
inv lve
a journal of mathematics

mathematical sciences publishers

2009 Vol. 2, No. 3

Bifurcus semigroups and rings
Donald Adams, Rene Ardila, David Hannasch, Audra Kosh,

Hanah McCarthy, Vadim Ponomarenko and Ryan Rosenbaum



INVOLVE 2:3(2009)

Bifurcus semigroups and rings
Donald Adams, Rene Ardila, David Hannasch, Audra Kosh,

Hanah McCarthy, Vadim Ponomarenko and Ryan Rosenbaum

(Communicated by Scott Chapman)

A bifurcus semigroup or ring is defined as possessing the strong property that
every nonzero nonunit nonatom may be factored into two atoms. We develop
basic properties of such objects as well as their relationships to well-known
semigroups and rings.

1. Introduction and basic properties

Factorization theory has traditionally considered unique factorization as “good”,
and focused attention on semigroups whose factorization is close (in various precise
ways) to this ideal. We instead propose to consider semigroups that are by some
measures the “worst”, those whose factorization is as far as possible from this ideal.

Definition 1.1. We call an atomic semigroup bifurcus if every nonunit nonatom
can be factored into two atoms. We call a ring bifurcus if every nonzero nonunit
nonatom can be factored into two atoms. We call a bifurcus semigroup or ring
nontrivial if it contains at least one (nonzero) nonunit.

We do not require our semigroups to be commutative, cancellative, or possess
bounded factorization. We also do not require our rings to possess multiplicative
identities. In the sequel, we develop various properties of bifurcus semigroups
and rings and give some examples. For a background to factorization theory, see
[Geroldinger and Halter-Koch 2006]. For additional undefined terms, see [Baginski
et al. 2008; Chapman and Krause 2005].

We begin by presenting some basic properties and calculating standard factor-
ization invariants for bifurcus semigroups.

Theorem 1.1. Let S be a nontrivial bifurcus semigroup, and let x be a (nonzero)
nonunit nonatom in S. Then:

MSC2000: 20M14, 20M99.
Keywords: semigroup, monoid, factorization, bifurcus, Krull.
Research supported in part by NSF grant 0647384.

351

http://pjm.math.berkeley.edu/inv
http://dx.doi.org/10.2140/inv.2009.2-3


352 ADAMS, ARDILA, HANNASCH, KOSH, MCCARTHY, PONOMARENKO AND ROSENBAUM

(1) If S is either left or right cancellative, then S contains infinitely many atoms,
and the divisor closure [[x]] is not finitely generated.

(2) S contains no strong atoms.

(3) Let L(x) denote the set of factorization lengths of x , and let L(x)= sup L(x).
Then L(x) is the set of integers in [2, L(x)].

(4) The elasticity ρ(x) satisfies 2ρ(x) ∈ N∪ {∞}.

(5) The elasticity ρ(S) is∞.

(6) The delta set 1(S) equals {1}.

(7) The catenary degree c(S) equals 3.

(8) The tame degree t (S) is∞.

(9) The critical length of S is 3.

Proof.

(1) For each n ∈N, we write xn
= anbn , where ai , bi are atoms. Suppose that S is

left cancellative (right cancellative is similar). We will show that {a1, a2, . . .}

are distinct. Otherwise we have ai = ai+ j for some i, j ∈ N. We have
ai bi x j

= x i x j
= x i+ j

= ai+ j bi+ j = ai bi+ j . Applying left cancellation yields
a factorization of the atom bi+ j into nonunits, a contradiction. The second
statement holds since {a1, a2, . . .} ⊆ [[x]].

(2) Let y be a strong atom. Applying the bifurcus property we have y3
= ab,

for atoms a, b. Applying the strong atom property, a = εyα, b = ε′yβ , with
α+ β = 3 and ε, ε′ units. Without loss of generality α ≥ 2; but then a is not
an atom.

