
inv lve
a journal of mathematics

Editorial Board

Kenneth S. Berenhaut, Managing Editor

John V. Baxley
Arthur T. Benjamin
Martin Bohner
Nigel Boston
Amarjit S. Budhiraja
Pietro Cerone
Scott Chapman
Jem N. Corcoran
Michael Dorff
Sever S. Dragomir
Behrouz Emamizadeh
Errin W. Fulp
Ron Gould
Andrew Granville
Jerrold Griggs
Sat Gupta
Jim Haglund
Johnny Henderson
Natalia Hritonenko
Charles R. Johnson
Karen Kafadar
K. B. Kulasekera
Gerry Ladas
David Larson
Suzanne Lenhart

Chi-Kwong Li
Robert B. Lund
Gaven J. Martin
Mary Meyer
Emil Minchev
Frank Morgan
Mohammad Sal Moslehian
Zuhair Nashed
Ken Ono
Joseph O’Rourke
Yuval Peres
Y.-F. S. Pétermann
Robert J. Plemmons
Carl B. Pomerance
Bjorn Poonen
James Propp
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INVOLVE 2:5(2009)

On the orbits of an orthogonal group action
Kyle Czarnecki, R. Michael Howe and Aaron McTavish

(Communicated by Józef H. Przytycki)

Let G be the Lie group SO(n,R)× SO(n,R) and let V be the vector space of
n× n real matrices. An action of G on V is given by

(g, h).v := g−1vh, (g, h) ∈ G, v ∈ V .

We consider the orbits of this group action and demonstrate a cross-section to
the orbits. We then determine the stabilizer for a typical element in this cross-
section and completely describe the fundamental group of an orbit of maximal
dimension.

1. Introduction

Let G be the Lie group SO(n,R)×SO(n,R) and let V be the vector space of n×n
real matrices. An action of G on V is given by

(g, h).v := gtvh = g−1vh, (g, h) ∈ G, v ∈ V,

where gt denotes the matrix transpose of g and where the operation on the right is
matrix multiplication. This action is obviously smooth (having continuous deriva-
tives of all orders) since the matrix entries in (g, h).v are polynomial functions of
the matrix entries of g, h and v.

For each v ∈ V we define the orbit of v, denoted by G.v ⊆ V , as the set

G.v := {(g, h).v | (g, h) ∈ G}.

For v,w ∈ V the relation

v ∼ w if v and w are in the same G-orbit

MSC2000: primary 22C05, 57S15; secondary 55Q52.
Keywords: representation theory, orbit, Lie group, homotopy group, Clifford algebra.
This research was conducted in part during the 2007 summer Undergraduate Research Experience in
Pure and Applied Mathematics at the University of Wisconsin – Eau Claire, supported by NSF-REU
grant DMS-0552350 and the Office of Research and Sponsored Programs (UW – Eau Claire).
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is an equivalence relation and so V is partitioned into G-orbits. We also define Gv,
the stabilizer of v, to be the those elements in G that fix v:

Gv =: {(g, h) ∈ G | (g, h).v = v}.

For each v ∈ V , Gv is a closed (usually not normal) subgroup of G, and so is a Lie
group.

Let G/Gv denote the set of left cosets of Gv in G. Since Gv is a closed subgroup
of G, G/Gv is a differentiable manifold and dimG/Gv = dim G−dim Gv, where
dim indicates the dimension. Furthermore, G/Gv is diffeomorphic to the orbit
G.v. If Gv is normal in G, then G/Gv is a Lie group [Bröcker and tom Dieck
1985, Section1.4].

A subset D of V is a cross-section to the orbits if every G-orbit intersects D.
That is, for each v ∈ V there is an element (g, h) ∈ G and an element d ∈ D such
that (g, h).v=d . Some definitions of a cross-section are more restrictive, requiring
that each orbit intersect the cross-section exactly once.

In this paper we consider the orbits of this group action. In Section 2 we demon-
strate a cross-section of the orbits, and in Section 3 we determine the stabilizer for a
typical element in this cross-section. In Section 4 we discuss the orbits for the case
n = 2 and introduce generic orbits — those of maximal dimension — for arbitrary
n. Section 5 reviews some useful information about fundamental groups, covering
spaces, and the covering group Spin(n). Our main result is in Section 6 where
we connect these ideas in order to completely describe the fundamental group of
a generic orbit, and in Section 7 we work through an example that further exposes
the anatomy. We close with a few remarks in Section 8 regarding those orbits that
do not have maximal dimension.

2. Cross section to the orbits

In this section we show that the diagonal matrices with non-negative entries con-
stitute a cross-section to the group action.

Proposition 2.1. Let G = SO(n)× SO(n) and let V be the vector space of n× n
real matrices. Let G act on V via (g, h).v = gtvh. Then for each v ∈ V there is a
(k1, k)∈G such that (k1, k).v= diagonal(d1, . . . , dn), with d1≥ d2≥ · · ·≥ dn ≥ 0.

Proof. Let v ∈ GL(n,R) where GL(n,R) is the (dense, open) subset of invertible
n × n matrices in V . Then vtv is a symmetric matrix with positive eigenvalues,
and hence is diagonalizable via conjugation by an element in SO(n,R). That is,
there is a k in SO(n,R) such that

ktvtvk = a,

where a = diagonal(a1, . . . , an) with a1 ≥ a2 ≥ · · · ≥ an > 0.
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Now let a−1/2
=diagonal(1/

√
a1, . . . , 1/

√
an). If In is the n×n identity matrix

we have

In = a−1/2 a a−1/2
= a−1/2

[ktvtvk] a−1/2
= (vka−1/2)tvka−1/2.

It follows that vka−1/2 is in O(n,R). Let a1/2
= diagonal(

√
a1, . . . ,

√
an). Then

a1/2
= Ina1/2

= [a−1/2ktvtvka−1/2
] a1/2

= a−1/2ktvtvk.

Thus, if k1 = vka−1/2, we can write this as

(k1)
tvk = (k1, k).v = a1/2,

where k1 ∈ O(n,R) and k ∈ SO(n,R). If k1 happens to be in SO(n,R) we are
done. If not, we can change the sign of one of the entries in a−1/2 so that k1 is
in SO(n,R), proving the result for any V in the dense subset of invertible n × n
matrices. Since our group action is continuous, the result holds for all v ∈ V . We
could also modify the above proof slightly to account for those eigenvalues of vtv

that are equal to zero. �

3. The stabilizer of a representative element

Let 0 be an arbitrary group acting on a set X . If x and y are in the same 0-orbit,
then x = γ.y for some γ ∈ 0. It is a standard result that γ−10xγ = 0y , that is, the
stabilizers are isomorphic via conjugation. Therefore, it is sufficient to determine
the stabilizers of those elements that are in the cross section.

We start with a simple example that demonstrates the general idea for the situ-
ation that we are considering. Let d ∈ V and (g, h) ∈ G be given by

d =

 d1 0 0
0 d1 0
0 0 d2

 , where d1 > d2 > 0,

g =

 g1,1 g1,2 g1,3

g2,1 g2,2 g2,3

g3,1 g3,2 g3,3

 , h =

 h1,1 h1,2 h1,3

h2,1 h2,2 h2,3

h3,1 h3,2 h3,3

 .
We may assume d1 > d2 since conjugation by a matrix such as0 0 −1

0 1 0
1 0 0

 ∈ SO(3)

will reorder the entries in d .
If (g, h) stabilizes d then gt dh = d or equivalently, dh = gd , so we have
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d1h2,1 d1h2,2 d1h2,3

d2h3,1 d2h3,2 d2h3,3

=
 d1g1,1 d1g1,2 d2g1,3

d1g2,1 d1g2,2 d2g2,3

d1g3,1 d1g3,2 d2g3,3

 . (3-1)

That is, the first entry in d acts on the first row of h, but acts on the first column of
g, etc. The rows of g and h are orthonormal (considered as vectors in R3 with the
usual dot product), and we compare the squared length of the first row of dh with
the first row of gd in (3-1):

(d1h1,1)
2
+ (d1h1,2)

2
+ (d1h1,3)

2
= (d1g1,1)

2
+ (d1g1,2)

2
+ (d2g1,3)

2.

