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For an integer t≥1 and a partition λ, we let Ht (λ) be the multiset of hook lengths
of λ which are divisible by t . Then, define aeven

t (n) and aodd
t (n) to be the number

of partitions of n such that |Ht (λ)| is even or odd, respectively. In a recent
paper, Han generalized the Nekrasov–Okounkov formula to obtain a generating
function for at (n)= aeven

t (n)−aodd
t (n). We use this generating function to prove

congruences for the coefficients at (n).

1. Introduction and statement of results

Let p(n) denote the number of integer partitions of n. Ramanujan proved the
following important congruence relations for the partition function, which hold for
all nonnegative n:

p(5n+ 4)≡ 0 (mod 5),

p(7n+ 5)≡ 0 (mod 7), (1-1)

p(11n+ 6)≡ 0 (mod 11).

These congruences can be proven through q-series identities or with the theory of
modular forms; both methods rely on the following generating function for p(n):
∞∑

n=0

p(n)qn
=

∞∏
n=1

1
(1−qn)

= 1+q+2q2
+3q3

+5q4
+7q5

+11q6
+· · · . (1-2)

Recently, Nekrasov and Okounkov [2006] generalized Equation (1-2) by dis-
covering a combinatorial interpretation of

∏
∞

n=1(1− qn)b, for b ∈ C, in terms of
partition hook lengths. Here we briefly recall their results, beginning by introduc-
ing the necessary notation.
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A Ferrers diagram, a pictorial representation of a partition, allows us to define
the hook length of a box in the partition. The hook length of a box in the Ferrers
diagram is the sum of the number of boxes in the same column below it, the number
of boxes in the same row and to the right, and one for the box. For example,
consider the partition 5+3+2 of 10. Its Ferrers diagram, with hook lengths filled
in, is:

7 6 4 2 1
4 3 1
2 1

We define H(λ), the hook length multiset of a partition λ, to be the multiset of hook
lengths in each box in the Ferrers diagram of λ. We can then define Ht(λ)⊆H(λ)

to be the multiset of hook lengths of boxes in the partition that are multiples of t .
Nekrasov and Okounkov proved the following formula which uses these com-

binatorial objects, and holds for any complex b:∑
λ∈P

q |λ|
∏

h∈H(λ)

(
1−

b
h2

)
=

∏
n≥1

(1− qn)b−1.

More recently, Han obtained a generalization of this formula. A specialization
of it gives useful infinite-product generating functions for the series

∞∑
n=0

at(n)qn
=

∑
λ∈P

q |λ|(−1)#Ht (λ) =

∞∏
n=1

(1− q4tn)t(1− q tn)2t

(1− q2tn)3t(1− qn)
. (1-3)

Remark 1.1. For t = 1, the sum over partitions is easy to understand directly: we
have H1(λ)=H(λ), so a1(n)= (−1)n p(n).

A number of congruences of the coefficients at(n) are a direct consequence
of the Ramanujan congruences in (1-1) combined with Han’s generating function
(1-3). Namely, for all n ≥ 0, one has

at(5n+ 4)≡ 0 (mod 5) if t = 1 or 5|t,
at(7n+ 5)≡ 0 (mod 7) if t = 1 or 7|t,

at(11n+ 6)≡ 0 (mod 11) if t = 1 or 11|t.

Here, we are interested in further congruences of the form at(An+ B).
Our search for such congruences over small arithmetic progressions and with

small prime moduli yielded just one Ramanujan-type congruence that was not of
the above form.

Theorem 1.2. If n ≥ 0, then a2(5n+ 4)≡ 0 (mod 5).
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This congruence can be proven through q-series identities, which can in turn be
proven using the theory of modular forms. More generally, we have:

Theorem 1.3. If 3 - t and ` > 3t3
+ t is prime, a positive proportion of primes p

satisfy

at

(
p3`n+ 1

24

)
≡ 0 (mod `),

for all n coprime to p.

Remark 1.4. Saying that a positive proportion of primes satisfy a condition means
that the limit

lim
n→∞

#{p ≤ n : p prime, and p satisfies the condition}
#{p ≤ n : p prime}

exists and is strictly positive.

Corollary 1.5. For t, `, p satisfying the previous theorem, there are linear con-
gruences

at(p4`n+ bp)≡ 0 (mod `),

for a fixed bp < p4` and all nonnegative integers n.

To prove this, we also use methods of the theory of modular forms. Such meth-
ods were first employed by Ono [2000] and Ahlgren and Ono [2001] to prove the
existence of classes of congruences for the partition function. We apply similar
arguments to the generating functions for the at(n).

