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Around 1752, Benjamin Franklin constructed a variant on the popular magic
squares and what we call a magic (a, r)-circle. We provide a definition for magic
(a, r)-circles, magic a-circles and, more specifically, Franklin magic a-circles.
In this paper, we use techniques in computational algebraic combinatorics and
enumerative geometry to construct and to count Franklin magic 8-circles. We also
provide a description of its minimal Hilbert basis and determine the symmetry
operations on Franklin magic 8-circles.

1. Introduction

Benjamin Franklin was a noted American scholar, politician, scientist, inventor,
author of various books and scientific articles, publisher of Poor Richard’s Almanac,
and most notably an editor and signer of the Declaration of Independence, who
eventually came to enjoy the recreational side of mathematics. Among his most
cherished mathematical works are his famous 8× 8 and 16× 16 magic squares,
which are many times more magical than ordinary magic squares. Here is one of
Franklin’s 8× 8 squares, with sum 260:
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A magic square has three properties: that each row sum, each column sum, and
each main diagonal sum is the same “magic” number. A Franklin square, however,
has many more properties [Ahmed 2004]:

• Each row sum is the same magic number M .

• Each column sum is M .

• Each bent diagonal sum is M .

• Each half-row sum is M/2.

• Each half-column sum is M/2.

• For 8× 8 Franklin squares, each 2× 2 block sum is M/2.

• For 8× 8 Franklin squares, the four corners with the middle four sums to M .

• For 16× 16 Franklin squares, each 2× 2 block sum is M/4, each 4× 4 block
sum is M/4.

These properties can be nicely visualized thus:

Several magic squares constructed by Franklin were described in a letter written
around 1752 to fellow English botanist Peter Collinson [Pasles 2001]. Franklin
noted in the same letter that these unusual squares were not his only construction.
Franklin provided a similarly complex magic circle in a letter dated 1765 to fellow



CONSTRUCTION AND ENUMERATION OF FRANKLIN CIRCLES 359

English physicist John Canton, describing all of its properties with painstaking
detail. In this article, we refer to this magic 8-circle as the Franklin magic 8-circle.

There is no standard definition for a magic circle. We will use the following
definition, found also in [Nicholas 1955].

Definition 1. A magic (a, r)-circle is an arrangement of nonnegative integers in a
circular grid consisting of a concentric annuli and r radii, with the property that
each annular sum is M and each radial sum is M . In the case a = r , we shall call it
a magic a-circle.

Franklin’s magic circle, like his magic squares, has additional sophistication.
Much like the bent diagonals of Franklin’s magic squares, a Franklin magic circle
has families of concentric annuli contained within the largest main circle, which
however are eccentric relative to the basic circular grid. Here is Franklin’s original
magic 8-circle, with sum M = 360; one eccentric annulus is highlighted:

There are four different excenters labeled A, B, C , and D, located north, east,
south and west of the center. Around each excenter are six concentric circles,
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forming five annuli. For example, the innermost annulus centered at A in the
previous figure (bounded by the two thick circles) contains, clockwise from the
bottom, the entries 42, 59, 19, 66, 21, 68, 28, 45. We call these values x17, x28,
x31, x42, x43, x34, x25, x16, according to the cells in which they lie; that is, xi j is
the number in the i-th original annulus, counted outward, and in the j-th sector,
counted clockwised starting with the lower of the two sectors in the first quadrant.
Here is another way to visualize the eccentric circles centered at A:

Franklin’s original magic circle satisfies the following four properties, which are
also depicted graphically on the next page:

(i) Each radial sum plus the central number is the same magic number M .

(ii) Each upper- or lower-half annular sum plus half the central number is M/2,
and consequently each annular sum plus the central number is M .

(iii) Each 2× 2 block sum plus half the central number is M/2.

(iv) Each upper- or lower-half annular sum of vertically centered eccentric annuli
plus half the central number is M/2, and similarly, each left- or right-half
annular sum of horizontally centered eccentric annuli plus half the central
number is M/2. Consequently, each eccentric annular sum plus the central
number is M .

