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We resolve several conjectures regarding the boundedness character of the ratio-
nal difference equation

xn =
α+ δxn−3

A+ Bxn−1+Cxn−2+ Exn−4
, n ∈ N.

We show that whenever parameters are nonnegative, A < δ, and C, E > 0, un-
bounded solutions exist for some choice of nonnegative initial conditions. We
also partly resolve a conjecture regarding the boundedness character of the ra-
tional difference equation

xn =
xn−3

Bxn−1+ xn−4
, n ∈ N.

We show that whenever B > 25, unbounded solutions exist for some choice of
nonnegative initial conditions.

1. Introduction

Palladino [2009a] studies a trichotomy behavior of the k-th order rational difference
equation with nonnegative parameters and nonnegative initial conditions,

xn =
α+

∑k
i=1 βi xn−i

A+
∑k

j=1 Bj xn− j
, n ∈ N.

Palladino established that there is a trichotomy behavior which is dependent on
the relation between A and

∑k
i=1 βi . In particular, in this paper, it was established

that, under certain conditions, when A<
∑k

i=1 βi unbounded solutions exist. Here
we will broaden that proof of unboundedness and show that when A <

∑k
i=1 βi

unbounded solutions exist under different conditions. In Section 2 we present a
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proof based on [Palladino 2009a, Section 5] which serves to generalize this work.
An immediate consequence of this, as discussed later, will be to show that whenever
parameters are nonnegative, A < δ, and C, E > 0, unbounded solutions exist for
some choice of nonnegative initial conditions for the rational difference equation,

xn =
α+ δxn−3

A+ Bxn−1+Cxn−2+ Exn−4
, n ∈ N.

This resolves the conjectures regarding boundedness character for equations 609,
611, 617, and 619 presented in [Camouzis and Ladas 2008].

In Section 3, we partially resolve Conjecture 2 in [Palladino 2009a]. We show
that the rational difference equation

xn =
xn−3

Bxn−1+ xn−4
, n ∈ N,

has unbounded solutions whenever B > 25. In the process, we resolve the con-
jecture in [Camouzis and Ladas 2008] regarding the boundedness character of
equation 584. The proof here will use similar techniques to those presented in
[Lugo and Palladino ≥ 2009].

2. Preliminary results

During this section we use the ideas of modulo classes. Let us introduce these
ideas in the following remark.

Remark 1. We say that a is congruent to b with modulus c and write a ≡ b mod c
if c | a−b. It is well known that given z ∈ Z, there exists a ∈ {0, . . . , c−1} so that
z ≡ a mod c. We call such a the residue of z with respect to the modulus c, and
write a = z mod c.

Here we introduce a condition which allows us to construct unbounded solu-
tions, namely Condition 1. Before doing so let us first introduce some notation.
Let us define the following sets of indices:

Iβ = {i ∈ {1, 2, . . . , k} | βi > 0} and IB = { j ∈ {1, 2, . . . , k} | B j > 0}.

These sets are used extensively in [Palladino 2009b] when referring to the k-th
order rational difference equation. Similarly we shall make extensive use of this
notation.

Condition 1. We say that Condition 1 is satisfied if, for some p ∈ N, p | gcd Iβ .
We also must have disjoint sets B, L ⊂ {0, . . . , p− 1} with B 6= ∅ and with the
following properties.

(1) For all b ∈ B, {(b− j)mod p : j ∈ IB} ⊂ L .

(2) For all ` ∈ L , there exists j ∈ IB so that (`− j)mod p ∈ B.
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We now present Theorem 1 which makes use of Condition 1. In the remainder
of this section we will verify Condition 1 for a number of special cases of the
fourth-order rational difference equation, thereby confirming several conjectures
in [Camouzis and Ladas 2008].

Theorem 1. Consider the k-th order rational difference equation

xn =
α+

∑k
i=1 βi xn−i

A+
∑k

j=1 Bj xn− j
, n ∈ N. (1)

Assume nonnegative parameters and nonnegative initial conditions. Further as-
sume that A <

∑k
i=1 βi and

∑k
i=1 βi > 0, and that Condition 1 is satisfied for

Equation (1). Then unbounded solutions of Equation (1) exist for some initial
conditions.