Remark 1.6. Treneer [2006] extended the arguments in [Ono 2000] and [Ahlgren
and Ono 2001] in a general way, to prove congruences for the coefficients of all
weakly holomorphic modular forms. This result can be applied to our generating
function to obtain similar conclusions. However, we proceed by other methods to
obtain explicit constructions.

In Section 2, we discuss Han’s generating function, and relate it to the theory of
modular forms. In Section 3, we prove Theorem 1.2, and in Sections 4 and 5, we
prove Theorem 1.3.

2. Han’s generating function and modular forms

Han’s Generating Function. Han [2008] proved the Nekrasov–Okounkov for-
mula using combinatorial methods, and obtained the following generalization:

Theorem 2.1. For any positive integer t , and complex numbers b, y, we have∑
λ∈P

q |λ|
∏

h∈Ht (λ)

(
y−

t yb
h2

)
=

∞∏
n=1

(1− q tn)

(1− (yq t)n)t−b(1− qn)
.
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Taking b=0 and y=−1, the left side reduces to the generating functions
∑

at(n)qn

that we are interested in:

∞∑
n=0

at(n)qn
=

∞∏
n=1

(1− q tn)

(1− (−q t)n)t(1− qn)
.

Manipulating the terms of the infinite product gives the following formula:

∞∑
n=0

at(n)qn
=

∞∏
n=1

(1− q4tn)t(1− q tn)2t

(1− q2tn)3t(1− qn)
.

Our results depend on the modularity of these series, which we explain in the
next section.

Modularity of
∑

at(n)qn. Recall the definition of Dedekind’s η-function, where
we let q = e2π i z:

η(z)= q1/24
∞∏

n=1

(1− qn).

Using this definition and the infinite product generating function we can write
∞∑

n=0

at(n)qn
= q1/24η(4t z)tη(t z)2t

η(2t z)3tη(z)
.

Replacing z by 24z, we have
∞∑

n=0

at(n)q24n−1
=
η(96t z)tη(24t z)2t

η(48t z)3tη(24z)
.

Combining Theorem 1.65 in [Ono 2004] about integer-weight η-quotients with
the transformation properties for η(24z), we have:

Theorem 2.2.
∑
∞

n=0 at(n)q24n−1 is a weakly holomorphic modular form of weight
−1/2 on the congruence subgroup 00(2304t), with character χ(d)=

(
(2t 3)/d

)
.

3. Proof of Theorem 1.2

A q-series identity. The key step to the proof that a2(5n+ 4) ≡ 0 (mod 5) is the
following q-series identity, which can be proven from the theory of modular forms:

Theorem 3.1. The following identity is true:
∞∏

n=1

(1− q4n)2(1− qn)2

1− q2n =

∑
n∈Z

(1− 3n)q3n2
−2n.
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Proof. Let q = e2π i z , and define

f (z)=
∏
n≥1

(1− q4n)2(1− qn)2

1− q2n , g(z)=
∑
n∈Z

(1− 3n)q3n2
−2n.

We will prove that q f (3z) and q g(3z) are both modular forms in the same finite-
dimensional space. Thus, to show equality it suffices to show that a finite number
of terms in the q-expansion of q( f (3z)−g(3z)) are zero; this implies f (z)= g(z).

We can write q f (3z) as a quotient of Dedekind’s eta-functions:

q f (3z)= q
∞∏

n=1

(1− q12n)2(1− q3n)2

1− q6n =
η(12z)2η(3z)2

η(6z)
.

By the standard theory of eta-quotients (as in [Ono 2004, Section 1.4]), this is a
cusp form of weight 3/2, level 144, and character χ(d)= (3/d).

On the other hand, q g(3z) can be expressed as a Jacobi theta function. Define
ψ(n) to be the Dirichlet character (n/3). As in [Ono 2004, Section 1.3.1], define

θ(ψ, 1, z)=
∞∑

n=1

ψ(n)nqn2
,

which is a cusp form of weight 3/2, level 36, and character χ(d) = (3/d). By
periodicity of ψ , we have

θ(ψ, 1, z)= ψ(0)
∞∑

n=1

3nq(3n)2
+ψ(1)

∞∑
n=0

(3n+1)q(3n+1)2
+ψ(2)

∞∑
n=0

(3n+2)q(3n+2)2

=

∞∑
n=0

(3n+1)q(3n+1)2
−

∞∑
n=0

(3n+2)q(3n+2)2

=−

∞∑
n=−∞

(1−3n)q(3n−1)2
=−q

∑
n∈Z

(1−3n)q3(3n2
−2n)
=−q g(3z).