Since first rows of both h and g have length 1, we have

⇒ (d1)
2
= (d1)

2
[(h1,1)

2
+ (h1,2)

2
+ (h1,3)

2
]

= (d1g1,1)
2
+ (d1g1,2)

2
+ (d2g1,3)

2 < (d1)
2,

since d1>d2. But this is impossible unless g1,3=0, and hence h1,3=0. Comparing
the lengths of the second rows shows that g2,3 = h2,3 = 0, and applying this same
reasoning to the columns gives h3,1 = g3,1 = 0 and h3,2 = g3,2 = 0.

We now have d1h1,1 d1h1,2 0
d1h2,1 d1h2,2 0

0 0 d2h3,3

=
 d1g1,1 d1g1,2 0

d1g2,1 d1g2,2 0
0 0 d2g3,3

 ,
which immediately implies that h = g. The condition that gt g = I gives us that
each of the block submatrices must be orthogonal, and of course g must have
determinant 1. Note that if we were to allow d2 = 0 then g3,3 and h3,3 need not be
equal.

An inductive argument on the different eigenvalues of d proves the general case
and is not particularly enlightening, so we state the following result.

Proposition 3.1. Let G = SO(n)× SO(n) and let V be the vector space of n× n
real matrices. Let G act on V via (g, h).v = gtvh. Let

d = diagonal(d1, . . . , d1︸ ︷︷ ︸
s1

, . . . , dk, . . . , dk︸ ︷︷ ︸
sk

) ∈ V

with d1 > d2 > . . . > dk ≥ 0, and let Gd be the stabilizer of d in G. If dk > 0, then
Gd = {(g, g) : g ∈ S(O(s1)× · · ·× O(sk))}.

That is, each g consists of block-diagonal matrices where each block is an si×si

orthogonal matrix and where si is the multiplicity of the eigenvalue di in d. The
“S” indicates that the product of the determinants of the blocks is 1. If dk = 0 then
Gd = (g, h) where g and h consist of block-diagonal matrices with each i-th block
in O(si ), and where g = h except for the k-th block.
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4. Orbits

A natural question is “What are these orbits like?” From the introduction we know
that, for any element v ∈ V , the orbit G.v is diffeomorphic to the coset space
G/Gv, with dim G.v = dim G − dim Gv. Since any two elements in the same G-
orbit have isomorphic stabilizers, it will be sufficient to consider the orbits of those
representative elements d in the cross-section D. In particular, the dimension of
these orbits is completely determined by the multiplicity of the distinct eigenvalues
of d and is independent of their actual values.

Example: n = 2. In low-dimensional cases we can use computer graphics to get
an idea about the nature of these orbits, and we now illustrate this for the two-
dimensional Lie group G = SO(2)×SO(2). Figure 1 shows the orbit of d =

(
1 0
0 0

)
,

with a cut-away view on the right. Note that, for n=2, the orbit lies in Mat(2,R)∼=

R4, and each figure is a projection of this orbit onto R2. Since G is abelian, Gd

is normal in G and so G/Gd is an abelian Lie group which is compact since the
quotient map is continuous. Since Gd = {(I2,I2), (−I2,−I2)} which is discrete,
the orbit G.d has dimension 2. We conclude that this orbit is diffeomorphic to the
2-torus embedded in R4, since this is the only two-dimensional compact abelian
Lie group. Notice that the graphics could be misleading, since we usually picture
the 2-torus in R3 as resembling the surface of a donut.

Note that if an element d in the cross-section D has only one eigenvalue, then
the stabilizer Gd is isomorphic to SO(2) and so the orbit G.d is one-dimensional
and is diffeomorphic to SO(2), that is, a circle.

Generic orbits. We now move on to consider the following special case of generic
orbits — those with maximal dimension — for arbitrary n. We will reserve the
symbol δ for a diagonal matrix in the cross-section D with n distinct eigenvalues.

Figure 1. An orbit for n = 2 projected onto R2. Right: cut-away
view of same orbit.
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That is, δ=diagonal(d1, . . . , dn)with d1>d2> · · ·>dn≥0. From Proposition 3.1
we have Gδ = (g, g), where g = diagonal(±1, . . . ,±1) has an even number of
entries equal to −1. Since the stabilizer of δ is discrete, the dimension of the
G-orbit of δ is equal to the dimension of G.

Proposition 4.1. Let G = SO(n)× SO(n) and let V be the vector space of n× n
real matrices. Let G act on V via (g, h).v = gtvh. Let

δ = diagonal(d1, d2, . . . , dn) ∈ V

with d1 > d2 > · · ·> dn ≥ 0, and let Gδ be the stabilizer of δ in G. Then |Gδ|, the
order of Gδ, is 2n−1.

Proof. From Proposition 3.1, Gδ consists of n copies of O(1)=±1 lying in SO(n),
so there must be an even number of entries equal to −1. Thus

|Gδ| =

(n
0

)
+

(n
2

)
+

(n
4

)
+ · · ·+

(n
k

)
,

where k = n if n is even and k = n− 1 if n is odd. From the binomial theorem,

2n
= (1+ 1)n + (1− 1)n

=

[(n
0

)
+

(n
1

)
+

(n
2

)
+ · · ·+

(n
n

)]
+

[(n
0

)
−

(n
1

)
+

(n
2

)
− · · ·±

(n
n

)]
= 2

[(n
0

)
+

(n
2

)
+

(n
4

)
+ · · ·+

(n
k

)]
= 2 |Gδ|. �

Again, what are these orbits like? Figure 2 shows a (projection of a) two-dimen-
sional slice of the orbit of δ=diagonal(2, 1, 0) for the case n=3. Could this be just
a torus in disguise, as was the case n = 2? One way to determine how interesting
the orbits are is to consider their fundamental groups.

Figure 2. A section of an orbit for n = 3. Right: cut-away view
of same section.
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5. Fundamental groups, covering spaces and spin(n)

In order to make this exposition self-contained and to fix notation we review some
background material that will be familiar to many readers.

Review of the fundamental group and covering spaces. Let X be a topological
space and let [0, 1] ⊂ R be the closed unit interval. A path in X is a continuous
map f : [0, 1] → X . Two paths f and g from x1 to x2 are said to be homotopic if
one can be continuously deformed into the other. This is obviously an equivalence
relation, and we denote the equivalence class of f by [ f ]. Of special interest will
be loops, or closed paths that start and end at a distinguished base point x ∈ X ,
and we can define a multiplication of loops by concatenation. That is, f · g means
first go around f and then go around g. This operation is associative and is well
defined when taking equivalence classes: [ f ] · [g] = [ f · g]. The constant loop
ex : [0, 1]→ X given by ex(t)= x serves as the identity element for this operation
and the loop f −1 is the loop f traversed in the opposite direction. We can then
define the first homotopy group or the fundamental group, denoted π1(X, x), as
the group of (equivalence classes of) loops in X that start and end at x , along
with this multiplication. If x1 and x2 are connected by a path in X , then π1(X, x1)

and π1(X, x2) are isomorphic. Homeomorphic topological spaces have isomorphic
fundamental groups, but the converse need not be true.

