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In this paper we briefly introduce the reader to the concept of full covers and in-
dicate how it can be used to prove theorems in an undergraduate analysis course.
The technique exposes the student to the idea of covering an interval [a, b] with
a collection of sets and then extracting from this collection a subcollection that
partitions [a, b]. As a consequence, the student is furnished with a unifying
thread that ties together and simplifies the proofs of many theorems.

1. Introduction

We were first drawn to the concept of full covers after reading two papers by Botsko
[1987; 1989]. We then pursued this idea in [Klaimon 1990] and will now provide
full covering arguments for four more theorems: the Lebesgue Number Lemma,
the Intermediate Value Theorem for Derivatives, Baire’s Theorem, and Ascoli’s
Theorem.

The following definition and lemma are used in full covering arguments:

Definition. Let [a, b] be a closed, bounded interval. A collection C of closed
subintervals of [a, b] is a full cover of [a, b] if, for each x in [a, b], there corre-
sponds a number δ > 0 such that every closed subinterval of [a, b] that contains x
and has length less than δ belongs to C .

Thomson’s Lemma. If C is a full cover of [a, b], then C contains a partition of
[a, b]. In other words, there is a partition of [a, b] all of whose subintervals belong
to C.

The proof of the lemma is based upon a bisection argument and is easily ac-
cessible to undergraduates. It can be found in [Botsko 1987], [Botsko 1989] and
[Thomson 1980]. Thomson’s lemma is similar in concept and execution to the
version of the Heine–Borel theorem, which states that every open cover of a closed
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interval has a finite subcover. So the proof of any theorem that uses the Heine–
Borel theorem can be rewritten to use full covers. Our proof of the Lebesgue
Number Lemma illustrates this.

The advantage of full covering arguments lies in that the resulting finite subcover
of [a, b] is a partition of the interval. This extra condition can often be used to
streamline and simplify the proofs of certain theorems. For instance, in the proof
of the Intermediate Value Theorem for derivatives, we obtain a finite subcover
{Jk : k = 1, 2, . . . ,m} of [a, b] having the property that a function f defined on
[a, b] has a constant sign on each Jk . Since {Jk : k = 1, 2, . . . ,m} is a partition of
closed subintervals of [a, b], we can order the Jk so that Jk abuts Jk+1 to the left,
J1 contains a, and Jm contains b. It is then trivial to see that the sign of f on J1

determines the sign of f on each of the Jk, k = 2, 3, . . . ,m, and hence, determines
the sign of f on [a, b].

Another instance occurs in Baire’s Theorem. In the proof we have a function
f defined on [a, b] and a finite subcollection {Jk : k = 1, 2, . . . ,m} such that f is
bounded above on each Jk by a constant function 8k . Since {Jk : k = 1, 2, . . . ,m}
forms a partition of [a, b], the intervals can easily be ordered as before. Trivially,
the interiors of Jk do not intersect, so each interior point of Jk can be associated
with only one 8k value. By moving from left to right on [a, b], we then indicate a
well defined procedure that connects the graphs of each 8k and defines a continu-
ous function hε on [a, b]. Finally, the full covering argument offers a very efficient
iterative method for proving Ascoli’s Theorem.

We close this section by listing those theorems that have been proved using
this technique and that a student would normally encounter in an undergraduate
analysis course. We categorize them under four main topics and give a reference
for their proof.

Topology:

Heine–Borel Theorem [Botsko 1987, p. 452]. Any open cover of [a, b] has a finite
subcover.

Bolzano–Weierstrass Theorem [Botsko 1987, p. 452]. If S is a bounded infinite set
of real numbers, then S has an accumulation point.

Continuity and differentiability:

Theorem [Botsko 1987, p. 451]. If f is continuous on [a, b], then f is bounded on
[a, b].

Theorem [Klaimon 1990, p. 156]. If f is a continuous function on [a, b], there
exists points M and m on [a, b] such that f (M) ≥ f (x) and f (m) ≤ f (x) for all
x on [a, b].
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Theorem [Botsko 1987, p. 452]. If f is continuous on [a, b], then f is uniformly
continuous on [a, b].

Intermediate Value Theorem [Botsko 1987, p. 451]. If f is continuous on [a, b]
with f (a) f (b) < 0, then there exists x0 on (a, b) such that f (x0)= 0.

Remark. The same cover employed to prove this theorem will be used below to
prove the Intermediate Value Theorem for derivatives.

Theorem [Botsko 1989, p. 331; Klaimon 1990, p. 158]. If f ′(x) = 0 for all x on
[a, b], then f is constant on [a, b].

Theorem [Klaimon 1990, p. 160]. If f ′(x)>0 (<0) on (a, b), then f is increasing
(decreasing) on (a, b).