Therefore, both q f (3z) and q g(3z) are in S3/2(00(144), χ), so to check equal-
ity it suffices [Sturm 1987, Theorem 1] to check equality of the first k/24[00(1) :
00(144)] = 18 coefficients. Thus, we have

f (z)= g(z)= 1− 2q + 4q5
− 5q8

+ 7q16
− 8q21

± · · · . �

Proof of the congruence. We can now prove that a2(5n + 4) ≡ 0 (mod 5). First,
note that we can formally factor the generating function for a2(n). By doing so
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and applying the binomial theorem mod 5, we have

∞∑
n=0

a2(n)qn
=

∞∏
n=1

1
(1− q4n)5

∞∏
n=1

(1− q8n)2(1− q2n)2

(1− q4n)

∞∏
n=1

(1− q2n)2

(1− qn)

≡

∞∏
n=1

1
(1− q20n)

∞∏
n=1

(1− q8n)2(1− q2n)2

(1− q4n)

∞∏
n=1

(1− q2n)2

(1− qn)
(mod 5).

Using the partition generating function (1-2), Theorem 3.1, and an identity of Ja-
cobi, we can write

∞∑
n=0

a2(n)qn
=

( ∞∑
i=0

p(i)q20i
)(∑

k∈Z

(1− 3k)(q2)3k2
−2k
)( ∞∑

m=0

q(m
2
+m)/2

)
.

A coefficient a2(5n+ 4) will thus be a sum of terms p(i) · (1− 3k) · 1 where

20i + 6k2
− 4k+

m2
+m
2
≡ 4 (mod 5).

We can check that this only holds when m ≡ k ≡ 2 (mod 5). For such terms,
1− 3k ≡ 0 (mod 5), so a2(5n+ 4)≡ 0 (mod 5). �

4. Sieved generating functions and cusp forms mod `

To prove the existence of an infinite class of congruences, we follow similar ar-
guments to those used by Ono [2000] and Ahlgren and Ono [2001] to prove con-
gruences for the partition function. We first construct a cusp form congruent to a
sieved version of our original generating function

∞∑
n=0

at(n)qn.

Theorem 4.1. If 3 - t and ` > 3t3
+ t is prime, there exists a half-integer weight

cusp form gt,`(z) with a q-series expansion satisfying the congruence

gt,`(z)≡
∞∑

n=0

at(`n+β`)q24n+ 24β`−1
` (mod `),

where β` satisfies 24β` ≡ 1 (mod `) and 0< β` < `.

We can rewrite the sieved generating function as

∞∑
n=0

at(`n+β`)q24n+ 24β`−1
` =

∑
n≥0

`n≡−1 (mod 24)

at

(`n+ 1
24

)
qn.
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If we take at(m) = 0 for any noninteger m, then the conclusion of Theorem 4.1
can be written as

gt,`(z)≡
∞∑

n=0

at

(`n+ 1
24

)
qn (mod `). (4-1)

Preliminaries for Proof. We define the functions

Ft(z)=
η(4t z)tη(t z)2t

η(2t z)3tη(z)
= q−1/24

∞∑
n=0

at(n)qn,

Ht,`(z)= η(z)`η(2t z)5t`η(4t z)3t`η(t z)2t`,

G t,`(z)= Ft(z)Ht,`(z)`.

By standard facts about eta-quotients (as in [Ono 2004, Section 1.4]), G t,`(z) is
an integer-weight cusp form on 00(4t) and Ht,`(24z) is a half-integer weight cusp
form on 00(2304t). We relate the sieved generating function from Theorem 4.1 to
these functions by:

Lemma 4.2. The following congruence between q-series expansions holds:

G t,`(z)|T (`)≡ Ht,`(z)
∞∑

n=0

at(`n+β`)qn+ 24β`−1
24` (mod `).

Here we let T (`) denote the `-th Hecke operator( ∞∑
n=0

b(n)qn
)
|T (`)=

∞∑
n=0

(
b(`n)+χ(`)`k−1b(n/`)

)
qn,

where k and χ are the weight and character of the form
∑
∞

n=0 b(n)qn .

Proof. Define δ` = (`2
− 1)/24, which is an integer for all primes ` ≥ 5. By

definition of G t,`(z) and η, we have

G t,`(z)=
( ∞∑

n=0

at(n)qn+δl
)

q t2`2
∞∏

n=1

(1−qn)`
2
(1−q2tn)5t`2

(1−q4tn)3t`2
(1−q tn)2t`2

.

