where p is a Fibonacci prime.
We will see that the answers to many of our other open questions on values of
Q(n) will follow immediately from other famous conjectures. For example, we
conjecture that there are infinitely many primes p such that Q(p) = 2(1+ 1/p)

and infinitely many primes p such that Q(p) = 1− 1/p. With the exception of
p= 5 we have Q(p)≤ 2(1+1/p), and if there are an infinite number of Mersenne
Primes whose last digit is 3 or 7 then there are an infinite number of points where
we have equality. Also, if p ≡ ±1(mod 10) then Q(p) ≤ 1− 1/p, and if there
are an infinite number of Sophie Germaine primes then U contains infinitely many
primes (primes which, in fact, are safe rather than Sophie Germaine).

2. Preliminaries

Consider the recurrence relation

an = an−1+ an−2, n ≥ 2.

If we set a0 = 0 and a1 = 1 we obtain the Fibonacci sequence, which we denote
by {Fn} . Each Fn is a Fibonacci number, and if Fn is prime then it is called a
Fibonacci prime. Examples of Fibonacci primes include 2, 3, 5, 13, and 89. It is
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well known (see, for example, [Hardy and Wright 1954, Theorem 179 (iv)]) that if
m |n then Fm | Fn, hence if Fq is a Fibonacci prime, q > 4 then q is also prime. It is
conjectured that there are an infinite number of Fibonacci primes. We may extend
the Fibonacci sequence to negative indices. If we define F−n = (−1)n−1 Fn, n ≥ 1
then Fn = Fn−1+ Fn−2 for all integers n.

While the Fibonacci sequence is the focus here, we will also need to consider
the Lucas sequence {Ln} , obtained by L0= 2, L1= 1, and the recurrence relation
above. Note that Ln = Fn+1 − Fn−1. In a manner similar to Fn we may define
L−n = (−1)n Ln, and we may then extend the identity Ln = Ln−1 + Ln−2 to all
n ∈ Z.

For any n ≥ 0 we define k(n) to be the smallest positive integer such that

Fk(n) ≡ 0 and Fk(n)+1 ≡ 1(mod n).

The number k(n) is called the Fibonacci period mod n. Notice that this term is
appropriate because, mod n, the sequence of Fibonacci numbers is necessarily a
periodic sequence mod n, i.e. Fk(n)+i ≡ Fi (mod n). Periodicity is guaranteed since
there are only n2 possibilities for Fi and Fi+1, and if

Fi ≡ F j (mod n) and Fi+1 ≡ F j+1(mod n),

then it is easy to show (by repeated subtraction) that

Fi− j ≡ 0(mod n) and Fi− j+1 ≡ 1(mod n).

Example 2.1. Modulo 2 the Fibonacci sequence is 0, 1, 1, 0, 1, 1, . . . and thus
k(2)= 3. Modulo 3 we have the sequence

0, 1, 1, 2, 0, 2, 2, 1, 0, 1, . . .

hence k(3)= 8. The sequence mod 4 is

0, 1, 1, 2, 3, 1, 0, 1, . . .

and k(4)= 6. If we take the sequence mod 5 we get

0, 1, 1, 2, 3, 0, 3, 3, 1, 4, 0, 4, 3, 2, 0, 2, 2, 4, 1, 0, 1, . . .

and thus k(5)= 20.

There is no known formula for k(n), however many of its properties are known.
The result below summarizes the facts that we will need. Proofs of each can be
found in [Renault 1996], although many are first described in Wall’s original paper.

Lemma 2.2. Let p, n ∈Z+, p prime. The length of a Fibonacci period satisfies all
of the following.

(1) For n > 2, k(n) is even.
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(2) If p ≡±1(mod 10) then k(p) | p− 1.

(3) If p ≡±3(mod 10) then k(p) | 2(p+ 1) and k(p) - (p+ 1).

(4) Let t be the largest integer such that k(pt)= k(p). Then for all e≥ t, k(pe)=

pe−t k(p).