(3) It suffices to prove that if m ∈ L(x) with m ≥ 3, then m − 1 ∈ L(x). Let
x = b1b2b3 · · · bm be a factorization. By the bifurcus property b1b2b3 = cd,
hence x = cdb4 · · · bm , a factorization of length m− 1.

(4) Follows directly from the bifurcus property, which gives min L(x)= 2.

(5) Consider an for any atom a, as n→∞. sup L(an)≥ n, but inf L(an)= 2.

(6) Follows from property (3).

(7) Given any factorization of x , we iteratively apply the construction from (3) to
get a sequence of factorizations, each of distance three from each other, ending
in two atoms. Given two factorizations, we apply the preceding process twice
to get f1 → f2 → · · · → ab and g1 → g2 → · · · → cd . Reversing and
combining, we have a sequence of factorizations f1 → f2 → · · · → ab→
cd→ · · · → g2→ g1, each of distance at most three.

(8) Follows from (5) and [Geroldinger and Halter-Koch 2006, Theorem 1.6.6]
that gives ρ(S)≤ t (S).
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(9) Immediately follows from the observation that min L(x) = 2. In fact, the
bifurcus property characterizes monoids with critical length 3. �

The bifurcus property excludes many classes of well-studied and familiar semi-
groups and rings.

Theorem 1.2. The following are not bifurcus:

(1) Block monoids B(G0), for G0 ⊆ G.

(2) Krull monoids.

(3) Rings of integers of any algebraic number field.

(4) Diophantine monoids.

(5) Numerical semigroups.

Proof.

(1) Let x ∈ B(G0) be a nonunit nonatom. We may express x as the multiset
{xm1

1 , xm2
2 , . . . , xmk

k } where k ≥ 1, xi ∈ G0, and mi ≥ 1 (for all i ∈ [1, k]).
Consider the function γ from multisets drawn from {x1, x2, . . . , xk} to Nk

0
that gives the multiplicity of each element (e.g. γ (x) = (m1,m2, . . . ,mk)).
For all n ∈ N, the bifurcus property gives a factorization of xn

= a(n)b(n)
into two atoms. Without loss we may assume that γ (a(n))1≥ γ (b(n))1. Note
that γ (a(n))+ γ (b(n)) = γ (xn) = (nm1, nm2, . . . , nmk), hence γ (a(n))1 ∈
[(nm1/2), nm1]. Consider now the set S = {γ (a(1)), γ (a(2)), . . .}, a subset
of Nk

0. Because of the condition on the first coordinates of the elements of
S, |S| = ∞. By a classical theorem attributed to Lothaire (in [Spielman and
Bóna 2000]) or Dickson (in [Geroldinger and Halter-Koch 2006]), Nk

0 has no
infinite antichain in the usual partial ordering. Hence there must be some i, j
with γ (a(i)) ≥ γ (a( j)); but then a( j)|a(i) in B(G0), and hence a(i) is not
an atom, contrary to assumption.

(2) Follows from (1) and from [Geroldinger and Halter-Koch 2006, Theorem
2.5.8], which states that all reduced Krull monoids are block monoids.

(3) Follows from [Geroldinger and Halter-Koch 2006, Theorem 1.7.3] together
with Theorem 1.1 (5).

(4) Follows from (2) and [Chapman et al. 2002], which shows that Diophantine
monoids are Krull.

(5) Follows from [Rosales 2009], which shows that numerical semigroups are
cancellative and must have a finite number of atoms. This is violative of
Theorem 1.1 (1). �

While it may seem that the bifurcus property is rare, the following result shows
that in fact every semigroup can be embedded into a bifurcus semigroup.
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Theorem 1.3. Let R be any semigroup. Let S be any atomic semigroup with no
units. Then T = R× S× S is bifurcus.