Applying the binomial theorem mod ` gives

G t,`(z)≡ q t2`2
∞∏

n=1

(1− qn`2
)(1− q2t`2n)5t(1− q4t`2n)3t(1− q t`2n)2t

·

( ∞∑
n=0

at(n)qn+δl
)

(mod `).
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The T (`) operator is equivalent mod ` to the U (`) operator, which is defined as( ∞∑
n=0

b(n)qn
)
|U (`)=

∞∑
n=0

b(`n)qn.

We apply T (`) to the left side and U (`) to the right side to obtain

G t,`(z)|T (`)≡ q t2`
∞∏

n=1

(1− qn`)(1− q2t`n)5t(1− q4t`n)3t(1− q t`n)2t

·

( ∞∑
n=0

at(`n+β`)qn+ β`+δ``

)
≡ Ht,`(z)

( ∞∑
n=0

at(`n+β`)qn+ 24β`−1
24`

)
(mod `). �

We define
gt,`(z)=

G t,`(z)|T (`)|V (24)
Ht,`(24z)

.

Lemma 4.2 tells us that gt,`(z) is congruent mod ` to our sieved generating func-
tion. Thus, to prove Theorem 4.1 we need to show that gt,`(z) is a cusp form.

Proof of Theorem 4.1. It suffices to prove that (G t,`(z)|T (`))/Ht,`(z) vanishes at
all of the cusps, since applying V (24) will preserve cuspidality. Since the Hecke
operator preserves the level, G t,`(z)|T (`) is a form on 00(4t); standard facts about
eta-quotients show that Ht,`(z)24 is a form on 00(4t) as well.

Since the order of vanishing of Ht,`(z) at any cusp is 1/24-th of the order of
vanishing of Ht,`(z)24 at that cusp, it suffices to consider orders of vanishing on a
set of cusps containing a representative for each equivalence class on 00(4t). The
cusps of the form c/d , where d|4t and (c, d)= 1, form such a set. We can divide
the allowed values of d into three classes: d = T , d = 2T , and d = 4T , where T |t
and, for the latter two cases, 2T - t .

Let ordc/d f denote the invariant order of vanishing of a function f at a cusp
c/d . We can compute:

d = T : ordc/d G t,` =
3T 2
− 4+ 21T 2`2

+ 4`2

96
, ordc/d Ht,` =

21T 2`+ 4`
96

,

d = 2T : ordc/d G t,` =
−3T 2

− 1+ 15T 2`2
+ `2

24
, ordc/d Ht,` =

15T 2`+ `

24
,

d = 4T : ordc/d G t,` =
−1+ 24T 2`2

+ `2

24
, ordc/d Ht,` =

24T 2`+ `

24
.

Applying a Hecke operator T (`) to a function takes the q-series expansion at a
cusp c/d to a linear combination of q-series expansions around cusps of the form
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c′/d, with q replaced by q1/`. Because the order of vanishing depends only on the
denominator, we have

ordc/d G t,`(z)|T (`)≥
1
`

ordc/d G t,`(z).

Since G t,`(z)|T (`) is a form on 00(4t), we know that its order of vanishing must
be of the form A/4t , where A is an integer. Using this fact, we can analyze the
behavior at each cusp, and show that ordc/d G t,`(z)|T (`) > ordc/d Ht,`(z). For
instance, at cusps c/d where d = 2T , we have

ordc/d G t,`(z)|T (`)=
A
4t
≥

1
24

(
−3T 2

− 1
`

+ 15T 2`+ `
)
.

This gives

6A ≥
−3T 2t − t

`
+ 15T 2t`+ t`.

By hypothesis, ` > 3t3
+ t ≥ 3T 2t + t ; hence

0>
−3T 2t − t

`
>−1.

Since the other terms in the inequality are integers, we must have

6A ≥ 15T 2t`+ t`.

If equality held, the equation would reduce to 0 ≡ t` (mod 3); since t, ` are co-
prime to 3, we must have the strict inequality 6A > 15T 2t`+ t`. We therefore
obtain the desired inequality

ordc/d G t,`(z)|T (`)=
A
4t
>

15T 2`+ `

24
= ordc/d Ht,`.

A similar analysis at cusps c/d where d = T and d = 4T shows that

ordc/d G t,`(z)|T (`) > ordc/d Ht,`(z),

as well. Therefore,

ordc/d
G t,`(z)|T (`)

Ht,`(z)
> 0

at all cusps. �
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5. Proof of Theorem 1.3

We can now consider applying Hecke operators to function gt,`(z); modulo `, this
is equivalent to applying them to the sieved generating function

∞∑
n=0

at(`n+β`)q24n+ 24β`−1
` .