Proof. By assumption, we may choose p ∈ N and B, L ⊂ {0, . . . , p− 1} so that
Condition 1 is satisfied. Choose initial conditions x−m where m ∈ {0, . . . , k − 1}
so that the following holds. If (−m mod p) ∈ B, then

x−m >
2α
∑k

j=1 B j

(min j∈IB B j )((
∑k

i=1 βi )− A)
+

∑k
i=1 βi

min j∈IB B j
.

If (−m mod p) ∈ L , then

x−m <
(
∑k

i=1 βi )− A

2
∑k

j=1 B j
.

Also assume x−m > 0 for all m ∈ {0, . . . , k− 1}.
Under this choice of initial conditions our solution {xn} has the following prop-

erties.

(a) xn >
2α
∑k

j=1 B j

(min j∈IB B j )((
∑k

i=1 βi )− A)
+

∑k
i=1 βi

min j∈IB B j
whenever (n mod p) ∈ B.

(b) xn <
(
∑k

i=1 βi )− A

2
∑k

j=1 B j
whenever (n mod p) ∈ L .

(c) xn > 0 for all n ∈ N.

We prove this using induction on n; our initial conditions provide the base case.
Assume that the statement is true for all n ≤ N − 1. We show the statement for
n = N .

This induction proof has three cases. Let us begin by assuming (N mod p) ∈ B.
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Case (a). Condition 1(1) tells us that in this case {(N − j)mod p : j ∈ IB} ⊂ L .
Hence

xN− j <
(
∑k

i=1 βi )− A

2
∑k

j=1 B j
for all j ∈ IB .

Since p | gcd(Iβ), N mod p = (N − i)mod p for all i ∈ Iβ .Thus for all i ∈ Iβ ,

xN−i >
2α
∑k

j=1 B j

(min j∈IB B j )((
∑k

i=1 βi )− A)
+

∑k
i=1 βi

min j∈IB B j
.

Hence

xN =
α+

∑k
i=1 βi xN−i

A+
∑k

j=1 B j xN− j

≥

∑k
i=1 βi

A+ (
∑k

j=1 B j )
(
∑k

i=1 βi )− A
2
∑k

j=1 B j

( 2α
∑k

j=1 B j

(min
j∈IB

B j )((
∑k

i=1 βi )− A)
+

∑k
i=1 βi

min
j∈IB

B j

)

≥
2α
∑k

j=1 B j

(min j∈IB B j )((
∑k

i=1 βi )− A)
+

∑k
i=1 βi

min j∈IB B j
.

This inequality is obtained by simply replacing the terms in the denominator with
their upper bound, and replacing the terms in the numerator with their lower bound.
This finishes case (a).

Case (b). We now assume (N mod p)∈ L . Since p | gcd(Iβ), we have N mod p=
(N − i)mod p for all i ∈ Iβ . Hence

xN−i <
(
∑k

i=1 βi )− A

2
∑k

j=1 B j
for all i ∈ Iβ .

Condition 1(2) guarantees that there exists j ∈ IB so that

xN− j >
2α
∑k

j=1 B j

(min j∈IB B j )((
∑k

i=1 βi )− A)
+

∑k
i=1 βi

min j∈IB B j
.

Hence

xN =
α+

∑k
i=1 βi xN−i

A+
∑k

j=1 B j xN− j
<

α+ (
∑k

i=1 βi )
(
∑k

i=1 βi )−A
2
∑k

j=1 B j

(min j∈IB B j )

(
2α
∑k

j=1 B j

(min
j∈IB

B j )((
∑k

i=1 βi )−A)
+

∑k
i=1 βi

min
j∈IB

B j

)
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=

α+ (
∑k

i=1 βi )
(
∑k

i=1 βi )−A
2
∑k

j=1 B j

2α
∑k

j=1 B j

(
∑k

i=1 βi )−A
+
∑k

i=1 βi

=

2α
∑k

j=1 B j

(
∑k

i=1 βi )−A
+
∑k

i=1 βi

2α
∑k

j=1 B j

(
∑k

i=1 βi )−A
+
∑k

i=1 βi

(
(
∑k

i=1 βi )− A

2
∑k

j=1 B j

)
=
(
∑k

i=1 βi )− A

2
∑k

j=1 B j
. (2)

This finishes case (b).