(5) For gcd(m, n)= 1 we have k(mn)= lcm(k(m), k(n)).

(6) Suppose n ≥ L t . Then k(n)≥ 2t.

(7) Let a(n) be the smallest positive integer such that Fa(n) ≡ 0(mod n), and
let b(n) be the number of indices 1 ≤ i ≤ k(n) with Fi ≡ 0(mod n). Then
k(n)= a(n)b(n) and b(n)= 1, 2, or 4.

(8) For all e ≥ 1, b(pe)= b(p).

Throughout the paper, the numbers a(n) and b(n) will be as described above.
It was conjectured by Wall that k(p2) = pk(p), and it is only a slight gener-

alization to conjecture k(pe) = pe−1k(p), i.e. that t = 1 in the fourth statement
above. This is the most famous conjecture related to the study of k(n), and we will
refer to this as Wall’s Conjecture. As mentioned in the introduction, we will show
it is true for Fibonacci primes.

Notice that, for any given prime, Lemma 2.2 (6) implies that one need only check
a finite number of exponents to establish Wall’s Conjecture for a given prime. For
example, one can directly compute k(17)= 36. To show

k(17e)= 17e−1k(17)= 36 · 17e−1,

notice that L19 = 9349. Then for each n ≥ 9349 we have k(n)≥ 2 ·19= 38, hence
if 17t

≥ 9349 then k(17t)≥ 38 > 36= k(17). Thus since 172
= 289, 173

= 4913,

and 174
= 83521 > 9349 one needs to check that k(172) and k(173) are not 36 —

they are, in fact, 612 and 10404, as expected.
We are now ready to formally introduce the tool we will use to study Fibonacci

periods mod n.

Definition 2.3. For any n ∈ Z+ let

Q(n)=
k(n)

n
.

Q is called the Fibonacci Q-Function.

Example 2.4. Q(2)= 3/2, Q(3)= 8/3, Q(4)= 3/2, and Q(5)= 4. Notice that
Q(2)= Q(4) and that Q(5) is much larger than the others – we will discuss both
of these observations later.

Example 2.5. For all e, Q(17e)= Q(17)= 36/17.
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3. Points

The rest of the paper is an investigation of the properties of Q(n). In the previous
section we computed Q(n) for numbers at most 5 (note that Q(1) = 1). Here we
will look at certain classes of numbers for which we can compute Q(n) exactly.
Perhaps the easiest numbers to study are the Fibonacci numbers themselves.

Example 3.1. The numbers 8 and 11 are both Fibonacci numbers: 8 = F6 and
13= F7. Clearly a(8)= 6 since F6≡ 8≡ 0(mod 8) and since Fn < 8 for 1≤ n ≤ 5
this is the smallest Fibonacci number for which we get zero mod 8. By Lemma
2.2 (7)–(8) we know that k(8)= 6, 12, or 24. Since F7 = F6+ F5 we have

F6+ 1 < F7 < 2 · F6

and hence F7 is not 1 mod 8, i.e. k(8) 6= 6. Finally, note

F−6 = (−1)5 F6 =−8≡ 0(mod 8)

F−5 = (−1)4 F5 = F5 ≡ F7(mod 8)

since F7 = F5 + F6 ≡ F5(mod F6). Thus the sequence is periodic, period 12, so
k(8)= 12. Similarly, a(13)= 7 and thus k(13)= 7, 14, or 28. Since

F7+ 1 < F8 < 2 · F9

we know k(13) 6= 7. In this case note that F−7 = F7 and F−6 = −F6 which is
not congruent to F8(mod 11) since then F6 ≡ F8 ≡−F6(mod 11) and this implies
2 · F6 = F7 which cannot occur. Thus k(13)= 28.

We have Q(8) = 3/2 and Q(13) = 28/13. We can use the results on these
Fibonacci numbers to help us compute Q(n) for other numbers. For example,

Q(104)=
k(104)

104
=

lcm(k(8), k(13))

104
=

lcm(2 · 6, 4 · 7)

104
=

21
26

.