Remark. The proofs of these two theorems do not use the Mean Value Theorem
as is typically done.

Rolle’s Theorem [Klaimon 1990, p. 157]. If f is continuous on [a, b] and differ-
entiable on (a, b), and f (a) = f (b), there exists a point x0 on (a, b) such that
f ′(x0)= 0.

Integration:

Theorem [Botsko 1989, p. 330]. If f is continuous on [a, b], then f is Riemann
integrable.

Theorem [Botsko 1989, p. 331]. If f is bounded on [a, b] and continuous almost
everywhere, then f is Riemann integrable on [a, b].

Remark. By slightly modifying the cover in the first theorem, Botsko is able to
prove the stronger second theorem! This also works with other results, as pointed
out in [Botsko 1989].

Sequences:

Dini’s Theorem [Klaimon 1990, p. 159]. If fn(x) is a sequence of continuous
functions on [a, b] and fn(x) < fn+1(x) for all n and for all x in [a, b], and if
fn(x) converges to f (x) where f (x) is continuous on [a, b], then fn(x) converges
uniformly to f (x).

2. Four theorems proven using full covers

Lebesgue Number Lemma. Let = be an open cover of [a, b]. There exists a
number η > 0 such that if B is any subset of [a, b] with diameter B < η, then there
exists a set A ∈ = such that A ⊇ B.
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Proof. For each x in [a, b] and ε > 0, set Iε[x] = [x − ε, x + ε]. Let

C = {Iε[x] : Iε[x] ⊂ [a, b] and I2ε[x] is a subset of some A ∈ =}.

We first show that C is a full cover of [a, b]. Let x be an element of [a, b]. Since
= is an open cover of [a, b], there exists an A in = that contains x . Because A is
open, one can find a δ = δ(x) such that I2δ[x] is a subset of A. Let J be a closed
subinterval of [a, b] containing x such that |J |<δ. We can write J as Iε[x ′], where
x ′ is the midpoint of J and ε = δ/2. Since I2ε[x ′] is a subset of A, J is in C and
so C is a full cover of [a, b].

By Thomson’s Lemma, C contains a partition of [a, b]; that is, there exists a =
p0< p1< · · ·< pm = b such that [pk−1, pk]= Iε(k)[xk] is in C for k= 1, 2, . . . ,m.
Note that xk = (pk + pk−1)/2 and ε(k)= |pk−1− pk |/2.

Let η = min{ε(k)} and let B be a subset of [a, b] with diameter B < η. B
intersects Iε(k)[xk] for some k = 1, . . . ,m and hence B is a subset of I2ε(k)[xk],
which is contained in some A ∈ =. �

Intermediate Value Theorem for derivatives. If f (x) is the derivative for some
function g(x) on an open interval containing [a, b], and if f (a) f (b) < 0, then
there exists an x0 in (a, b) such that f (x0)= 0.

Proof. Suppose to the contrary that for all x on (a, b), f (x) 6= 0. Then f (x) 6= 0
on [a, b]. Let

C = {I : I is a closed subinterval of [a, b] and f (x) has one sign on I }.

Let x be in [a, b]. Assume for definiteness that f (x) > 0. We claim that there
exists a δ neighborhood about x such that f (y) > 0 for all y in this neighborhood.
Suppose the claim is false. Then one can find a sequence {yn}, where yn → x as
n→∞ and f (yn) < 0. Again, for definiteness, suppose {yn} approaches x from
the left. Since f (x) > 0, there exists a δ1 such that when |h|< δ1, g(x+h) < g(x)
if h < 0. By choosing n large enough, one can find yn such that |yn − x | < δ1

and so g(yn) < g(x). Since f (yn) < 0, there exists a δ2 neighborhood about yn

that is contained in the δ1 neighborhood about x such that if |h| < δ2 and h < 0,
then g(yn) < g(yn + h). Choose |h′|< δ2 and h′ < 0. Then yn + h′ < yn < x and
g(yn) < g(yn + h′) < g(x). By the Intermediate Value Theorem for Continuous
Functions, there exists an xn in [yn, x] such that g(xn)= g(yn+h′). Using Rolle’s
Theorem on [yn + h′, xn] one can find an x0 in [yn + h′, xn] such that f (x0) = 0.
This contradicts our assumption that f (x) 6= 0 for all x in [a, b]. So there must
be a δ > 0 such that f (y) > 0 for all y satisfying |y − x | < δ. Let J be a closed
interval containing x with |J | < δ. Then J is in C . A similar δ can be found if
f (x) < 0. Thus C is a full cover of [a, b].
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Using Thomson’s Lemma, C contains a partition of [a, b]; that is, there exist
a = p0 < p1 < · · ·< pm = b such that [pk−1, pk] = Ik is in C for k = 1, 2, . . . ,m.
Suppose f (x) > 0 on I1. Since the intervals overlap at the endpoints, we have
f (x)>0 on Ik for k=2, . . . ,m. But this contradicts our assumption f (a) f (b)<0.
The same contradiction results if f (x) < 0 on I1. So our original assumption that
f (x) 6= 0 on (a, b) is false. Consequently, there exists a point x0 on (a, b) such
that f (x0)= 0. �

Next, we present the proofs of two sequence theorems. For these theorems
we will need the following definitions. The function f is upper (lower) semi-
continuous at x if lim supy→x f (y) ≤ f (x) (lim infy→x f (y) ≥ f (x)). If f is
upper (lower) semi-continuous for all x on [a, b], then f is upper (lower) semi-
continuous on [a, b]. The family of functions � is equicontinuous on [a, b] if for
each x in [a, b] and ε > 0, there exists a δ = δ(x, ε) such that if |y − x | < δ,
then | f (y)− f (x)| < ε for all f in �. The family of functions � is uniformly
bounded on [a, b] provided there exists a constant M > 0 such that | f (x)| < M
for all x ∈ [a, b] and for all f ∈�.

Baire’s Theorem. Let f be upper (lower) semi-continuous on [a, b] and bounded
above (below) by M on [a, b]. Then there exists a sequence of continuous functions
{hn} such that, for all x in [a, b],

(i) M ≥ h1(x)≥ · · · ≥ hn(x)≥ · · · (M ≤ h1(x)≤ · · · ≤ hn, (x)≤ · · · ),

(ii) limn→∞ hn(x)= f (x).

Proof. Let M be the upper bound of f (x) on [a, b] and let ε be an arbitrarily small
positive number.

Define

C =
{

J : J is a closed subinterval of [a, b], |J |< ε, and there exists x in J

such that f (y)≤ f (x)+ ε for all y in J
}
.

Let x be an element in [a, b]. Since f is upper semi-continuous at x , there is
a δ(x) > 0 such that |y − x | < δ(x) implies f (y) ≤ f (x) + ε. We can further
assume that δ(x) < ε. Now let J be any closed interval of [a, b] containing x with
|J |< δ(x). If we set 8(y)= f (x)+ε for all y ∈ J , then f (y) <8(y) on J . Thus
J is in C and C is a full cover of [a, b].

By Thomson’s Lemma there exists a partition {Jk, k = 1, 2, . . .m} of [a, b]
contained in C . Hence, |Jk | < ε and on each Jk, k = 1, 2, . . . ,m, there is a point
xk such that the constant functions8k(x)= f (xk)+ε defined on Jk satisfy f (x)≤
8k(x) on Jk .

We first construct a function hε that will approximate f in a sense to be clarified
below. For each k, k = 1, 2, . . . ,m, let 8k also denote the constant value of 8k(x)
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on Jk . If 81 > 82, then connect the horizontal graph of 81(x) to that of 82(x)
by the line segment P1 P2 where P1 coincides with the end point of the graph of
81(x) and P2 lies 1/3 of the distance on the graph of 82(x). If 81 < 82, then
connect the horizontal graphs by the line segment P1 P2 where P1 is 2/3 of the
distance on the graph of 81(x) and P2 coincides with the initial point of the graph
of 82(x). Doing this for k = 1, 2, . . . ,m, we can construct a continuous function
hε(x) on [a, b] with the property f (x) ≤ hε(x) for all x on [a, b]. We will say
that hε approximates f in the following sense. Given any x ∈ [a, b], x ∈ Jk for
some k and either (x, hε(x)) will be on a horizontal step of hε or it will be on a
line segment connecting two consecutive steps. In either case, it is evident that

hε(x)≤ sup
|y−x |<2ε

f (y)+ ε,

since all Jk are of width at most ε.
We now construct the desired sequence {hn} ↓ f . For each n, let ε = 1/n

and let gn be a function constructed as hε was above. Define h1 = inf(g1,M),
h2 = inf(g2, h1), h3 = inf(g3, h2), and so on. For each x in [a, b], the sequence
{hn(x)} converges, since it is decreasing and bounded below by f (x). Moreover,
limn→∞ hn(x)≥ f (x). Since

hn(x)≤ sup
|y−x |<2/n

f (y)+ 1/n,

it follows that limn→∞ hn(x)≤ lim supy→x f (y)≤ f (x) for all x . Hence {hn} ↓ f ,
as claimed. �

Ascoli’s Theorem. Let� be a family of functions uniformly bounded and equicon-
tinuous at every point of a closed interval [a, b]. Then every sequence of functions
{ fn} in � contains a subsequence that converges uniformly on [a, b].