For a half-integral weight modular form

f (z)=
∞∑

n=0

b(n)qn
∈ Sλ+ 1

2
(00(N ), χ)

and a prime p, the Hecke operator T (p2) is defined by

f (z)|T (p2)=

∞∑
n=0

(
b(p2n)+χ(p)

((−1)λn
p

)
pλ−1b(n)+χ(p2)p2λ−1b(n/p2)

)
qn.

Following the methods of Ono [2000], we will prove the following theorem,
from which we can obtain congruences of the desired type.

Theorem 5.1. If (t, 3)= 1 and ` > 3t3
+3 is prime, then for a positive proportion

of primes p,
∞∑

n=0

at(`n+β`)q24n+ 24β`−1
` ≡ 0 (mod `).

A Theorem of Serre and the Shimura Correspondence. The proof of Theorem
5.1 relies on two important theorems, one of Serre and one of Shimura. Serre
[1976] proves that many Hecke operators annihilate modulo ` an integer weight
space of cusp forms.

Theorem 5.2 (Serre). Consider a fixed space of cusp forms Sk(00(N ), χ), where
k is an integer. The set of primes p≡−1 (mod N ) such that f |T (p)≡ 0 (mod `)
for all f ∈ Sk(00(N ), χ) has positive density.

To apply this to the half-integer weight case, we use the Shimura correspondence
[Shimura 1973] to relate integer weight and half-integer weight forms.

Theorem 5.3 (Shimura). Let f =
∑
∞

n=1 b(n)qn be a half-integer weight cusp form
in Sλ+1/2(00(4N ), ψ). For a positive integer r , define Sr ( f ) by

Sr ( f )(z)=
∞∑

n=1

Ar (n)qn,

∞∑
n=1

Ar (n)
ns = L(s− λ+ 1, ψχλ

−1χt)

∞∑
n=1

b(rn2)

ns ,

where χ−1 and χt are the Kronecker characters for Q(i) and Q(
√

t). Then

Sr ( f ) ∈ S2λ(00(4N ), ψ2).
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Moreover, if p - 4N is prime, then Sr
(

f |T (p2)
)
= Sr ( f )|T (p).

Combining these two theorems will give us an analogue to Serre’s theorem for half-
integer weight modular forms, which proves the existence of primes that annihilate
our sieved generating function.

Proof of Theorem 5.1. Let Pt,` be the set of primes p ≡ −1 (mod 2304t) such
that f |T (p2) ≡ 0 (mod `) for all f ∈ S2λ(00(2304t), χ0), where χ0 is the trivial
Dirichlet character, and λ+ 1/2 is the weight of the form gt,`(z) constructed in
Section 4. By Serre’s Theorem, Pt,` has positive density in the set of primes.

Furthermore, Sr (gt,`), the image of g under the t-th Shimura correspondence,
is in S2λ(00(2304t), χ0). So, for any p ∈ Pt,`,

Sr (gt,`)|T (p)= Sr (gt,`|T (p2))≡ 0 (mod `).

By construction of the Shimura correspondence, if Sr ( f )≡ 0 (mod `), then f ≡ 0
(mod `). So, for all p ∈ Pt,`, gt,`|T (p2)≡ 0 (mod `). �

Proof of Theorem 1.3. From Theorem 5.1, for a positive proportion of primes p
and all m,

bt,`(p2m)+χ(p)
((−1)λm

p

)
pλ−1bt,`(m)+χ(p2)p2λ−1bt,`(m/p2)≡ 0 (mod `),

where bt,`(n) is the coefficient of qn in the Fourier expansion of gt,`(z).
In particular, consider m = pn for some n coprime to p. Then m/p2 is not an

integer, and bt,`(m/p2) = 0; furthermore the Legendre symbol
(
((−1)λm)/p

)
is

zero. Recalling Equation (4-1), we have

bt,`(p3n)≡ at

(
p3`n+ 1

24

)
≡ 0 (mod `),

which proves Theorem 1.3. �

Proof of Corollary 1.5. Let 0 ≤ r ≤ 24 satisfy r p` ≡ −1 (mod 24). Replacing n
by 24pn+ r , we obtain

at

(24p4`n− r p3`+ 1
24

)
= at(p4`n+ bp)≡ 0 (mod `),

where bp = (r p3`+ 1)/24 is an integer. �
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