Note that the Q-function has an interesting property on this product:

Q(104)= Q(8)Q(13)/4.

More generally, we have

Theorem 3.2. Let n ≥ 3 be an integer.

(1) If n is even, then Q(Fn)= 2n/Fn. If n is odd, Q(Fn)= 4n/Fn.

(2) If n is even, then Q(Ln)= 4n/Fn. If n is odd, Q(Ln)= 2n/Fn.

(3) If Fq = p is an odd prime, then Q(pe)= Q(p)= 4q/p. Also, Q(2e)= 3/2.
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(4) Let {n1, n2, . . . , nt } be a sequence of positive integers such that gcd(ni , n j )≤

2, t > 1. Then

Q(Fn1 Fn2 · · · Fnt )= 41−t Q(Fn1) · · · Q(Fnt ).

Proof. A proof of Theorem 3.2 (1) is omitted, however it may be obtained by
generalizing the previous example. Also, (2) is similar to (1) and is also omitted.

For Theorem 3.2 (3), by Lemma 2.2 (4) we know that k(pe)= pe−t k(p), where
t is the largest positive integer such that k(pt) = k(p). Since pe > p = Fq for all
e > 1 it is clear that a(pe) > a(p). Since b(pe) = b(p) we see that k(pt) > k(p)

unless t = 1. Thus

Q(pe)=
pe−1k(p)

pe =
k(p)

p
=

4q
p

.

To show that Q(2e) = 3/2, it suffices to show that k(2e) > 3 for all e > 1. But
since 2e > 3= L2 we know that k(2e)≥ 2 · 3 and we are done.

We now prove Theorem 3.2 (4). Note that gcd(ni , n j )≤ 2 implies that

gcd(Fni , Fn j )= 1

since
gcd(Fni , Fn j )= Fgcd(ni ,n j ).

Suppose n1, n2, . . . , ns are all even and ns+1, ns+2, . . . , nt are all odd. Then we
have

Q(Fn1 Fn2 · · · Fnt )=
lcm(k(Fn1), . . . , k(Fnt ))

Fn1 Fn2 · · · Fnt

=
lcm(2n1, 2n2, . . . , 2ns, 4ns+1, . . . , 4nt)

Fn1 Fn2 · · · Fnt

= 4(
lcm(n1/2, n2/2, . . . , ns/2, ns+1, . . . , nt)

Fn1 Fn2 · · · Fnt

)

= 4
n1n2 · · · nt

2s Fn1 Fn2 · · · Fnt

,

the last equality since the set {n1/2, n2/2, . . . , ns/2, ns+1, . . . , nt } is pairwise rel-
atively prime. Note that ni/Fni = Q(Fni )/2 for i ≤ s and ni/Fni = Q(Fni )/4
otherwise. Thus

Q(Fn1 Fn2 · · · Fnt )=
4
2s ((Q(Fn1)/2) · · · (Q(Fns )/2))((Q(Fns+1)/4) · · · (Q(Fnt )/4))

=
4
2s

1
2s (Q(Fn1) · · · Q(Fns ))

1
4t−s (Q(Fns+1) · · · Q(Fnt ))

=
4
4t Q(Fn1) · · · Q(Fnt )=41−t Q(Fn1) · · · Q(Fnt ). �
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Remark 3.3. Note that Theorem 3.2 (4) does not extend to powers of Fibonacci
numbers since Q(45)= 8/3 and (1/4)Q(3)Q(5)= 8. Nonetheless, it remains easy
to compute Q(n) whenever n is a product of powers of relatively prime Fibonacci
numbers.

We will now try to compute Q(p) when p is in one of a few well-known classes
of primes. Let p≡±3(mod 10). From Lemma 2.2 (3) we see that k(p) | 2(p+1).