We will also require the notion of a covering. Let (X, x), (Y, y) be topological
spaces with base points x and y respectively. A map p : (Y, y) → (X, x) is a
covering map if

(i) p(y)= x ;

(ii) p is continuous and surjective;

(iii) for every x0 ∈ X there is an open neighborhood Ux0 ⊂ X so that p−1(Ux0) is
a disjoint union of open sets {Vα} and so that for each α, the map p restricted
to Vα is a homeomorphism of Vα onto Ux0 .

We then say that (Y, y) is a covering space of (X, x) and refer the the covering
space along with the covering map as a cover of (X, x). We will also use the
standard results, roughly stated, that the composition of covers is a cover, and that
the cover of a product is the product of the respective covers.

Remark 5.1. A topological space with trivial fundamental group is called simply
connected. A covering space that is simply connected is called a universal covering
space. It is unique up to homeomorphism.

We will need the notion of lifting a path from a space to a covering space.
Let p : (Y, y)→ (X, x) be a covering map. Let f : [0, 1]→ X be a path starting

at x . A lifting of f is a path f̃ : [0, 1] → Y such that p ◦ f̃ = f . For the cases we
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are considering, these lifts are unique up to homotopy. That is, let f be a path in
X beginning at x , and let f̃ and g̃ be two lifts of f both beginning at y. Then f̃ is
homotopic to g̃. In particular, f̃ and g̃ must end at the same point in Y .

Let p : (Y, y) → (X, x) be a covering map. A homeomorphism h : Y → Y
is called a deck transformation or covering transformation if p ◦ h = p. Clearly
the collection of all such deck transformations is a group with the operation being
composition of maps.

We will use the following fact to determine π1(G.δ, δ).

Theorem 5.2. [Massey 1991, Corollary 7.5] If (Y, y) is a universal covering space
of (X, x), the group of deck transformations of (Y, y) is isomorphic to π1(X, x). If
p : (Y, y) :→ (X, x) is a covering map, then the order of π1(X, x) is equal to the
cardinality of the set p−1(x).

Now consider the map p1 : G → G.δ given by g 7→ g.δ. Since p−1
1 (δ) =

{γ ∈ G | γ.δ = δ} = Gδ is discrete, Theorem E4 of [Hall 2003] has the following
consequence.

Proposition 5.3. Let G = SO(n)× SO(n) and let 111 denote the identity element in
G. Let V be the vector space of n× n real matrices and let G act on V by

(g, h).v := gtvh, (g, h) ∈ G, v ∈ V .

If δ ∈ V is a diagonal matrix with n distinct eigenvalues, and if G.δ is the G-orbit
of δ, then the map p1 : (G,111)→ (G.δ, δ) given by g 7→ g.δ is a covering map.

Said another way, G is a fiber bundle over the orbit G.δ with projection map
(g, h) 7→ (g, h).δ and discrete fiber Gδ.

Spin(n). We now provide a brief review of the construction of the Lie group
Spin(n) and the covering map from Spin(n) to SO(n). This abridged description
should be sufficient for our purposes, but for a more complete discussion, see
[Bröcker and tom Dieck 1985]. The presentation below borrows extensively from
the excellent exposition in [Simon 1996].

Consider the vector space Rn with standard basis {e1, . . . , en}. We form C(n),
the Clifford algebra on Rn , by declaring that multiplication is associative, distribu-
tive over addition, and obeys the relations ei e j +e j ei =−2δi j . This is just a fancy
way of saying that the basis elements anti-commute and e2

i =−1. If I = i1i2 . . . ik

is a multiindex with 1 ≤ i1 < · · · < ik ≤ n we set e0 = 1, we set eI = ei1ei2 . . . eik

and we set |I | = k. Then C(n) is an algebra with basis {eI } and it follows that the
dimension of C(n) is 2n . We also have the subalgebra of even elements

C(n)even = {A ∈ C(n) | A is a linear combination of eI with |I | even}.
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Examples. We have canonical isomorphisms:

• C(0)∼= R;

• C(1)∼= C via the map e1 7→ i =
√
−1;

• C(2)∼=H (the quaternion algebra) via the map e1 7→ i , e2 7→ j and so e1e2 7→k.
Here, i , j , and k are those elements in H with i2

= j2
= k2
=−1 and i j = k;

• we also have C(3)even ∼= H via the map e1e2 7→ i , e1e3 7→ j , so

(e1e2)(e1e3)= e2e3 7→ k.

We can define Spin(n) to be the invertible elements S of C(n)even that (among
other things) leave the vector space W = Rn invariant under conjugation:

SW S−1
⊆W.

Now consider the quadratic elements

qi j =
1
2 ei e j ,

for 1≤ i < j ≤ n, and observe that they obey the same commutation relations as the
generators L i j of the Lie algebra so(n). Therefore these quadratic elements form a
Lie algebra isomorphic to so(n), and so to get the group Spin(n) we exponentiate
these quadratic elements:

Si j (t) := exp(t qi j )= 1+ (tqi j )+
1
2!
(tqi j )

2
+

1
3!
(tqi j )

3
+ · · ·

= cos(t/2)+ sin(t/2)(2qi j ),

since q2
i j = −1. As t goes from 0 to 4π , Si j (t) gives a copy of U (1) in Spin(n)

which is homeomorphic to a circle in the plane spanned by 1 and 2qi j .
Now the elements A in Spin(n) act on Rn by conjugation and this gives a rep-

resentation of Spin(n) on Rn . Consequently, we have a map

R : Spin(n)→ SO(n,R)

defined by

Aei A−1
=

n∑
i=1

R j i (A)e j . (5-1)

We now determine the matrix representation of the group elements

Si j (t) := exp(tqi j )= cos(t/2)+ sin(t/2)(ei e j ) (5-2)

by determining the action on the basis vectors. First observe that ei e j commutes
with ek when k is equal to neither i nor j , so in this case

Si j (t)ek S−1
i j (t)=

(
cos(t/2)+ sin(t/2)(ei e j )

)
ek
(
cos(t/2)− sin(t/2)(ei e j )

)
= ek .
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Now conjugating ei by Si j (t) we have

Si j (t)ei S−1
i j (t)=

(
cos(t/2)+ sin(t/2)(ei e j )

)
ei
(
cos(t/2)− sin(t/2)(ei e j )

)
=
(
cos(t/2)+ sin(t/2)(ei e j )]

2ei

=
(
cos2(t/2)− sin2(t/2)

)
ei − 2 cos(t/2) sin(t/2)e j

= cos(t)ei − sin(t)e j .

A similar computation applied to e j gives

Si j (t) e j S−1
i j (t)= sin(t)ei + cos(t)e j .

Therefore, conjugation by Si j (t)= exp(tqi j ) induces a rotation by an angle t in the
ei , e j plane. Since these rotations generate SO(n), this map is surjective.

The following result is well known (see [Simon 1996, Sections VII.6–VII.7] or
[Bröcker and tom Dieck 1985, Section 1.6].

Proposition 5.4. Spin(n) is simply connected. If A ∈ Spin(n) and if R(A) is
the n × n matrix with entries R j i (A) described in (5-1) above, then the map
R : (Spin(n),111)→ (SO(n,R),111) is a twofold universal covering map and a homo-
morphism of Lie groups. The symbol 111 denotes the unit elements in the respective
groups.

6. The fundamental group of a generic orbit

We are now ready to determine the fundamental group for a generic orbit of max-
imum dimension. We will proceed by elaborating on some previously introduced
ideas and connecting them together in order to invoke Theorem 5.2.

