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We present several numerical radius inequalities for Hilbert space operators.

More precisely, we prove that if A, B,C,D € B(H) and T = [4 2] then

max(w(A4), w(D)) < 3(IT | +IT?]"/?) and max((w(BC))"/% (w(CB))"/?) <
LT[+ IT?(/2). We also show that if A € B(H ) is positive, then

w(AX — XA) < SIANUX]+ 1X3]'3).

1. Introduction and preliminaries

Let B(H) denote the C *-algebra of all bounded linear operators on a complex
Hilbert space H with inner product (-,-). For A € B(H) let

w(A) = supf|(x. Ax)| : [ x| = 1},
14|l = sup{ | Ax]| - [lx]| = 1},
|A] = (4*4)!/?

denote the numerical radius, the usual operator norm of A and the absolute value
of A. It is well known that w(-) is a norm on B(H ), and that for all A € B(H),

1Al < w(A) < | A]. (1-1)

Here are some basic properties of the numerical radius:

w(lA]) = [ A], (1-2)

w(A*A) = w(AAY), (1-3)

w(UAU™) = w(A), (1-4)

WAL P A P--- D Ay) =max{w(A4;):i =1,2,...,n}, (1-5)

MSC2000: primary 47A62; secondary 46C15, 47A30, 15A24.
Keywords: bounded linear operator, Hilbert space, norm inequality, numerical radius, positive
operator.

471



472 M. ERFANIAN OMIDVAR, M. S. MOSLEHIAN AND A. NIKNAM

for all operators A, A1, A, ..., A, € B(H) and all unitary operators U € B(H).
Suppose H = M1 @ M» and A € B(H). Then we can write A as a block matrix

i [II*AII [¥AL }

1-6
AL I3AL (1-0)

where I; € B(M;, H) such that [;(x) =x (i = 1,2). If A and B are operators in
B(H) we write the direct sum A @ B for the 2 x 2 operator matrix [‘g g], regarded
as an operator on H @ H. Thus

a8t = 5 o || =maxcian iz, (1-7)

Suppose § = A1 @ Ar & --- & Ay, where A; € B(H) and x1,x2,...,x, € H.
That is,

A1 0 -+ 0

0 A -+ 0
&g’= . . . . ’

0 0 - A

which we also write o = diag(Aq, ..., An). Then

n

(en )Tt ] T) =D (i Ai (),

i=1

w(st) = sup{ ‘([xl, o xn] T s, ...,xn]T)‘ S 1}.

i=1

For additional properties of the numerical radius, see [Bhatia 1997; Halmos 1982]
and references therein.

Consider A = [A;;], where A;; € B(H) and i,j = 1,2,...,n. We define
C(A)=A11® A ®---® Ann, called the n-pinching of A. We set z = e27i/n and
U :=diag(I,zI,...,z" 1), where I is the identity operator in B(H ). Using the
identity Zz;}) z%¥ =0, one can see that C(4) = (1/n) ZZ;B U*kAUk (see also
[Bhatia 2000; 1997]).

It is shown in [Kittaneh 2005] that if A, B,C, D, S,T € B(H), then

w(ATB + CSD)
< %(”A|T*|2(l—(x)A* +B*|T|2aB +C|S*|2(1—a)c* +D*|S|2aD||),

for all o with 0 < « < 1. In particular, if A, U, P € B(H) such that U is unitary
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and P is projection, we have
w(AU £ U*A) < 3 [|A] + A%+ U*(|A] +|A*DU | < 4] + 114212, (1-8)
w(AP — PA) < 3||A| + |A*| + P(IA| +A*)P| < | A + [ 422, (1-9)
w(A) < (4] + 1 42]'3). (1-10)

The last inequality refines the second inequality in (1-1); see also [Kittaneh 2003].
In [Kittaneh 2007; Bhatia and Kittaneh 2008] it is shown that if A, B, X € B(H)
such that A and B are positive, then

14X — XB||| < max([|A[l. | BIDIIXI.

where ||| - ||| is a unitarily invariant norm.
In particular,

[AX — XA| < [ A[l[| X]]. (1-11)

In this paper we establish some inequalities sharper than inequalities (1-9) and
(1-11) to the numerical radius and we give a new proof of inequality (1-10). Some
applications of these inequalities are considered as well.