Case (c). It is clear that if xn > 0 for n < N . Then xN > 0 so case (c) is trivial.

We now use the facts we obtained from our induction to prove that a particular
subsequence is unbounded. Take b ∈ B. We now show that {xmp+b}

∞

m=1 diverges
to∞. We explained earlier that

xmp+b− j <
(
∑k

i=1 βi )− A

2
∑k

j=1 B j
,

since {(mp+ b− j)mod p : j ∈ IB} ⊂ L . Hence,

xmp+b =
α+

∑k
i=1 βi xmp+b−i

A+
∑k

j=1 B j xmp+b− j
>

∑k
i=1 βi xmp+b−i

A+ (
∑k

j=1 B j )
(
∑k

i=1 βi )−A
2
∑k

j=1 B j

≥
(
∑k

i=1 βi )(mini∈{1,...,bk/pc}(xmp+b−i p))

A+ (
∑k

j=1 B j )
(
∑k

i=1 βi )−A
2
∑k

j=1 B j

≥
2
∑k

i=1 βi

A+
∑k

i=1 βi
min

i∈{1,...,bk/pc}
(xmp+b−i p), m ≥ k.

This is a difference inequality which holds for the subsequence {xmp+b} for m ≥ k.
We now rename this subsequence and apply the methods used in [Palladino 2008].
We set zm = xmp+b for m ∈ N. Since we have just shown that {zm} satisfies the
difference inequality

zm ≥
2
∑k

i=1 βi

A+
∑k

i=1 βi
min

i∈{1,...,bk/pc}
(zm−i ), m ≥ k,
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we can use the results of [Palladino 2008], particularly Theorem 3, to conclude
that for m ≥ k,

min(zm−1, . . . , zm−bk/pc)≥min(y
b m−k
bk/pcc

, . . . , ym−k),

where {ym}
∞

m=0 is a solution of the difference equation

ym =
2
∑k

i=1 βi

A+
∑k

i=1 βi
ym−1, m ∈ N, (3)

with y0 = min(zk−1, . . . , zk−bk/pc). Clearly every positive solution diverges to
∞ for the simple difference equation (3), since A <

∑k
i=1 βi . Hence using the

inequality we have obtained, {zm}
∞

m=1 diverges to ∞. Hence with given initial
conditions, there is a subsequence of our solution {xn}

∞

n=1, namely {xmp+b}
∞

m=1,
which diverges to ∞. Hence our solution {xn}

∞

n=1 is unbounded. So we have
exhibited an unbounded solution whenever A <

∑k
i=1 βi . �

Corollary 1. Consider the fourth-order order rational difference equation

xn =
α+ δxn−3

A+ Bxn−1+Cxn−2+ Exn−4
, n ∈ N. (4)

Assume nonnegative parameters and nonnegative initial conditions so that the de-
nominator is nonvanishing. Further assume that δ,C, E > 0.

(i) Whenever A > δ, the unique equilibrium is globally asymptotically stable.

(ii) Whenever A= δ and α > 0, the unique equilibrium is globally asymptotically
stable.

(iii) Whenever A = δ and α = 0, every solution of Equation (4) converges to a
periodic solution of period 3.

(iv) Whenever A < δ, then Equation (4) has unbounded solutions for some choice
of initial conditions.

Proof. Cases (i), (ii), and (iii) were shown in [Palladino 2009b].
We now prove case (iv). Let us check Condition 1. Choose B = {0} and L =
{1, 2}. Condition 1(1) is satisfied since for all b∈ B, namely b= 0, {(0− j)mod 3 :
j ∈ {2, 4}} = {(0− j)mod 3 : j ∈ {1, 2, 4}} = {1, 2}. Condition 1(2) is satisfied
since for 1 ∈ L , there exists 4 ∈ IB so that (1− 4)mod 3 = −3 mod 3 = 0 ∈ {0}.
Also for 2 ∈ L , there exists 2 ∈ IB so that (2− 2)mod 3 = 0 mod 3 = 0 ∈ {0}.
Furthermore

A < δ =
k∑

i=1

βi and
k∑

i=1

βi = δ > 0.
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Thus Theorem 1 applies and so in case (iv) Equation (4) has unbounded solutions
for some choice of initial conditions. �

Notice that Corollary 1 resolves conjectures 609, 611, 617, and 619 in [Camouzis
and Ladas 2008] regarding boundedness character.