As before, δ ∈ D denotes an element in the cross-section with n distinct eigen-
values. By Proposition 3.1, a typical element in its stabilizer Gδ can be represented
by a diagonal matrix with each entry equal to ±1, and where an even number of
entries are equal to −1. From now on, let I = i1i2 · · · ik be a multiindex with
1 ≤ i1 < · · · < ik ≤ n, k even and set l = k/2. Let STI be the element in Gδ with
those entries that are equal to −1 indexed by I . For example, if n = 6,

ST1,2,3,5 =



–1 0 0 0 0 0
0 –1 0 0 0 0
0 0 –1 0 0 0
0 0 0 1 0 0
0 0 0 0 –1 0
0 0 0 0 0 1


.

Using this notation, Gδ = {(STI , STI ) : |I | is even}.
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Let τ = (t1, . . . , tl) and let SOI (τ ) be the matrix consisting of rotations by an
angle t j in the planes indexed pairwise by I . These pairs are of the form i2m−1, i2m .

For example, if I = 1, 2, 3, 5 and τ = (t1, t2) then SOI (τ ) rotates by an angle t1
in the 1, 2 plane and by an angle t2 in the 3, 5 plane. For instance, if n = 6,

SO1,2,3,5(τ )=



cos t1 sin t1 0 0 0 0
–sin t1 cos t1 0 0 0 0

0 0 cos t2 0 sin t2 0
0 0 0 1 0 0
0 0 –sin t2 0 cos t2 0
0 0 0 0 0 1


.

Notice that SO1,2,3,5(τ ) is equal to the matrix product SO1,2(t1)SO3,5(t2). It should
be easy to see that

Lemma 6.1. STI = SOI (±π, . . . ,±π).

We next consider product of elements Si j (t) ∈ Spin(n) and relate them to the
corresponding elements in SO(n).

Lemma 6.2. Let I = i1i2 · · · ik be a multiindex with k even and where

i1 < i2 < · · ·< ik .

Set l= k/2. Let τ = (t1, . . . , tl) and let SOI (τ ) be the matrix consisting of rotations
by an angle t j in the planes indexed pairwise by I . Let Si, j (t) be defined as in
(5-2), and let SI (τ ) designate the product SI (τ ) = Si1i2(t1)Si3i4(t2) · · · Sik−1ik (tl).
Let R : Spin(n) → SO(n) be the covering map given by Proposition 5.4. Then
R(SI (τ ))= SOI (τ ).

Further, eI := ei1ei2 · · · eik , we have eI = SI (π, . . . , π).

Proof. Since the entries in the multiindex I are distinct, the designation SOI (τ )=

SOi1i2···ik (τ )= SOi1i2(t1)SOi3i4(t2) · · · SOik−1ik (tl) is unambiguous. Since the map
R is a representation, we have

R[SI (τ )] = R[Si1i2(t1)] R[Si3i4(t2)] · · · R[Sik−1ik (tl)]

= SOi1i2(t1)SOi3i4(t2) · · · SOik−1ik (tl)= SOI (τ ).

For the last assertion, note that (5-2) gives ei e j = Si j (π) for any i, j , since
cos(π/2)= 0 and sin(π/2)= 1. Hence

eI = [ei1ei2][ei3ei4] · · · [eik−1eik ] = Si1i2(π)Si3i4(π) · · · Sik−1ik (π)= SI (π, . . . , π),

as required. �

This next result is proven similarly.
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Lemma 6.3. Denote by π+ an l-tuple π+ = (±π, . . . ,±π) with an even number
of entries equal to −π and denote by π− an l-tuple π− = (±π, . . . ,±π) with an
odd number of entries equal to −π . Let SI (τ ) and eI be as in the previous lemma.
Then SI (π

+)= eI and SI (π
−)=−eI .

Finally, let 1̃11 denote the unit element in G̃ = Spin(n)×Spin(n) and let 111 denote
the unit element in G=SO(2,R)×SO(2,R). Then (G̃, 1̃11) is the universal covering
space (in fact, a covering group) of (G,111) and the map

ρ = R× R : (G̃, 1̃11)→ (G,111)

is a fourfold covering map. Now recall the covering map p1 : (G,111)→ (G.δ, δ)
from Proposition 5.3. It follows that the composition

P = ρ ◦ p1 : (G̃, 1̃11)→ (G.δ, δ)

is a covering map and that G̃ is the universal covering space of the orbit G.δ.

Definition 6.4. E(n)= {± eI : |I | is even}.

Observe that E(n) is closed under multiplication since, if eI eJ = eK then |K | =
|I | + |J | when I and J are distinct indices, and the entries of K contract in pairs
when I and J have repeated entries. For example, e1,2 e2,3=−e1,3. Since (eI )

−1
=

±eI , E(n) is a group under multiplication. A computation very similar to that in
Proposition 4.1 shows that |E(n)| = 2n .

Definition 6.5. Consider the set Ẽ(n)={(ν,±ν) | ν ∈ E(n)}. This is a subgroup of
G̃ which is isomorphic to the group E(n)×Z2 via the identifications (ν, 1) 7→ (ν, ν)

and (ν,−1) 7→ (ν,−ν) for ν ∈ E(n).

Proposition 6.6. P−1(δ)= Ẽ(n).

Proof.

P[(eI , eI )] = p1 ◦ [R(eI ), R(eI )],

Lemma 6.3⇒= p1 ◦ [R(SI (π
+), R(SI (π

+)],

Lemma 6.2⇒= p1 ◦ [SOI (π
+),SOI (π

+)],

Lemma 6.1⇒= p1 ◦ [STI , STI ],

= δ.

The proofs of the other cases such as P[(eI ,−eI )] = δ are similar and hence
Ẽ(n)⊆ P−1(δ).

Now p−1
1 (δ)= {(STI , STI ) : |I | is even} ⊆ G has order 2n−1 (Proposition 4.1)

and ρ is a fourfold covering map G̃→G. Therefore the set P−1(δ) has order 2n+1

which is equal to the order of Ẽ(n). �



ON THE ORBITS OF AN ORTHOGONAL GROUP ACTION 507

The main result of this paper completely describes the fundamental group of a
generic orbit.

Theorem 6.7. Let G = SO(n)×SO(n) and let V be the vector space of n×n real
matrices. Let G act on V via (g, h).v= gtvh. Let δ= diagonal(d1, d2, . . . , dn)∈V
with d1 > d2 > . . . > dn ≥ 0, and let G.δ be the G-orbit of δ in V . Let e1, . . . , en

be the standard basis vectors in Rn and let E(n) = {±ei1 . . . eik | k is even} be the
group generated by the quadratic units ei e j , i < j in the Clifford algebra on Rn .
Then the fundamental group π1(G.δ, δ) is isomorphic to E(n)×Z2.

Proof. We will show that the group of deck transformations Aut(G̃, P) on the
universal covering (G̃,111) is isomorphic to Ẽ(n) which is isomorphic to E(n)×Z2.