2. Main results
In [Bhatia 1997] it is shown that

L 10 = )

where ||| - ||| is a unitarily invariant norm. In this paper we extend this inequality
to the numerical radius. We begin by establishing an interesting property of the
numerical radius.

Lemma 2.1. Let A € B(H). Then

’

w(C(4)) = w(A). 2-1)
n—1
Proof. Since C(A) = % 3" U*kAU*, we have
k=0
1 n=1 X X 1 n—1
w(C(A) < - Y wU**AU") = - w(A) =w(A),
n k=0 n k=0
where the inequality follows from property (1-4). O

Theorem 2.2. Let Ay, Az, ..., Ay € B(H). Then

%w(diag( S Ap iA,-)) <w(sd) < w(diag( 3 |A,-|,o,...,o)).

i=1 i=1 i=1
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Proof. For the first inequality, we have, using (1-5),

w(diag( S Ai. iAi)) = w( iA,-) <3 widy)

i=1 i=1 i=1 i=1

<mmax{w(4;):i=1,2,...,n} =nw(A).

For the second inequality first we suppose A1, Az, ..., A, to be positive, so

> 14 0+ 0 (A}/Z A;/z Arll/2 Ai/z 0--- 0
0 0---0 0 0 oo 0 A;/z 0 . 0
0 0---0 K 0 0 --- 0 A’11/2 0. 0
('A}/z 0 -0 A}/Z A;/Z . Al2

A;/z 0---0 0 0o --- 0

\[ 4200 0 0 --- 0

[ Ay AP 4l

A;/zA}/z Ay A;/ZA},/Z

=w N . . . )
| APaY? aPaY? 4,

where the second equality follows from (1-3). Using the inequality (2-1), we get

AL 0 - 0 Ay AV2AMZ L 4124102
0 Ay -~ 0 A;/ZA}/Z Ay - A;/ZA}/Z
0 0 --- A, A4 g1z g0y

_ w(diag( iA,-,o,...,o)),

i=1
Now let Ay, As, ..., A, be arbitrary. Then

A1l 0 - 0
0 [Az] -+ 0 "
. . . < w(diag( > |Ai|,0,...,0)).

1=

0 0o ... |An|
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Since
4] 0 - 0
0 [Az] -
w . o =w (|4]) = w (),
0 0 - |dy]
we have w(sl) < w(diag( Y} _7_; |4;].0,...,0)). O

Corollary 2.3. Let A € B(H). Then yw((A + A*) @ (A + A%)) < w(A & A*).
Kittaneh [2006] showed that if A, B,C, D € B(H) andif T = [& 5], then

max(r(4),r(D)) < LT+ 1T21%),  (BC)Y? < 1T +I1T*"?).

We show similar inequalities for the numerical radius. To achieve this, we need
the following lemma [Kittaneh 2005].

Lemma 2.4. If A, B € B(H) and AB = BA, then w(AB) <2w(A)w(B).
Theorem 2.5. If A, B,C, D € B(H) and T = [{ 5], then

max(w(A), w(D)) < 1(IT| + IT*|"?), (2-2)

and

max((w(BC)Y2, (w(CB)Y?) < 1T+ IT*]"/?). (2-3)

Proof.
By (1-5), we have max(w(4), w(D)) = w([‘(;1 g]). Since D is arbitrary,

max(w(A), w(D)) = w ([g _1(; ]) .