Proof. Note that T has no units since S does not. Let x ∈ T be a nonatom. We
factor x = yz, where y = (ry, u y, vy), z = (rz, uz, vz), and x = (ryrz, u yuz, vyvz).
We write u yuz = pu and vyvz = vq, for some atoms p, q ∈ S. Set y′ = (ry, p, v)
and z′ = (rz, u, q). These are atoms in T , and x = y′z′. �

2. Examples

We provide several examples of bifurcus rings. These do not have multiplicative
units, but (1) and (3) of Example 2.1 do not have zero divisors. The conditions
imposed on m, n are all necessary – if n is a prime power, then neither (1) nor (3)
is bifurcus; if m = 1, then (2) is not bifurcus.

Example 2.1. The following are bifurcus rings:

(1) nZ, for n not a prime power.

(2) (mZ)× (nZ) for m, n natural numbers greater than 1.

(3) The subring of n×n matrices consisting of matrices with all entries identical
integers, for n not a prime power.

Proof.

(1) Atoms in our ring are nx where n - x . Write n= pqr where p, q are prime and
might divide r ∈Z. Consider nonatom z= (nx)(ny)= paqbr2s, where p, q - s.
Note that a, b≥ 2; hence we can factor z= (pqr(qb−2s))(pqr(pa−2)). These
are atoms since n - qb−2s and n - pa−2.

(2) Consider nonatom z = (ma, nb)× (mc, nd)= (m, nbd)× (mac, n), a factor-
ization into two atoms.

(3) This ring is isomorphic with Z, with the usual addition but with multiplication
given by x ? y = nxy. Atoms are those integers that are not multiples of n.
Write n= pqr where p, q are prime and might divide r ∈Z. Consider nonatom
z = x ? y = nxy = npaqbs where p, q - s. Set x ′ = pa, y′ = qbs. These are
atoms and z = x ′ ? y′. �

Bifurcus semigroups turn out to be common among (noncommutative) matrix
semigroups (see [Adams et al. ≥ 2009]). We give just one example.

Example 2.2. Let n> 1 and let S denote the semigroup of n×n rank one matrices
with entries from N. Then S is bifurcus.

Proof. Let gcd denote the usual greatest common divisor function, which we
will apply to the entries of matrices and vectors. Recall that a ∈ S may be ex-
pressed (nonuniquely) as a = uvT , for u, v column n-vectors. We claim that
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gcd(a) = gcd(u) gcd(v). We assume without loss that gcd(u) = gcd(v) = 1 and
prove gcd(a)= 1 by instead considering

a
gcd(u) gcd(v)

=
u

gcd(u)
vT

gcd(v)
.

If p| gcd(a), then p divides each entry of the i th columns of a, namely vi u. Since
p cannot divide each entry of u, p|vi . But this holds for each i , hence p divides
each entry of v, a contradiction. Hence gcd(a)= 1, as desired.

Now consider nonatom a=bc= (ubv
T
b )(ucv

T
c )= (v

T
b uc)(ubv

T
c ). Note in passing

that since all entries are from N, gcd(a)≥ vT
b uc ≥ n for every nonatom a. Set

a′ =
a

gcd(a)
= u′v′T ;

by the previous claim gcd(u′)= gcd(v′)= 1. Set x = [gcd(a)−n+1, 1, . . . , 1]T ,
y=[1, 1, . . . , 1]T . We have a=gcd(a)a′= (xT y)(u′v′T )= (u′xT )(yv′T ). Because
gcd(u′) = gcd(v′) = gcd(x) = gcd(y) = 1, by the previous claim gcd(u′xT ) =

gcd(yv′T )= 1, and since n > 1 these are both atoms. �

We conclude with some unanswered questions.

Open problems

(1) Does there exist a bifurcus ring with 1? A bifurcus domain?

(2) Can every ring/domain be embedded in a bifurcus ring?

(3) Can a bifurcus semigroup possess finitely many atoms?
Note that by Theorem 1.1(1), such an example would be neither left nor right
cancellative. Further, such an example must be finite (since N atoms yields
at most N 2 ordered pairs of atoms), and therefore must not possess bounded
factorization.

(4) Can a bifurcus semigroup be inside factorial or Cale?

(5) Can a bifurcus semigroup be locally tame?
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