Because the central number, appropriately scaled, is added to each of the various
types of sums, its role is merely to shift the magic sum. Thus, we will drop the
inclusion of the central number in our computations throughout. In this paper, we
define a Franklin magic 8-circle to be a magic 8-circle with nonnegative integer
entries satisfying properties (i)–(iv) above (without a central number). In general,
for n ≥ 2, we define a Franklin magic 2n-circle to be a magic 2n-circle satisfying
(i)–(iv), except that (iii) is modified to read that every 2× 2 block sum is 22−n M .
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Figure 1. Properties of a Franklin magic circle.

In Section 2, we take a closer look at the tools in computational algebraic
combinatorics that allow us to construct all Franklin magic 8-circles. We give a
succinct description of the minimal Hilbert basis of the Franklin magic 8-circles,
which is a special set of Franklin magic 8-circles that can be used to construct any
Franklin magic 8-circle. Furthermore, we give a simple description for producing
all possible Franklin magic 4-circles.

In Section 3, we discuss the symmetry operations on the Franklin magic 8-circles
and we reveal a new Franklin magic 8-circle, that is, a Franklin magic 8-circle
which cannot be obtained via symmetry operations on the original Franklin magic
8-circle. Finally, in Section 4, we provide the generating function for Franklin
magic 8-circles FC8(s), a function which determines the number of Franklin magic
8-circles with magic sum s.

2. Background and notation

We now describe the techniques used to derive the building blocks of all Franklin
magic 2n-circles, starting with n= 3. To this end, we view a generic Franklin magic
8-circle as a vector in R82

, with variable entries x11, . . . , x88, where, as before, the
entry xi j is in the i-th annulus and the j-th radius.

The four defining properties of the Franklin magic 8-circle can be viewed as
linear relations in these variables. For example, the first property states that each
radial sum is the (undetermined) magic number M ; that is, the sums

∑8
i=1 xi j must

be equal for all j . This gives seven independent linear equations such as

x11+ x21+ x31+ x41+ x51+ x61+ x71+ x81

= x12+ x22+ x32+ x42+ x52+ x62+ x72+ x82.
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The half-annular sum property yields sixteen linear equations, while there are
fifty-six distinct 2× 2 block linear equations coming from the eight radial and
seven annular locations in the circular arrangement. There are altogether twenty
eccentric annuli coming from the five eccentric annuli centered around each of the
four ex-centers, with each eccentric annulus yielding two linear relations for the
eccentric half annular sum. Rewriting these equations in matrix form, we have a
119× 64 integral matrix M :

M =

 1 · · · 1 −1 · · · −1 0 · · · 0 0 · · · 0 · · · 0
1 · · · 1 0 · · · 0 −1 · · · −1 0 · · · 0 · · · 0

...
...

...
...

 .
We observe that for the Franklin magic 8-circle: (1) any nonnegative integer

linear combination of Franklin magic 8-circle is a Franklin magic 8-circle, and (2)
the set of all Franklin magic 8-circles is the integral solution set to the 119 integral
linear equations mentioned above. This shows that the Franklin magic 8-circles are
also the integral points inside the set

C = {x = (x11, . . . , x88) ∈ R64
≥0 : M x = 0},

which is itself a pointed rational polyhedral cone.
By [Schrijver 1986, Theorem 16.4], there is a unique finite set H of integral

points in C , such that every integral point in C is a linear combination of elements
in H . This set is known as the minimal Hilbert basis of C . Thus with this minimal
Hilbert basis, every Franklin magic 8-circle is some linear combination of the
elements in H . Using the software 4ti2, we computed the seventy-four elements of
the minimal Hilbert basis for the Franklin magic 8-circles.