Consider the unitary operator U = [(I) —(I)] on H@® H. Then 2 [61 _g] =TU+UT.
Thus
max(w(4), w(D)) < 3(ITI|+IT?[/?),

by inequality (1-8). This proves the inequality (2-2).
To prove the inequality (2-3), we note that

max(w(BC),w(CB)) = w(|: BOC COB ]) (by (1-5))

-([e3])

0 B\
2w(|:c 0 ]) (by Lemma 2.4).

IA
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Since B is arbitrary, we have

2
max(w(BC), w(CB)) < 2w ([g _lg]) .

We observe thatZ[g —lg] =TU-UT,so

max((w(BC))Y2, (w(CB))/?) < L(|T| + | T?|/?)

1
2
by inequality (1-8). O
Corollary 2.6. If A € B(H), then
w(Ad) < LAl + 14%11?) < | A].
_TAO
Proof. Let T = [0 0]. Then
w(A) < LTI+ IT3)"?)  (by 2-2))

=114+ 1142)'2) by (1-7)

< |4]. O
Corollary 2.7. If A € B(H), then | A+ A*|| < || A| + || 42||"/2 < 2| A].

Proof. Since A + A* is self-adjoint, we have

FIA+ A = Jw((A+ A*) & (A + 4%)) (by (1-2) and (1-5))
<w(A®A%) (by Corollary 2.3)
<1(lA® A+ (A® A%)?|2)  (by Corollary 2.6)
=214l + 1421 (by (1-7))
= 4] O

We use some similar strategies as in [Kittaneh 2007] to prove the next two results.

Theorem 2.8. Let A, P € B(H) such that P is a projection. Then
w(AP — PA) < S(|A] + [ 4%]'/?). (2-4)

Proof. Using the decomposition H =ran P @ker P and equality (1-6), we represent

P as the form P = [101 8], where I is the identity operator on ran P. With respect
to this decomposition, A can be written as 4 = [‘j; ﬁ;] Then

0 A2

PA— AP = .

)
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If I is the identity operator on ker P and if U = [ _ 102 ], then U is unitary and
[ 0 Alz] = %(UA—AU). Therefore

—A4>1 O
w(AP—PA)=w([ Y AOHD=éw(AU—U*A)s%(||A||+||A2||1/2),
—Aa21

where the inequality follows from (1-8). O

Theorem 2.9. Suppose that A € B(H) is positive. Then
w(AX — XA) < SN X ]+ [ X3)1). (2-5)
Proof. First we prove that if A is positive and a contraction, then
w(AX = XA) < 3(1X ||+ X)),

If R = v A— A2, the operator

A R
P_[R I—A}

is a projection on H @ H, because AN A— A2 =+A—A2A. IfY = [)é 0], then

PY —YP = [AX-X4 ~XR] By the inequality (2-4), we have

w(YP—PY) < 3(|Y |+ |Y2['?).

Now if Q =[£8], then [¥;¥40] = 0(PY —YP)Q*,s

0

10
00
w([AX —X4 0 = w(YP—PY) (by (1-4))

<IAYI+172Y2) by (2-4))
= LX)+ 1X2)12) by (1-7)),

whence w(AX — XA) < %(||X|| + | X2]|/2). Let A be a positive operator. It
follows from the inequality

A A
w(—=X - X —<||X|| + 1 X2)11/2)
(||A|| ||A||)

that w(AX — XA) < 3 [ AN (1X ] + 1 X>]'/2). O
Corollary 2.10. If A, B € B(H) such that A is positive and B is self-adjoint, then
IAB — BA| < | Alll| BI|- (2-6)

Proof. The inequality (2-6) follows from (2-5) by letting X = B. O



478 M. ERFANIAN OMIDVAR, M. S. MOSLEHIAN AND A. NIKNAM

Corollary 2.11. Suppose that T € B(H) has the cartesian decomposition T =
A + iB such that A is positive and B is self-adjoint. Then

IT*T ~TT*|| < | A1+ | B|)*.
Proof. By (2-6) and the arithmetic—geometric mean inequality, we have

IT*T —TT*|| =2 AB - BA| < 2|| Al B]| < A +1|B]*. 0
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