To find a class of primes where we can explicitly compute Q(p) we can consider
primes such that p+ 1 has few divisors. Thus it is natural to consider Mersenne
primes, primes of the form 2q

− 1 for some q. It is well known that q must be
prime for 2q

− 1 to be prime: see, for example, [Rosen 2000, Theorem 7.11]. On
the other hand, if p ≡±1(mod 10) then k(p) | (p− 1), so any prime of this form
that also satisfies p = 2q + 1, q prime will have few divisors.

Theorem 3.4. Let p be prime.

(1) If p is a Fibonacci prime, say p = Fq with q > 4 then Q(p)= 4q/p.

(2) If p is a Mersenne prime, p = 2q
− 1, such that q ≡ 3(mod 4) then Q(p) =

2(1+ 1/p)= 2q+1/p.

(3) If p is a safe prime i.e. p = 2q + 1 for some Sophie Germaine prime q such
that q ≡−1(mod 10) then Q(p)= 1− 1/p = 2q/p.

Proof. Notice that Theorem 3.4 (1) is a special case of Theorem 3.2 (1) and (3).
We now prove Theorem 3.4 (2). If q = 4s+3 then since the last digit of 6s is 6

we get
p = 24s+3

− 1= 16s
· 8− 1≡ 6s

· 8− 1≡ 47≡ 7(mod 10)

and so k(p) | 2(p + 1), i.e. k(p) | 2q+1. But k(p) - (p + 1), i.e. k(p) - 2q , thus
k(p)= 2q+1 and Q(p)= 2(1+ 1/p)= 2q+1/p.

Finally, if p= 2q+1 with q ≡−1(mod 10) then p≡ 2(−1)+1≡−1(mod 10),

thus k(p) | p−1. But p−1= 2q, so k(p)= 1, 2, q, or 2q. Since k(p) is even and
k(p) > 2 we must have k(p)= 2q, hence Q(p)= 1− 1/p = 2q/p and Theorem
3.4 (3) is proven. �

Example 3.5. The largest known Mersenne prime of the form above is

M42 = 225964951
− 1.

The Fibonacci Q-function of this 7,816,230-digit number is

Q(M42)=
225964952

225964951− 1
≈ 2+ 10−7816230.

This is the largest prime for which we know Q(p), and we do not know a prime
p such that Q(p) is closer to 2 than Q(M42). (We do, however conjecture that for
all ε > 0 there is a prime p within ε of 2.)
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We now investigate certain values of the Q function.

Theorem 3.6. Let r ≥ 1. Then

(1) Q(n)= 1 if and only if n = 24 · 5r−1.

(2) Q(n)= 3/2 if n = 10r+2.

(3) Q(n)= 6 if and only if n = 2 · 5r .

Proof. The “if” portions of each of these can be determined by direct calculations
since each prime factor is a Fibonacci prime. For example,

Q(10n)=
lcm(k(2n), k(5n))

10n =
lcm(2n−1

· 3, 5n−1
· 20)

10n =
2n−1
· 3 · 5n

2n5n =
3
2

establishes Theorem 3.6 (2). The “only if” portions of Theorem 3.6 (1) and (3)
follow from the results presented in [Fulton and Morris 1969/1970] and [Brown
1992] respectively. �

In fact, [Brown 1992] proves something stronger: the author shows that k(n)≤

6n with equality if and only if n= 24 ·5r−1. This will be useful when we construct
bounds for Q(n) in the next section.

Note that there is no “only if” in Theorem 3.6 (2) since, for example, Q(2)=3/2.

It would be interesting to be able to describe the set Q−1(3/2).

Having determined some of the values of Q, it is worth describing certain ratio-
nal numbers in [0, 6] which are not values of Q. Clearly Q(n) 6= 0 for all n since
k(n) ≥ 1 for all n ∈ Z+. The following gives an infinite number of other rationals
in this interval which are not values of Q.

Theorem 3.7. Let n be a positive integer. Then

(1) Q(n) 6= 5.