For each ω̃ ∈ Ẽ(n) and s̃ ∈ G̃ define the left translation map Lω̃ : G̃ → G̃ by
Lω̃ (̃s) = ω̃ s̃, the operation on the right-hand side being multiplication in G̃. It is
a standard exercise that the set of all such translations L = {Lω̃ | ω̃ ∈ Ẽ(n)} is a
group that is isomorphic to Ẽ(n) via the map ω̃ 7→Lω̃. Since G̃ is a Lie group, each
translation is continuous with a continuous inverse, hence a homeomorphism from
G̃ to G̃. Furthermore, for each ν̃ ∈ Ẽ(n), the composition P ◦Lω̃ (̃ν)= P(ω̃ ν̃)= δ
so each Lω̃ is a deck transformation and therefore L is a subgroup of Aut(G̃, P).
But Aut(G̃, P) has order 2n+1 by Theorem 5.2, and since both these groups have
the same order, they must be equal. By Theorem 5.2 again we have π1(G.δ, δ) ∼=
Aut(G̃, P)= L∼= Ẽ(n)∼= E(n)×Z2. �

7. An illustration

We conclude with an example for n = 6 that further illustrates the previous con-
structions. The element

S3,5(t)= exp[(t/2)e3e5] = cos(t/2)+ sin(t/2)e3e5

in Spin(6) defined in (5-2) is homeomorphic to a circle lying in the plane spanned
by 1 and e3e5 in the Clifford algebra C(6), and which projects onto the rotation
SO3,5(t) in SO(6) via the representation R. Consider the path f̃ : [0, 4π ] → G̃
given by t 7→ (S35(t), S35(t)).

Since f̃ is homeomorphic to a circle and G̃ is a simply connected covering
group, [ f̃ ] is trivial in π1(G̃,111). Now as t goes from 0 to π , we get a path f̃[0,π ]
from (1, 1) to (e3e5, e3e5) in G̃ that projects down via P to a loop f : [0, π]→G.δ
given by f (t) = (SO3,5(t),SO3,5(t)).δ. By uniqueness of path lifting, f cannot
be homotopic to the trivial loop since f̃[0,π ] is not trivial in G̃. Similarly, as t goes
from π to 2π , we get a path f̃[π,2π ] from (e3e5, e3e5) to (−1,−1) in G̃ that also
projects down to the loop f in the orbit G.δ. Not until t travels the entire distance
[0, 4π ] do we obtain the product f 4 in G.δ that lifts to the (trivial) loop f̃ in G̃.
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Thus, [ f ]4 is trivial in π1(G.δ, δ). We chart here the information as the path f̃ is
projected onto G and then G.δ for the successive landmark values of t .

t f̃ (t)) ρ((S3,5(t), S3,5(t))) P(S3,5(t), S3,5(t))

0 (1, 1) (I6,I6) δ

π (e3e5, e3e5) (ST3,5, ST3,5) δ

2π (−1,−1) (I6,I6) δ

3π (−e3e5,−e3e5) (ST3,5, ST3,5) δ

4π (1, 1) (In,In) δ

As in the previous discussion regarding deck transformations in the proof of
Theorem 6.7, we can translate the loop f̃ via left multiplication by the element
(e1e2, e1e2)∈ Ẽ(n). This gives us the loop g̃ : [0, 4π ]→ G̃ given by t 7→ (ν(t), ν(t))
where

ν(t)= e1e2[cos(t/2)+ sin((t/2))e3e5] = cos(t/2)e1e2+ sin(t/2)e1e2e3e5.

This is a loop starting at e1e2 which lies in the plane spanned by e1e2 and e1e2e3e5

in the Clifford algebra C(6).
We check that

ν−1(t)= [− cos(t/2)e1e2+ sin(t/2)e1e2e3e5]

and that conjugating the basis vectors ei ∈ R6 by ν(t) produces the map R which
takes ν(t) to the rotation

R(ν(t))=



–1 0 0 0 0 0
0 –1 0 0 0 0
0 0 cos t 0 sin t 0
0 0 0 1 0 0
0 0 – sin t 0 cos t 0
0 0 0 0 0 1


∈ SO(6).

As above, the projection P maps g̃[0,π ] to the loop g(t)= R(ν(t)).δ in the orbit
G.δ and [g]4 is trivial. Here is part of this information for the path g̃:

t g̃(t) ρ(g̃(t))) P(g̃(t)))

0 (e1e2, e1e2) (ST1,2, ST1,2) δ

π (e1e2e3e5, e1e2e3e5) (ST1,2,3,5, ST1,2,3,5) δ

2π (−e1e2,−e1e2) (ST1,2, ST1,2) δ

3π (−e1e2e3e5,−e1e2e3e5) (ST1,2,3,5, ST1,2,3,5) δ

By considering the loops in the orbit G.δ that lift to the path from

(1, 1)→ (e1e2, e1e2)→ (e1e2e3e5, e1e2e3e5)
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in G̃ we see that g and f cannot be homotopic, so [g] and [ f ] are distinct elements
in π1(G.δ, δ).

8. Final remarks on the general case

Determining the first homotopy group for the orbits in the more general case, when
the representative element d in the cross-section contains eigenvalues with multi-
plicities greater than 1, does not lend itself to such direct construction since the
map G→ G.d is not a covering map.
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Symbolic computation of degree-three covariants
for a binary form

Thomas R. Hagedorn and Glen M. Wilson

(Communicated by Scott Chapman)

We use elementary linear algebra to explicitly calculate a basis for, and the di-
mension of, the space of degree-three covariants for a binary form of arbitrary
degree. We also give an explicit basis for the subspace of covariants comple-
mentary to the space of degree-three reducible covariants.

The study of invariant functions was one of the main influences on the devel-
opment of modern algebra. Consider the following simple example. The group
G = Z acts on R by addition: g · x = g + x . We define a G-invariant function
to be a real-valued function f (x) on R such that f ◦ g = f for all g ∈ G. In
other words, f (x) = f (g + x) for all g ∈ Z, x ∈ R. The invariant functions are
precisely the real-valued functions with period one. Hence, geometric information,
such as periodicity, can be recovered by studying functions with certain algebraic
properties.

In Section 1, we introduce the concepts of an invariant and covariant function
for a binary form Q(x, y). The problem of determining the complete set of these
functions was widely worked on during the late nineteenth century. Gordan [1868]
proved that the ring of invariants (and the ring of covariants) for a degree-n bi-
nary form is finitely generated. A milestone in the history of modern algebra was
Hilbert’s nonconstructive proof [1890] of the following fundamental theorem.

Theorem [Hilbert 1890]. The ring of invariants (and the ring of covariants) for a
degree-n homogeneous polynomial in m variables is finitely generated.

Hilbert’s theorem says that all invariants (resp. covariants) for a homogeneous
polynomial can be expressed as polynomials in a certain finite set of invariants
(resp. covariants). Hilbert [1893] subsequently gave a constructive proof of this
theorem. The minimal size of the generating set is only known for a few values of
(m, n). When m = 2, this number has been determined for n≤ 8 [Bedratyuk 2009;
Bedratyuk and Bedratyuk 2008].

MSC2000: 13A50, 15A72, 16W22.
Keywords: theory of covariants, invariant theory, symbolic method, binary forms.
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Let Cn
d,h denote the complex vector space of covariants of degree d , order h for a

degree-n binary form (see Section 1 for a definition). Cayley and Sylvester proved a
classical combinatorial formula for dim Cn

d,h [Sturmfels 2008, p. 153]. Algorithms
for calculating a basis for Cn

d,h are known, but in principle they have only been
carried out in a few cases. In general, for a degree-n form in m variables, the most
comprehensive treatment is due to Howe [1994], who has given an algorithm for
calculating the set of invariants of degree d ≤ 6.

Here we study the case when d = 3 and use an elementary argument involving
matrix algebra to give an explicit basis for Cn

3,h in Theorem 6.1. While our result
may not be new, we do not find it in the literature and it corrects the incorrect
description of Cn

3,h in [Hilbert 1993, p. 62] (see the Historical remark in Section
6). As a corollary, we obtain an explicit form for the Cayley–Sylvester formula in
this case. Finally, let Redn

3,h denote the subspace of Cn
3,h consisting of reducible co-

variants (those that are polynomials in lower-degree covariants). In Corollary 6.4,
we provide an explicit basis for the subspace in Cn

3,h complementary to Redn
3,h . Our

argument is a variant of the classical straightening algorithm in invariant theory.
In the first two sections of this paper, we define the invariants and covariants of a

binary form and review the classical symbolic method. There has been a wealth of
excellent introductions to invariant theory recently written [Dolgachev 2003; Kraft
and Weyman 1999; Olver 1999; Procesi 2007; Sturmfels 2008] and we refer the
reader to them for a more comprehensive introduction to the subject. In the paper’s
next two sections, we introduce the combinatorial concepts of H-and U-matrices,
and establish the relationship with Cn

3,h . Finally, in Sections 5 and 6, we carry out
calculations to determine an explicit basis for Cn

3,h .