We observed two distinct subsets of elements in this minimal Hilbert basis.
Among the minimal Hilbert basis elements of the first type, we observed that the
first radial arrangement determines all others for the following reasons: the second
radial arrangement must be the complement of the first, and this alternating pattern
repeats for the third through the eighth radial arrangements. We also noted that the
first radial arrangement is completely determined by the placement of the four 1s.
Since there are eight possible places, that yields precisely

(8
4

)
= 70 Hilbert basis

elements of the first type.
To illustrate the construction of a minimal Hilbert basis element of the first type,

see Figure 2. Here, the first radial arrangement is in the second quadrant, just above
the horizontal diameter. We chose to place the four 1s in annuli 2, 4, 5, and 7. The
second radius, clockwise, is then determined by placing a 1 in the complementary
annuli: 1, 3, 6, and 8, shown in bold gray type in Figure 2. This pattern alternates
in the subsequent radii.
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Figure 2. Examples of Hilbert basis elements.

Finally, there are four Hilbert basis elements of the second type. Their description
is based on two observations: all radial arrangements consists of alternating 0 and
1, and the two radial arrangements in each of the four quadrants are duplicates, with
the upper half consisting of complementary quadrants and likewise for the lower
half. This yields precisely four elements. See Figure 2 for an illustration.

With this minimal Hilbert basis, constructing new Franklin magic 8-circles boils
down to simple arithmetic. We present another Franklin magic 8-circle in Figure 3.

We computed the integer linear combination that produces the original Franklin
magic 8-circle. This combination is shown in Figure 4 and uses eleven minimal

Figure 3. A new Franklin magic 8-circle.
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Figure 4. Linear combination of the original Franklin magic 8-circle.

Hilbert basis elements. In terms of the two types of minimal Hilbert basis elements,
this linear combination uses two of the second type and nine of the first type.

As for Franklin magic 4-circles, there are precisely six elements in its minimal
Hilbert basis. They, too, were computed using 4ti2. Figure 5 shows three elements,
with the remaining three obtained by flipping these along the horizontal diameter.
The simplicity of its minimal Hilbert basis forces all Franklin magic 4-circles to
have repeated entries, whose arrangement is described in Theorem 3.
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Figure 5. Three elements of the minimal Hilbert basis for Franklin
magic 4-circles.

We observe that in this case, the minimal Hilbert basis is only of the first type;
that is, the first radial arrangement determines all other radial arrangements. We also
noted that the first radial arrangement is completely determined by the placement
of the two 1s. Since there are four possible places, then this yields precisely

(4
2

)
= 6

Hilbert basis elements of the first kind. With this observation, we make the following
conjecture for the minimal Hilbert basis for Franklin magic 16-circles.

Conjecture 2. There are
(16

8

)
+16 elements in the minimal Hilbert basis for Franklin

magic 16-circles.

Theorem 3. A Franklin magic 4-circle is of the form

Proof. Consider the matrix whose rows correspond to integer multiples of an
element in the minimal Hilbert basis:

0 a 0 a a 0 a 0 0 a 0 a a 0 a 0
b 0 b 0 b 0 b 0 0 b 0 b 0 b 0 b
0 c 0 c 0 c 0 c c 0 c 0 c 0 c 0
d 0 d 0 0 d 0 d d 0 d 0 0 d 0 d
e 0 e 0 0 e 0 e 0 e 0 e e 0 e 0
0 f 0 f f 0 f 0 f 0 f 0 0 f 0 f


Any Franklin magic 4-circle is an integral linear combination of the elements in the
minimal Hilbert basis. Thus, any Franklin magic 4-circle corresponds to the sum
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of the rows of this matrix:

(b+d+e, a+c+ f, b+d+e, a+c+ f, a+b+ f, c+d+e, a+b+ f, c+d+e,

c+d+ f, a+b+e, c+d+ f, a+b+e, a+c+e, b+d+ f, a+c+e, b+d+ f ),

where the first four entries represent the first annulus in the Franklin magic 4-
circle, the next four entries represent the second annulus, and so forth. Setting
W = b+ d + e, X = a+ c+ f , Y = a+ b+ f and Z = c+ d + f , demonstrates
that any Franklin magic 4-circle is of the desired form. �

Example 4. Choosing fixed nonnegative integer values for W =16, X =24, Y =25,
and Z = 17 yields the following Franklin magic 4-circle:

3. Symmetry operations on Franklin magic 8-circles

A symmetry operation on the set of Franklin magic 8-circles is defined to be a map
σ from the set of all Franklin magic 8-circles to itself, that permutes the entries in
a Franklin magic 8-circle. From this definition, one can easily see that there are
three obvious such symmetry operations: 180◦ rotation and reflection along the
horizontal and vertical diameters.