(2) For each Fibonacci prime p, Q(n) 6= t
p j u for any t, u relatively prime to p

and j ≥ 2.

Proof. Let n be the smallest positive integer so that Q(n) = 5. Then k(n) = 5n,

and since n > 2 we know that k(n) is even, hence 5n is be even. Write n = 2i s, s
odd, i ∈ Z+. Then

5 · 2i s = k(n)= lcm(2i−1
· 3, k(s)).

Since 3 divides the right-hand side we see that 3 | s. Write s = 3 j t, t odd, j ∈ Z+,

3 - t. Then
5(2i
· 3 j
· t)= k(n)= lcm(2i−1

· 3, 3 j−1
· 8, k(t)).

From this we see that 5t | k(t). Note that if 5t < k(t) then k(t) ≥ 10t > 6t which
cannot occur by [Brown 1992]. Thus k(t) = 5t. But t < n, contradicting the
minimality of n. Thus Theorem 3.7 (1) is proved.
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For Theorem 3.7 (2), the trick is that the denominator, before cancellation, is
always n. Suppose Q(n) = t/p j u. Then p j u | n, so we can write n = pi um for
some i ≥ j and gcd(p, um)= 1. Then

t
p j u
= Q(n)=

lcm(k(pi ), k(um))

pi um
=

lcm(pi−1k(p), k(um))

pi um
.

Cross-multiplying gives

tpi um = p j u lcm(pi−1k(p), k(um)).

The right-hand side is clearly divisible by pi+ j−1, however since i+ j−1≥ i+1
and p -mtu we see that the left hand side is not divisible by pi+ j−1, a contradiction.
Thus such an n cannot occur and we are done. �

4. Bounds

In general, it is no easier to compute Q(n) than k(n). However, it is more natural
to describe bounds on the Q-function than it is on the period. For example, the
statement k(n)≤ 6n can be stated more naturally as Q(n)≤ 6. This fact, together
with Lemma 2.2 (6) gives

Proposition 4.1. L t/(2n)≤ Q(n)≤ 6, where n ≥ L t .

To show that these are the best bounds possible in general we have

Corollary 4.2. sup {Q(n)} = 6 and inf {Q(n)} = 0.

Proof. The sequence
{

Q(2 · 5r−1)
}

is a sequence of 6’s and hence converge to 6.
The sequence {Q(Fn)} converges to 0. �

We can get a better upper bound if we restrict ourselves to certain classes of
integers. The natural place to start is to find an upper bound for Q restricted to
primes. We already know the result in this case.

Lemma 4.3. Let p be prime.

(1) Q(2)= 3/2 and Q(5)= 4.

(2) Suppose p ≡±1(mod 10). Then Q(p)≤ 1− 1/p.

(3) Suppose p ≡±3(mod 10). Then Q(p)≤ 2(1+ 1/p).

Proof. Of course, Lemma 4.3 (1) was stated before — is included here only for
completeness. Lemma 4.3 (2) and (3) follow immediately from Lemma 2.2 (2)
and (3). �

Note that p = 3 and 11 give the largest possible value for Q(p) under the
conditions in Lemma 4.3 (3) and (2), respectively. Combining those two parts
gives
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Corollary 4.4. For p 6= 5 a prime Q(p)≤ 2(1+ 1/p).

We now consider powers of primes. With the exception of p = 5 there is a
universal bound for such numbers.

Lemma 4.5. For any prime p 6= 5 we have Q(pe) ≤ Q(p) ≤ 8/3; furthermore
Q(5e)= Q(5)= 4.

Proof. If p= 2 then Q(p)= 3/2≤ 8/3. Furthermore, since 2 is a Fibonacci prime
we know Q(2e)=Q(2)=3/2. Likewise, Q(3e)=Q(3)=8/3 and Q(5e)=Q(5)=

4. We shall assume p ≥ 7. Then Q(p)≤ 2(1+ 1/p)≤ 2(1+ 1/7)= 16/7 < 8/3,

so it remains to show Q(pe)≤ Q(p) for e > 1.