1. Basic notions

We review the basic definitions of invariants and covariants found, for example, in
[Dolgachev 2003; Kraft and Weyman 1999; Olver 1999]. A binary form Q(x, y)
of degree n is a homogeneous polynomial

Q(x, y)= a0xn
+

(n
1

)
a1xn−1 y+ . . .+

( n
n−1

)
an−1xyn−1

+ an yn. (1)

We let Vn denote the complex vector space of all binary forms of degree n with
complex coefficients. The matrix group SL2(C) acts on v ∈C2 by matrix multipli-
cation g · v = gv and induces an action on

(C2)∗ = {Linear functions h : C2
→ C}

by (g ·h)(v)= h(g−1v). In this context, we regard x , y as the coordinate functions
on C2. Thus x, y ∈ (C2)∗ and (C2)∗ = Cx ⊕Cy. If

g =
(a b

c d

)
∈ SL2(C),
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the explicit action of g on x, y is given by g · x = dx − by, g · y = −cx + ay.
Defining g · (xa yb) = (g · x)a(g · y)b, the SL2(C)-action naturally extends to a
SL2(C)-action on Vn . Equivalently, the SL2(C)-action on (C2)∗ extends to the
tensor product

⊗n
i=1(C

2)∗, and preserves the subspace SymnC2 ∼= Vn .

Remark 1.1. Vn is the unique (up to isomorphism) irreducible representation of
SL2(C) of dimension n.

Polynomial functions. Invariants and covariants for a binary form of degree n are
specific examples of polynomial maps.

Definition 1.2. Let W =
⊕k

i=1 Vni . A function f : W → C is a polynomial map
of degree d if there is a degree-d homogeneous polynomial f̂ ∈ C[xi j ]1≤i≤k,0≤ j≤ni

such that for all binary forms Qi ∈ Vni , expressed as Qi (x, y) =
∑ni

j=0 ai j xn−i yi

as in (1), we have
f (Q1, . . . , Qk)= f̂ (ai j ).

The polynomial f̂ is uniquely determined and we identify f with f̂ . Let P(W )d
denote the set of all degree-d polynomial maps on W . We say f has multidegree
d= (d1, . . . , dk) if

f (t1 Q1, . . . , tk Qk)= td1
1 . . . tdk

k f (Q1, . . . , Qk) for all ti ∈ C, Qi ∈ Vni ,

and we let P(W )d denote the set of all such functions.

Example 1.3. Let k=1, n1=1, and f̂ (x0, x1)= x0x1. Then f defined by f (a0x+
a1 y)= f̂ (a0, a1)= a0a1 is a polynomial map of degree 2 on W = V1. The function
f (a0x + a1 y)= |a0| is not a polynomial map.

More generally, consider a function f : W → Vh . Since {xh, xh−1 y, . . . , yh
} is

a basis for Vh , there are functions fi :W → C such that

f = f0xh
+ f1xh−1 y+ · · ·+ fh−1xyh−1

+ fh yh . (2)

Definition 1.4. A map f :W→ Vh is a polynomial map of degree d if fi ∈ P(W )d
for each of the functions fi in (2). We let P(W )d,h denote the set of all polynomial
maps on W → Vh of degree d. An analogous definition applies if “degree d” is
replaced by “multidegree d”.

Invariants and covariants.

Definition 1.5. A SL2(C)-invariant f : Vn → C of degree d for a binary form of
degree n is a polynomial map f ∈ P(Vn)d such that

f (g · Q)= f (Q) for all g ∈ SL2(C) and Q ∈ Vn.
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Example 1.6. The first example of an invariant was discovered by Gauss in his
study of binary quadratic forms. Let Q(x, y)= a0x2

+2a1xy+a2 y2 and define the
discriminant1(Q)=a2

1−a0a2. If g= ( a b
c d ), we have (g·Q)=b0x2

+2b1xy+b2 y2,
where

b0 = a0d2
− 2a1cd + a2c2,

b1 =−a0bd + a1(ad + bc)− a2ac,

b2 = a0b2
− 2a1ab+ a2a2.

1 is a degree-two SL2(C)-invariant of a binary quadratic form, as a straightforward
calculation shows1(g·Q)=1(Q). It can be shown that if f is a degree-d invariant
of a binary quadratic form, then d is even and f is a multiple of 1d/2.

Classically, the interest in invariants was to use them to identify geometric
properties of projective curves preserved under SL2(C) transformations. However,
invariants are not general enough to specify all such properties. The more general
notion of covariants is needed to identify these properties.

Definition 1.7. A SL2(C)-covariant f of degree d and order h for a form of degree
n is a polynomial function f ∈ P(Vn)d,h such that

f (g · Q)= g · f (Q) for all g ∈ SL2(C), Q ∈ Vn.

Let C(Vn) denote the vector space of all covariants for a form of degree n, and let
Cn

d,h = C(Vn)d,h denote the space of those of degree d and order h.

Example 1.8. (i) An invariant is a covariant of order h = 0.

(ii) The simplest example of a covariant is the function f : Vn → Vn of degree
1, order n, defined by f (Q) = Q. f ∈ Cn

1,n is a covariant as the condition
f (g · Q)= g · f (Q) is trivially satisfied.

(iii) A more important covariant is the Hessian function. For Q(x, y) ∈ Vn , define
the Hessian H : Vn→ V2n−4 by

H(Q)=
∂2 Q
∂x2

∂2 Q
∂y2 −

( ∂2 Q
∂x∂y

)2
.

The Hessian has the property that H(Q) = 0 precisely when Q is the nth
power of a linear form. It is a covariant of degree 2 and order 2n− 4.

More generally, we have the following definition of a covariant. This definition
is only used in the next section.

Definition 1.9. Let W =
⊕k

i=1 Vni . A covariant of degree d, order h for W is a
function f ∈ P(W )d,h satisfying

f (g · Q)= g · f (Q) for all g ∈ SL2(C) and Q ∈W.
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We let C (W ) denote the set of all covariants for W . A covariant f ∈C(W ) of order
h is said to have multidegree d if f ∈ P(W )d,h . We let C(W )d,h (resp. C(W )d,h)
denote the sets of covariants in C of order h and degree d (resp. multidegree d).

2. The symbolic method

To prove our results, we will use the classical symbolic method. We review it
here. Classically, the legitimacy of the symbolic method was questioned, but it has
since been justified [Kung and Rota 1984; Dolgachev 2003]. We now introduce
the symbolic method, following the presentation in [Kraft and Weyman 1999] and
adopting their notations.

Symbolic method for C(L J ). Let J ={1, . . . , k}. Let xab, xc for a, b, c∈ J , a 6=b,
denote independent variables and define the polynomial ring

Symk = C[xab, xc|a, b, c ∈ J, a 6= b].

Let P ∈ Symk be a monomial and write

P =
∏

a,b∈J

xλab
ab

∏
c∈J

xσc
c .

The order ord P and weight wt P = (wta P)a∈J are defined by

ord P =
∑
c∈J

σc, wta P =
∑
b∈J

(λab+ λba)+ σa.