3. The equation xn =
xn−3

Bxn−1+ xn−4

In [Palladino 2009a] it is conjectured that the difference equation

xn =
xn−3

Bxn−1+ xn−4
, n ∈ N,

has unbounded solutions whenever B > 0. We show that whenever B > 25 un-
bounded solutions exist for some choice of nonnegative initial conditions. This
does not fully establish the conjecture in [Palladino 2009a]. It does however es-
tablish the Conjecture 584 in [Camouzis and Ladas 2008]. We make use of the
argument structure presented in Lemma 1 of [Lugo and Palladino ≥ 2009]. Let us
repeat this lemma for the sake of the reader.

Lemma 1. Let {xn}
∞

n=1 be a sequence in [0,∞). Suppose that there exists D > 1
and hypotheses H1, . . . , Hk so that for all n ∈ N there exists pn ∈ N so that the
following holds. Whenever xn−i satisfies Hi for all i ∈ {1, . . . , k}, then xn+pn−i

satisfies Hi for all i ∈ {1, . . . , k} and xn+pn−1 ≥ Dxn−1. Further assume that for
some N ∈ N, xN−i satisfies Hi for all i ∈ {1, . . . , k} and xN−1 > 0. Then {xn}

∞

n=1
is unbounded. Particularly {xzm−1}

∞

m=1 is a subsequence of {xn}
∞

n=1 which diverges
to∞, where zm = zm−1+ pzm−1 and z0 = N.

Proof. Let zm= zm−1+ pzm−1 and z0= N . Using induction, we prove that given m ∈
N the following holds. xzm−1≥Dm xN−1 and xzm−i satisfies Hi for all i ∈{1, . . . , k}.
By assumption, xN−i satisfies Hi for all i ∈ {1, . . . , k} and xN−1 ≥ D0xN−1. This
provides the base case. Assume xzm−1−i satisfies Hi for all i ∈ {1, . . . , k} and
xzm−1−1 ≥ Dm−1xN−1. Using our earlier assumption this implies that there exists
pzm−1 so that xzm−1+pzm−1−i satisfies Hi for all i ∈ {1, . . . , k} and xzm−1+pzm−1−1 ≥

Dxzm−1−1 ≥ (D)Dm−1xN−1 = Dm xN−1.
So we have shown that xzm−1 ≥ Dm xN−1 for all m ∈N. Hence the subsequence
{xzm−1}

∞

m=1 of {xn}
∞

n=1 clearly diverges to∞ since D > 1. �

Theorem 2. Consider the fourth order rational difference equation,

xn =
xn−3

Bxn−1+ xn−4
, n ∈ N. (5)

Suppose B > 25. Then Equation (5) has unbounded solutions for some initial
conditions.
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Proof. We choose initial conditions so that

x−2 > B, x−3 <
1
4 ,

and one of the following holds:

(1) x0 <
1

4B
and x−1 <

1
B

;

(2) 1
4B
≤ x0 ≤ 2x−2 and x−1 <

1
B2x−2

;

(3) x0 > 2x−2 and x−1 <
1

B2x−2
.

We show that there exists D = 2 so that for all n ∈N there exists pn ∈ {2, 3, 5}
so that the following holds.

Whenever
xn−3 > B, xn−4 <

1
4 ,

and one of the following holds:

(1) xn−1 <
1

4B
and xn−2 <

1
B

;

(2) 1
4B
≤ xn−1 ≤ 2xn−3 and xn−2 <

1
B2xn−3

;

(3) xn−1 > 2xn−3 and xn−2 <
1

B2xn−3
;

then we have
xn+pn−3 > Dxn−3 > B, xn+pn−4 <

1
4 ,

and one of the following holds:

(1) xn+pn−1 <
1

4B
and xn+pn−2 <

1
B

;

(2) 1
4B
≤ xn+pn−1 ≤ 2xn+pn−3 and xn+pn−2 <

1
B2xn+pn−3

;

(3) xn+pn−1 > 2xn+pn−3 and xn+pn−2 <
1

B2xn+pn−3
.