Suppose a = a(p) and a′ = a(pe). Since Fa′ ≡ 0(mod pe) we know Fa′ ≡

0(mod p) and hence a′ is a multiple of a. We claim that Fpe−1a ≡ 0(mod pe), and
hence a′ ≤ pe−1a. Applying the well-known identity

Fmn =

m∑
i=1

(
m
i

)
Fi F i

n Fm−i
n−1

we have

Fpe−1a =

pe−1∑
i=1

(
pe−1

i

)
Fi F i

a F pe−1
−i

a−1 .

For 1 ≤ i ≤ pe−1 we clearly have pi
| F i

a . If we write i = p f j, p - j it can
be shown that pe− f−1

|
(pe−1

i

)
. Thus pe− f−1+i divides the i th term in the series

above. Since i > 0 we have i ≥ f + 1 and so each term is divisible by pe, hence
Fpe−1a ≡ 0(mod pe).

Thus,

Q(pe)=
a′b(pe)

pe ≤
(pe−1a)b(p)

pe =
k(p)

p
= Q(p). �

Next, we look at how Q behaves with relatively prime numbers.

Lemma 4.6. For gcd(m, n) = 1 we have Q(mn) ≤ Q(m)Q(n). If furthermore
m, n > 2 then Q(mn)≤ 1

2 Q(m)Q(n).

Proof. For m and n relatively prime we have

Q(mn)=
lcm(k(m), k(n))

mn
=

k(m)k(n)

mn gcd(k(m), k(n))

=
1

gcd(k(m), k(n))
Q(m)Q(n)≤ Q(m)Q(n).

If m, n > 2 then k(m) and k(n) are both even, hence gcd(k(m), k(n)) ≥ 2 and we
are done. �
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Before continuing to generalize n, we note that this lemma gives us insight into
the structure of the unit disk preimage.

Corollary 4.7. Let U =
{
n ∈ Z+ | Q(n) < 1

}
. Then U is infinite, and is closed

under multiplication by relatively prime elements.

Proof. Certainly p ∈ U for all primes p ≡ ±1(mod 10), and by Lemma 4.5 we
have pe

∈U for all e hence U is infinite. (One could obtain a different proof using
Dirichlet’s Theorem on Primes in Arithmetic Progressions.) That U is closed under
multiplication by relatively prime elements is clear from the previous result. �

Finally, we are ready to consider arbitrary n. For the remainder of the section
we write

n = 2r 5s pr1
1 · · · p

rt
t , m = pr1

1 · · · p
rt
t , gcd(10, m)= 1

and we let

t0 = # {i | pi ≡±1(mod 10)} and t1 = # {i | pi ≡±3(mod 10)} .

Proposition 4.8. We have Q(m)≤ Q(p1) · · · Q(pt)/2t−1.

Proof. Immediate from Lemmas 4.5 and 4.6. �

Theorem 4.9. We have Q(m)≤ 22t1−t0+1/3t1 . Furthermore,

Q(5sm)≤
22t1−t0+2

3t1
, Q(2r m)≤

22t1−t0

3t1−1 , and Q(2r 5sm)≤
22t1−t0+1

3t1−1 .

Proof. Since Q(pi ) ≤ 8/3 when pi ≡ ±3(mod 10) and Q(pi ) < 1 when pi ≡

±1(mod 10) we have

Q(m)≤
1t0( 8

3)t1

2t−1 = (
8
3
)t1 1

2t−1 =
23t1

3t1 · 2t0+t1−1 =
22t1−t0+1

3t1
.

Similarly we have

Q(5sm)≤
1
2

Q(5s)Q(m)= 2Q(m)≤
22t1−t0+2

3t1
.

and

Q(2r m)≤
3
2

Q(m)≤
22t1−t0

3t1−1 ,

and

Q(2r 5sm)≤ 3Q(m)≤
22t1−t0+1

3t1−1 . �

One can obtain an overall bound by taking the largest of the four expressions.