We note that the symmetric group Sk naturally acts on Symk by

σ(xab)= xσ(a)σ (b), σ (xc)= xσ(c).

Definition 2.1. Let l1, l2 ∈ L = V1 and let li = ai0x + ai1 y. Define

[l1 l2] =

∣∣∣∣a10 a11

a20 a21

∣∣∣∣ .
Let L J

=
⊕

a∈J L and let l = (la) ∈ L J . L J can be identified with Lk , where
k = |J |. We denote the maps l 7→ [la lb] and l 7→ lc by the classical notation (ab)
and cx , respectively. We have (ab), cx ∈ C(L J ).

Theorem 2.2 (First fundamental theorem). The ring C(L J ) is generated by all
elements of the forms (ab) and cx , for a, b, c ∈ J , and a 6= b.

Define the map χ : Symk→ C(L J ) by

χ(xab)= (ab), χ(xc)= cx ,

and extend it in the natural way to monomials and all of Symk .
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Corollary 2.3. χ : Symk → C(L J ) is a surjective homomorphism of algebras. χ
sends a monomial P of order h and weight w to a covariant χ(P) of order h and
multidegree w.

Let a= kerχ . Then
Symk/a

∼= C(L J ). (3)

We now describe the elements of a. For all distinct a, b, c, d ∈ J , we have

(ab)+ (ba)= 0, (ab)cx + (ca)bx + (bc)ax = 0,

(ab)(cd)+ (ad)(bc)− (ac)(bd)= 0.

Traditionally, these equations are called syzygies of the first, second, and third
type. These syzygies motivate the definition of three subideals of a.

a1 = 〈xab+ xba | a 6= b ∈ J 〉,

a2 = 〈xabxc+ xcaxb+ xbcxa | distinct a, b, c ∈ J 〉,

a3 = 〈xabxcd + xad xbc− xacxbd | distinct a, b, c, d ∈ J 〉.

The second fundamental theorem (or invariant theorem) for SL2 states that these
three syzygies generate all the relationships among the covariants C(L J ).

Theorem 2.4 (Second fundamental theorem). Let a= kerχ . Then a= a1+a2+a3.

Notation. (i) Symk is bigraded by weight and order. Let Symk,w,h ⊂ Symk be
those elements with weight w and order h. Then Symk =

⊕
w,h Symk,w,h .

The ideal a is also bigraded and we let aw,h = a∩Symk,w,h .

(ii) When the weight is w = (n, . . . , n), we write w = (n)k as shorthand.

Classical symbolic description of Cn
k,h. Equation (3) describes C(L J ) in terms of

the symbolic algebra. Classically, these same symbols were also used to denote
covariants in Cn

k,h (= C(Vn)k,h). We now present this alternate symbolic method
and relate the two notations.

Let Q(x, y) be a degree n binary form with coefficients ai as in (1). For each
a ∈ J , let αa0, αa1 be indeterminates with the property that αn−i

a0 α
i
a1 = ai , for

i = 0, . . . , n. Let ax = αa0x +αa1 y and define

(ab)=
∣∣∣∣αa0 αa1

αb0 αb1

∣∣∣∣= αa0αb1−αa1αb0.

Using these definitions, for a monomial P =
∏

a 6=b xλab
ab
∏

c xσc
c ∈ Symk,(n)k ,h , the

expression
ψ(P)=

∏
a 6=b

(ab)λab
∏

c

cσc
x (4)
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is a well-defined degree-h binary form whose coefficients are homogeneous degree
k polynomials in the ai . Moreover, the function Q 7→ ψ(P) can be seen to be a
covariant in Cn

k,h . Let ψ(P) denote this covariant. We note that χ(P) ∈ C(L J )

and ψ(P) ∈ Cn
k,h are different types of covariants, but the symbolic representation

of χ(P) from the previous subsection equals the symbolic representation ψ(P).

Example 2.5. Let P= x2
ab∈Sym2,(2)2,0. In the notation just introduced, the symbol

(ab)2 for the binary quadratic form Q of (1) represents

(ab)2 = (αa0αb1−αa1αb0)
2
= α2

a0α
2
b1− 2αa0αa1αb0αb1+α

2
a1α

2
b0 = 2(a0a2− a2

1).

Thus ψ(P) is the covariant Q 7→ 2(a0a2− a2
1). Its symbolic representation (ab)2

is the same as that of χ(P)= (ab)2 ∈ C(L2).

The two symbolic methods are linked by the following proposition.

Proposition 2.6 [Kraft and Weyman 1999]. There is a surjective homomorphism
of vector spaces

3 : C(L J )(n)k ,h→ Cn
k,h

such that the composition 3 ◦χ : Symk,(n)k ,h→ Cn
k,h is surjective with kernel

I = a(n)k ,h +〈P − σ · P : P ∈ Symk,(n)k ,h〉.

If P ∈ Symk,(n)k ,h is a monomial, then 3(χ(P)) = ψ(P). Moreover, 3 sends
a symbolic covariant in C(L J ) to the covariant in Cn

k,h with the same symbolic
representation.

Corollary 2.7. The map P 7→ψ(P) induces an isomorphism Symk,(n)k ,h/I ∼=Cn
k,h .

This result enables the easy classification of covariants with small degree.

Example 2.8 (Covariants of degree 1). Let J = {a}. By the corollary, Cn
1,h = 0

when h 6= n. When h = n, Cn
1,n is generated by ψ(xn

a ) = an
x . As I = a(n)1,n = 0,

Cn
1,n is the one-dimensional space generated by g = an

x . g is the trivial covariant
with the property g(Q)= Q for any degree n binary form Q.

Example 2.9 (Covariants of degree 2). Let J = {a, b}. We will show that

dim Cn
2,h =

{
1 if h is even, h ≤ 2n, and h ≡ 2n mod 4
0 otherwise.

In the former case, Cn
2,h is generated by g = (ab)n−h/2ah/2

x bh/2
x . When h = 2n,

this is the covariant g such that g(Q) = Q2. By the corollary, the vector space
Cn

2,h is generated by the images ψ(m) of the monomials m = xa
12xb

21xc
1xh−c

2 . Since
xb

21 − (−1)bxb
12 ∈ a, we only need consider m = xa

12xc
1xh−c

2 . Since m has weight
(n)2, a + c = n = a + (h − c) and h = 2c. Thus if h is odd, Cn

2,h = {0}. If h is
even, let h = 2c. Then Cn

2,h is at most a one-dimensional space generated by the
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image of m = xn−c
12 xc

1xc
2 . For this space to be nontrivial, we must also have c ≤ n.

If σ = (12), m− σ(m)= (xn−c
12 − xn−c

21 )xc
1xc

2 ∈ I . Substituting for x21,

(1− (−1)n−c)xn−c
12 xc

1xc
2 ∈ I.

Hence, when n−c is odd, m ∈ I and ψ(m)= 0. Finally, we show that m 6∈ I when
h = 2c, h ≤ 2n and n − c is even. Suppose that m ∈ I . Then the definition of I
shows that

xn−c
12 xc

1xc
2 = (x12+ x21) f + [P − σ(P)] , (5)

where f ∈ Sym2, σ = (12), and we can assume P is a linear combination of
monomials of the form x i

12xn−c−i
21 xc

1xc
2 . Then

P − σ(P)= xc
1xc

2

∑
i

ai (x12x21)
i[xn−c−2i

21 − xn−c−2i
12

]
.

Now (5) is an identity in Sym2, so letting x21 = −x12, we obtain an identity in
C[x1, x2, x12]. But since n − c is even, we obtain xn−c

12 xc
1xc

2 = 0, in Sym2, which
gives a contradiction. Hence m 6∈ I and Cn

2,h is one-dimensional in this case.