There are operations on Franklin magic 8-circles which yield magic 8-circles
that do not preserve all defining properties properties (i)–(iv). For example, rotation
by 90◦ is not a symmetry operation. This can be readily seen by considering
this operation on the first minimal Hilbert basis element in Figure 4 (page 364).
Here, the upper half annular sum is 0, while the lower half annular sum is 4. In
addition, we also note that the transpose, that is, exchanging annuli for radii, is not
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a symmetry operation. This can be seen easily from trying to transpose an element
of the minimal Hilbert basis, such as the multiple of 13 in Figure 4.

We observed that the elements of the minimal Hilbert basis hold the key to
finding all symmetry operations on Franklin magic circles, as we see in Theorem 5.

Theorem 5. Let F8 denote the set of all Franklin magic 8-circles, and HF8 denote
the minimal Hilbert basis of the Franklin magic 8-circles. Then σ : F8 −→ F8 is
a symmetry operation on F8 if and only if its restriction σ : HF8 −→ HF8 is a
symmetry operation on HF8.

Proof. (H⇒) By definition. (⇐H) Let σ : HF8 −→ HF8 be a symmetry operation
on HF8. Let (xi j ) denote a Franklin magic 8-circle. Then, by definition, (xi j ) is
some integral linear combination of the elements in HF8,

(xi j )=

74∑
k=1

nk(H[k]i j ),

where H[k]i j is the entry in the i-th annulus and j-th radius of the k-th element in
HF8. By definition, σ is a permutation on the entries of

(
H[k]i j

)
. Under σ , the entry

in position i j is permuted to a new position i j , and thus σ(H[k]i j )= (H[k]i j ), which
is, by definition of σ , another minimal Hilbert basis element, which we will denote,
for the sake of convenience, as H[σ(k)]. Observe that if σ(H [k])= σ(H [ j]), then
k = j , since all the entries move in precisely the same manner.

Given σ , define

σ : F8 −→ F8, (xi j ) 7→

74∑
k=1

nk(H[σ(k)]i j ). (1)

The image of (xi j ) under σ in (1) is an integral linear combination of elements
in HF8 and is therefore a Franklin magic 8-circle. �

From Theorem 5, we observe that all symmetry operations can be obtained by
finding symmetry operations on the minimal Hilbert basis. We used the description
of the minimal Hilbert basis given in Section 2 to observe that the operations
described in Theorem 6 are in fact symmetry operations on the set of all Franklin
8-circles.

Theorem 6. Let F8 denote the set of all Franklin magic 8-circles. The following
are symmetry operations on F8:

(i) Rotation by 180◦, and reflections along the horizontal and vertical diameters.

(ii) Exchanging two consecutive annuli

xi , xi+1 with xi+2k, xi+2k+1,

with 1≤ i ≤ 5 and 0≤ k ≤ 3 and the restriction that i + 2k+ 1≤ 8.
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Proof. The operations in (i) clearly preserve the four Franklin magic 8-circle
properties. For the operations in (ii), recall that there are two types of elements
in the minimal Hilbert basis HF8 of F8. The first type of elements come from
placing 1s in four of the eight possible locations in the first radial arrangement. This
pattern is duplicated in the third, fifth and seventh radial arrangements, while the
complementary arrangement is duplicated in the second, fourth, sixth and eighth
radii. Thus, permuting the annuli among these elements produces another element
in HF8. The second type of elements in HF8 impose the conditions given in (ii). �

4. Enumeration of Franklin magic 8-circles

In this section, we answer the question For any positive integer s, how many Franklin
magic 8-circles have a magic sum of s? This is an example of the general question of
enumerating integer lattice points contained in polyhedra. For an excellent resource
on this general topic, see [Beck and Robins 2007].