Corollary 4.10. For any n we have

Q(n)≤
22t1−t0+1

3t1−1 .
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Notice that this bound is quite significant if n has a lot of primes of the form
p ≡ ±1(mod 10), however there will also be cases where the bound does not
provide useful information. For example, if t0= 0 and t1= 7 we have Q(m)≤ 7.5,

which we already knew.
We can use Theorem 4.9 to obtain a sufficient, though not necessary, criterion

for a number to be in the unit disk preimage.

Corollary 4.11. If

t0 ≥ t1
ln 4/3
ln 2

+ 1,

then m ∈U. If

t0 ≥ t1
ln 4/3
ln 2

+ 2,

then 5sm ∈U. If

t0 ≥ t1
ln 4/3
ln 2

+ ln 3,

then 2r m ∈U. Finally, if

t0 ≥ t1
ln 4/3
ln 2

+ ln 3+ 1,

then n ∈U.

Proof. Obtained by setting each of the bounds equal to 1 and solving for t0. For
example, if we set

Q(m)≤
22t1−t0+1

3t1
≤ 1,

we get

22t1−t0+1
≤ 3t1

(2t1− t0+ 1) ln 2≤ t1 ln 3

(2 ln 2− ln 3)t1+ ln 2= ln(4/3)t1+ ln 2≤ t0 ln 2

t0 ≥ t1
ln 4/3
ln 2

+ 1.

The others are similar. �

Notice that if t0 = 0 and t1 = 2, Theorem 4.9 gives Q(m) ≤ 32/9. However, it
is clear we can do better since Q(p)= 8/3 only when p = 3. In fact, we have

Q(m)≤
1
2

8
3

16
7
=

64
21

< 3.048

This leads to a stronger bound.
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Theorem 4.12. For t1 > 2,

Q(m)≤
26−t0

21

t1∏
i=3

(
5i − 12
5i − 13

)
.

Proof. Assume that 3 ≤ p1 < p2 < · · · < pt . Again if pi ≡ ±1(mod 10) then
Q(pi )≤ 1. If pi ≡±3(mod 10) then Q(pi )≤ 2(1+1/pi ). If we write pi = 10h±3
then h ≥ (i/2 − 1) since there are at most two such primes between 10z and
10(z+ 1). Thus

pi = 10h± 3≥ 10h− 3≥ 10(i/2− 1)− 3= 5i − 13

and hence

Q(pi )≤ 2
(

1+
1

5i − 13

)
= 2

((5i − 12
5i − 13

))
for i ≥ 3. Since Q(p1)≤ 8/3, Q(p2)≤ 16/7 we have

Q(m)≤
1

2t−1

8
3

16
7

t1∏
i=3

2
(5i − 12

5i − 13

)
=

27

2t0−1+t1 · 21
2t1−2

t1∏
i=3

(5i − 12
5i − 13

)

=
26−t0

21

t1∏
i=3

(5i − 12
5i − 13

)
. �

Here is a table of bounds for m when t0 = 0; similar tables for 2r 5sm can be
constructed. For the second bound, we use 8/3 and 64/21 when t = 1 and 2
respectively.

t1 1 2 3 4 5 6 7

First Bound 2.667 3.556 4.741 (over 6)

Second Bound 2.667 3.048 4.572 5.225 5.660 5.993 (over 6)

We could, with much work, obtain progressively sharper bounds for large t1 by
noticing that our bounds constructed above use the fact that there are at most two
primes whose last digit is 3 or 7 between 10z and 10(z+ 1); there may be fewer,
e.g. when z = 2 or 3.

5. Questions

We conclude with several conjectures and questions. Many of the these relate
directly to Wall’s conjecture or other well-known questions. We start with the
obvious

Conjecture 5.1. Q(pe)= Q(p) for all primes p.
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Notice that this is equivalent to Wall’s conjecture since if

Q(pe)= k(pe)/pe
= k(p)/p = Q(p)

then k(pe)= pe−1k(p).