First assume

xn−1 <
1

4B
, xn−2 <

1
B
, xn−3 > B, xn−4 <

1
4 .

In this case pn = 3. Since B > 25 we have

xn+pn−4 = xn−1 <
1

4B
< 1

4 .

Since xn−4 <
1
4 and xn−1 <

1
4B we have

xn+pn−3 = xn =
xn−3

Bxn−1+ xn−4
≥

xn−3

2 max (Bxn−1, xn−4)
> 2xn−3 > B.
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Since xn−2 <
1
B

,

xn+pn−2 = xn+1 =
xn−2

Bxn + xn−3
≤

xn−2

Bxn
<

1
B2xn

<
1

B3 <
1
B
.

Hence regardless of the value of xn+pn−1 one of our requirements is satisfied. If
xn+pn−1 <

1
4B then requirement (1) is satisfied. If 1

4B ≤ xn+pn−1 ≤ 2xn+pn−3 then
requirement (2) is satisfied. If xn+pn−1>2xn+pn−3 then requirement (3) is satisfied.

Next assume

1
4B
≤ xn−1 ≤ 2xn−3, xn−2 <

1
B2xn−3

, xn−3 > B, xn−4 <
1
4
.

In this case pn = 5. Since B > 25 we have

xn+pn−4 = xn+1 =
xn−2

Bxn + xn−3
<

xn−2

xn−3
<

1
B2x2

n−3
<

1
4
.

Since xn−2 <
1

B2xn−3
and B > 25 we have

xn+pn−3 = xn+2 =
xn−1

Bxn+1+ xn−2
≥

xn−1

2 max (Bxn+1, xn−2)

>
xn−1

2 max
( 1

Bx2
n−3

,
1

B2xn−3

) ≥ B2xn−3

8B
> 2xn−3 > B.

Also notice that

xn+pn−2 = xn+3 =
xn

Bxn+2+ xn−1
=

xn−3

(Bxn+2+ xn−1)(Bxn−1+ xn−4)

<
xn−3

Bxn+2(Bxn−1+xn−4)
<

8xn−3

B2xn−3(Bxn−1+xn−4)
<

8
B3xn−1

<
25

B2 <
1
B
.

Notice that

xn+pn−1 = xn+4 =
xn+1

Bxn+3+ xn
<

1
(B2x2

n−3)(Bxn+3+ xn)
<

1
B2x2

n−3xn

=
Bxn−1+ xn−4

B2x3
n−3

<
2Bxn−3+ .25

B2x3
n−3

<
3

Bx2
n−3

<
1

4B
.

Hence requirement (1) is satisfied in this case. Finally assume

xn−1 > 2xn−3, xn−2 <
1

B2xn−3
, xn−3 > B, xn−4 <

1
4
.
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In this case pn = 2. Immediately we have

xn+pn−4 = xn−2 <
1

B2xn−3
<

1
4
.

Also by assumption,
xn+pn−3 = xn−1 > 2xn−3 > B.

Further since xn−1 > 2xn−3,

xn+pn−2 = xn =
xn−3

Bxn−1+ xn−4
<

xn−3

Bxn−1
<

1
2B

<
1
B
.

Furthermore

xn+pn−1 = xn+1 =
xn−2

Bxn + xn−3
<

xn−2

xn−3
<

1
B2x2

n−3
<

1
4B
.

Hence requirement (1) is satisfied in this case, so after an application of Lemma 1
the proof is complete. �

4. Conclusion

As noted in the introduction, Theorem 2 partly resolves Conjecture 2 in [Palladino
2009a]; the latter, however, is only part of a larger conjecture, namely Conjecture
1 in the same reference. For convenience we restate this conjecture.

Conjecture 1. Consider the k-th order rational difference equation

xn =

∑k
i=1 βi xn−i∑k
j=1 B j xn− j

, n ∈ N. (6)

Assume nonnegative parameters and nonnegative initial conditions so that the de-
nominator is nonvanishing. Further assume that

∑k
i=1 βi > 0 and that there does

not exist j ∈ IB such that gcd(Iβ) | j . Then unbounded solutions of Equation (6)
exist for some initial conditions.

It would be interesting to study this conjecture further utilizing techniques sim-
ilar to that used in Theorem 2.
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