As we noted earlier, we view a generic Franklin magic 8-circle as an integer
vector (x11, . . . , x88) in R82

, where the entry xi j is in the i-th annulus and the j-th
radius. Also any Franklin magic 8-circle is an integer linear combination of the
minimal Hilbert basis described in Section 2. Since each element of the minimal
Hilbert basis has magic sum 4, that implies that every Franklin magic 8-circle must
have a magic sum divisible by 4.

Alternatively, we can apply commutative algebra, as in [Ahmed et al. 2003; Cox
et al. 1998]. Consider the map of polynomial rings

φ : R[H[1], . . . ,H[74]] −→ R[x11, . . . , x88]

defined by mapping the indeterminate H[k] to
∏8

i, j=1 xH[k]i j
i j . Integral linear com-

binations of the elements in HF8 correspond to products of integral powers of
monomials in R[H[1], . . . ,H[74]]. Thus if

∑74
k=1 nk(H[k]i j )=

∑74
k=1 mk(H[k]i j ),

we have

φ
( 74∏

k=1

H[k]nk −

74∏
k=1

H[k]mk
)
= 0.

Define the homogeneous ideal IF8 =
〈∏74

k=1 H[k]nk −
∏74

k=1 H[k]mk
〉
, and consider

the weighted, graded ring

R = R[H[1], . . . ,H[74]]/IF8,

where the degree of each variable H[k] is 4, for all k. The Hilbert function HR(s)
is defined by

HR(s)= dimR R[H[1], . . . ,H[74]]s − dimR IF8,s,
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where R[H[1], . . . ,H[74]]s is the finite-dimensional vector space over R of ho-
mogeneous polynomials in R[H[1], . . . ,H[74]] of degree s and IF8,s is the finite-
dimensional vector space over R of homogeneous polynomials of degree s in IF8 .
Applying [Ahmed 2004, Lemma 2.2], since the weight of each variable H[i] in the
polynomial ring R[H[1], . . . ,H[74]] is the magic sum of the corresponding magic
circle, then the value HR(s) is the number of distinct Franklin magic 8-circles with
magic sum s. Thus, the Hilbert–Poincaré series

HPR(t)=
∞∑

s=1

HR(s)t s

is also the Ehrhart series of the Franklin magic 8-circles.
To count the number of Franklin magic 8-circles reduces to computing the

generating function of the Hilbert–Poincaré series

HPR(t)=
∞∑

s=1

HR(s)t s .

We used the computer algebra software LattE [De Loera et al. 2003], to find the
HPR(t) as a rational function, and then used LattE to compute the first sixty-
four values of the enumerating function for the Franklin magic 8-circles. Using
Mathematica, we found the interpolating polynomial for these values and compu-
tationally verified that the function given in Theorem 7 enumerates the Franklin
magic 8-circles.

Theorem 7. Let FC8(s) denote the number of Franklin magic 8-circles with sum s.
The Ehrhart series of the Franklin magic 8-circles has the rational form
∞∑

s=0

FC8(s)t s

=
t8
+64 t7

+700t6
+2352t5

+3430t4
+2352t3

+700t2
+64 t+1

(t9−9t8+36 t7−84 t6+126t5−126t4+84t3−36t2+9t−1)(t−1)
.

A partial expansion of this series is
∞∑

s=0

FC8(s)t s
= 1+ 74t + 1395t2

+ 13092t3
+ 80245t4

+ 367774t5
+ · · · .

The generating function for the Ehrhart series of the Franklin magic 8-circles is

FC8(s)=
1

1486356480
(1486356480+ 1980628992s+ 1233911808s2

+ 448643072s3
+ 103670784s4

+ 16004352s5

+ 1677312s6
+ 117888s7

+ 5436s8
+ 151s9)

when 4 divides s; otherwise, FC8(s)= 0.
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