Theorem 3.7 established that the image of Q , viewed as a function Z+→ Q,

does not include numbers which cannot be expressed with denominators divisible
by a Fibonacci prime power greater than one. It seems likely that this result extends.

Conjecture 5.2. For any prime p, Q(n) 6= t
p j u for all n and any t relatively prime

to p, and j ≥ 2.

If Conjecture 5.1 is true, then by Theorem 3.7 (2) so is this one. There is a
partial converse.

Proposition 5.3. If Conjecture 5.2 is true, then Wall’s Conjecture is true when
either e 6= 2 or p ≡±1(mod 10).

Proof. Suppose Conjecture 5.2 holds. We know Wall’s Conjecture holds when
p = 2, so hereafter we assume p 6= 2. We have

Q(pe)=
k(pe)

pe .

Since the denominator, when reduced, can have at most one power of p we see
that pe−1 must divide the numerator. Thus k(pe)≥ pe−1. If e ≥ 3 then

k(pe)≥ pe−1
≥ p2 > 2(p+ 1)≥ k(p)

since p ≥ 3. Thus if k(pt) = k(p) then t = 1 or 2. Finally, if e ≥ 2 and p ≡
±1(mod 10) then

pe−1
≥ p > p− 1≥ k(p)

and hence k(pt)= k(p) can only occur if t = 1. �

We saw that the “unit disk preimage” U is closed under multiplication by rela-
tively prime numbers, and Lemma 4.5 can be used to show that U is closed under
powers, i.e. u ∈ U implies ui

∈ U for all i ≥ 1. This suggests that the following
may be true.

Conjecture 5.4. If m, n ∈U, then mn ∈U .

Note that the converse to this is not true: Q(3) = 8/3 and Q(7) = 16/7, so
3, 7 /∈ U ; however Q(21) = 16/21 and hence 21 ∈ U. If this conjecture is true
then U is a semigroup; furthermore V :=

{
n ∈ Z+ | Q(n)≤ 1

}
is a monoid since

Q(1)= 1.

The final two conjectures are motivated by the empirical observation that k(p)

is often p− 1 or 2(p+ 1).
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Conjecture 5.5. There are an infinite number of primes with Q(p)= 2(1+1/p).

If there are an infinite number of Mersenne primes 2q
− 1 with q ≡ 3(mod 4)

then this conjecture is true.

Conjecture 5.6. There are an infinite number of primes with Q(p)= (1− 1/p).

If there are an infinite number of Sophie Germaine primes with q≡−1(mod 10)

then this conjecture is true. Alternatively, if one could show that there are an infinite
number of length four Cunningham chains of the first kind then the conjecture
would be proved.

Finally, viewing Q once again as a function Z+→ Q we can ask a variety of
questions about the image. Let Q be the image of Q, and let I = [0, 6]∩Q. What
are the topological properties of Q as a subset of I ? Is it dense? What are its limit
points? We know that 0 is an accumulation point since {Q(F2k+1)} is a strictly
decreasing sequence in Q converging to 0. (This also establishes that Q is infinite.)
Thus Q is certainly not a closed set – what is its closure in I ?. If there are an infinite
number of Fibonacci primes then 0 would be a boundary point since 1

p2 /∈ Q for
all Fibonacci primes. (In fact we have that every point in Q is a boundary point
since for each q ∈ Q any each ε > 0 there exists a t/2i , t odd, i ≥ 2 such that∣∣q − t/2i

∣∣ < ε.) The two previous conjectures would also imply that 1 and 2 are
accumulation points. Are there others? Is 6 an isolated point? What about 4?
If these points are isolated than Q cannot be open in I . A topological study of Q

seems to be interesting in its own right, as well as a useful way to gain more insight
into k(n).
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