Proof. Consider a family of functions �, equicontinuous and uniformly bounded
on [a, b]. We first establish this claim:

For any sequence {gn}
∞

n=1 ⊆ � and positive number ε, there exists a subsequence
{gn(ε,k)}

∞

k=1 of {gn}
∞

n=1 such that n(ε, 1) > 1 and

|gn(ε,k)(y)− gn(ε,i)(y)|< ε for all y ∈ [a, b] and all k, i. (1)

To see this, fix ε > 0 and let

C =
{

J : J is a closed subinterval on [a, b] and for any {gn} ⊆�,

there exists a subsequence {gn(k)} of {gn} such that n(1) > 1

and |gn(k)(y)− gn(i)(y)|< ε on J for all k, i
}
.
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Let x be an element of [a, b]. Since � is equicontinuous, there exists a δ= δ(x, ε)
such that | f (x)− f (y)| < ε/3 for all f in � and y such that |y − x | < δ. Let
J be a closed interval containing x such that |J | < δ. We must show J is in C ;
so we begin with any sequence {gn} from �. Since {gn(x)} is bounded, it has a
subsequence {gn(s)(x)}, s = 1, 2, . . . , that converges. Convergent sequences are
Cauchy sequences, so we can choose S > 1 such that |gn(i)(x)− gn( j)(x)| < ε/3
if i, j > S. Consider the collection of functions gn(s), s > S, on [a, b]. Using the
triangle inequality, we have |gn(i)(y)− gn( j)(y)| < ε for all y in J and i, j > S.
In addition, n(S + 1) > 1. We relabel the sequence by writing s > S as S + k,
k = 1, 2, . . . and setting n(k) = n(S + k). The sequence {gn(k)} now satisfies
the conditions defining C . Thus J is in C and C is a full cover of [a, b]. Using
Thomson’s Lemma, we see that C contains a partition {Jh, h = 1, 2, . . . ,m} of
[a, b].

Let {gn} be any sequence from �. Since J1 is in C , there exists a subsequence
{gn(1,k)} of {gn} such that for all y on J1, |gn(1,k)(y)− gn(1,i)(y)| < ε for all k, i
and n(1, 1) > 1. Furthermore, {gn(1,k)} is a family of equicontinuous functions
uniformly bounded on [a, b]. Thus, on J2 there exists a subsequence {gn(2,k)} of
{gn(1,k)} such that for all y in J1 ∪ J2, |gn(2,k)(y)− gn(2,i)(y)| < ε for all k, i and
n(2, 1) > n(1, 1). By continuing this process on each subinterval Jh , for h =
3, 4, . . . ,m, we obtain a subsequence {gn(m,k)} of {gn} with the properties that
n(m, 1) > 1 and |gn(m,k)(y)− gn(m,i)(y)| < ε for all k, i and all y on [a, b]. This
sequence, with the change in labeling n(ε, k)= n(m, k), satisfies (1), so the claim
is proved.

We are now ready to conclude the proof of our theorem. Let { fn} be any se-
quence in �. Apply the claim with { fn} and 1 in place of {gn} and ε to obtain a
subsequence { fn(1,k)} of { fn} such that n(1, 1) > 1 and | fn(1,k)(y)− fn(1,i)(y)|< 1
for all k, i and all y on [a, b]. Apply the claim again with { fn(1,k)} and 1/2 in place
of {gn} and ε to obtain a subsequence { fn(2,k)} of { fn(1,k)} with the properties that
n(2, 1) > n(1, 1) and | fn(2,k)(y)− fn(2,i)(y)|< 1/2 for all k, i and all y on [a, b].
Continuing in this manner, construct for each p= 2, 3, . . . a subsequence { fn(p,k)}

of { fn(p−1,k)} such that n(p, 1) > n(p− 1, 1) and | fn(p,k)(y)− fn(p,i)(y)| < 1/p
for all k, i and all y in [a, b].

Now take the subsequence { fn(p,1) : p= 1, 2, . . . } of { fn}. If q > p then fn(q,1)

is equal to f(p,k) for some k = 2, 3, . . . . Thus, for all y in [a, b],

| fn(q,1)(y)− fn(p,1)(y)| = | fn(p,k)(y)− fn(p,1)(y)|< 1/p. (2)

This shows that { fn(p,1)(y)} is a Cauchy sequence, hence convergent. Let f (y)
denote its limit. By letting q →∞ in (2) we obtain | f (y)− fn(p,1)(y)| < 1/p,
which implies { fn(p,1) : p = 1, 2, . . . } converges uniformly to f on [a, b]. �
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3. Conclusion

Because of their wide applicability, full covering arguments should seriously be
considered as part of — or a supplement to — any elementary analysis course. In
addition, these arguments prepare the student for the more intricate covering-based
proofs of approximate and symmetric derivative theorems [Thomson 1980].
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