We now define the map Observe that the proof of Theorem 6.1 uses only the
statements of Proposition 2.6 and Corollary 2.7. Consider f ∈ C(L J )(n)k ,h . By
Theorem 2.2, f =

∑
P cP P , where

P =
∏
a 6=b

(ab)λab
∏
c∈J

cσc
x ,

and wt P = n, ord P = h. We will define 3(P) for each monomial P . Then we
can extend the domain of 3 to all of C(L J )(n)k ,h by defining

3( f )=
∑

P

cP3(P).

It remains to define 3(P) ∈ Cn
k,h . We will do so by defining 3(P)(g) ∈ Vh , for

g ∈ Vn . Among the many possibilities, fix a choice of integers λai b j , σcl ∈ {0, 1},
for a, b, c ∈ J , i, j, l ∈ {1, . . . , n} such that∑

i

λai b j + σb j = 1,
∑

j

λai b j + σai = 1,
∑
i, j

λai b j = λab,
∑

l

σcl = σc. (6)

Since g is a complex polynomial of degree n in two variables, it factors as g =
g1 . . . gn . Define

3(P)(g)=
1

(n!)k
∑
(τa)a∈J
τa∈Sn

( ∏
a 6=b∈J

1≤i, j≤n

[gτa(i) gτb( j)]
λai b j

∏
c∈J

1≤l≤n

g
σcl
τc(l)

)
.
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Because of the summation over τa ∈ Sn , 3(P)(g) is independent of the choices of
λai b j , σcl , and gi . It is clear that3(P)∈ P(Vn)k,h . More work shows3(P)∈Cn

k,h .

Example 2.10. We illustrate the map 3. Consider P = (ab)2 ∈ C(L2). We have
k = 2 and ord P = 0. Then λab = 2 is the only nonzero exponent among the
λcd , σc. Choose λa1b1 = λa2b2 = 1 as the only nonzero exponents in (6). Let
g = a0x2

+ 2a1xy + a2 y2
= a0(x − α1 y)(x − α2 y) and let g1 = a0(x − α1 y),

g2 = x −α2 y. Then

3(P)(g)= 1
4 ([g1 g1][g2 g2] + [g1 g2][g2 g1] + [g2 g1][g1 g2] + [g2 g2][g1 g1])

=
1
4 ([g1 g2][g2 g1] + [g2 g1][g1 g2])=−

1
2a2

0(α1−α2)
2

= 2(a0a2− a2
1),

and3(P)∈C2
2,0. This calculation also shows that3(χ(x2

ab))=ψ(x
2
ab) by Example

2.5, which illustrates the second half of Proposition 2.6.

3. H-matrices and U-matrices

In the previous section, we used Corollary 2.7 to classify the covariants of degrees
one and two by computing Cn

k,h
∼= Symk,(n)k ,h/I . For larger degrees, the combina-

torics in analyzing I are more difficult. In this section, we introduce H-matrices
and U-matrices to simplify the analysis and then use them in the next section to
classify the covariants of degree 3. Our goal is to define easily computed maps

Sym3,(n)3,h
θ
−→Hn

3,h
1
−→ Un

3,h,

with ker (1◦ θ)= I . Then we will be able to explicitly compute Cn
3,h .

H-matrices. To a monomial P =
∏

a 6=b
xλab

ab
∏

c∈J xσc
c in Symk we associate a k× k

integral matrix θ(P)= (θi j ) by

θi j =

{
λi j if i 6= j,
σi if i = j.

When P ∈ Symk,(n)k ,h , θ(P) will be an H-matrix of type (n, k, h).

Definition 3.1. Fix integers k, n > 0, h ≥ 0. A k × k-matrix B = (bi j ) is an H-
matrix of type (n, k, h) if the coefficients bi j are nonnegative integers satisfying∑k

j=1 b j j = h and for each i ,

k∑
j=1

bi j +

k∑
j=1

b j i − bi i = n.

We define Hn
k,h to be the set of all matrices B of type (n, k, h).
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Example 3.2. Let P = (ab)(bc)ax cx ∈ Sym3. Then θ(P)=
(

1 1 0
0 0 1
0 0 1

)
∈H2

3,2.

Definition 3.3. Let Hn
k,h be the complex vector space generated by the basis ele-

ments [H ], for H ∈Hn
k,h .

If H1, H2 ∈Hn
k,h , then 2[H1]−3[H2] ∈Hn

k,h . We note that 2[H1] is not the matrix
obtained by multiplying the entries of H1 by 2. We can extend the map θ to a map
θ : Symk,(n)k ,h→Hn

k,h by

θ
(∑

P

cP P
)
=

∑
P

cP [θ(P)],

where the sum is over monomials P .
The symmetric group Sk has a natural action on Hn

k,h , and thus Hn
k,h , defined by

σ · A = (aσ−1(i)σ−1( j)), for A ∈Hn
k,h . It follows formally that

Proposition 3.4. The map θ :Symk,(n)k ,h→Hn
k,h is an Sk-equivariant isomorphism

of C-vector spaces.

U-matrices. The following subset of H-matrices will be very useful.

Definition 3.5 (U-matrices). A U-matrix is an upper-triangular H-matrix (bi j )

whose diagonal elements form a nonincreasing sequence b11 ≥ b22 ≥ . . . . Let
Un

k,h be the set of all U-matrices in Hn
k,h . Let Un

k,h be the subspace generated by
formal complex linear combinations of Un

k,h-matrices.

Example 3.6.
(

3 2 3
0 2 4
0 0 1

)
is a U-matrix but

(
2 1 3
1 3 3
1 0 1

)
is not.

The Un
3,h-matrices can be easily parametrized. When n−h is odd, Un

3,h=∅. When
n ≡ h mod 2, we define

Ms,r =Ms,r,h,n =

 s r+(n−h)/2 h−s−r+(n−h)/2
0 h−s−r s+(n−h)/2
0 0 r

 , (7)

for integers r, s. We usually drop the h, n indices as they are clear from the context.
We also define

Sn,h =
{
(s, r) ∈ Z2

| max
(
0, 1

2(h− n)
)
≤ r ≤ 1

3 h, 1
2(h− r)≤ s ≤ h− 2r

}
. (8)

Lemma 3.7. Let n, h be nonnegative integers. If n≡ h mod 2, then Un
3,h = {Ms,r |

(s, r) ∈ Sn,h}. Otherwise Un
3,h =∅.

Proof. Assume n≡h mod 2. If (s, r)∈ Sn,h , then s≥h−s−r≥r and r+ 1
2(n−h)≥

0. Hence Ms,r ∈ Un
3,h for all (s, r) ∈ Sn,h . Now suppose M = (bi j ) ∈ Un

3,h .
Let s = b11, r = b33. The order condition then shows b22 = h − r − s. Now
s+b12+b13 = n, r+b13+b23 = n, and h−r− s+b12+b23 = n since M ∈Un

3,h .
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Solving these equations gives the formulas for b12, b13, b23 found in Ms,r . Hence,
M=Ms,r ∈Un

s,r , for some (s, r)∈ Sn,h . The bounds follow from s≥h−s−r≥r≥0
and b12 ≥ 0, proving the first assertion. When n 6≡ h mod 2, the formulas for
b12, b21 show that these terms cannot be integers if r, s ∈ Z. Hence Un

3,h =∅. �

Remark 3.8. If n < h/3, then Un
3,h =∅.

4. The map 1

We,will now construct the maps θ,1 described at the beginning of Section 3.
1 : Hn

3,h → Un
3,h will be a S3-invariant map and it will be used to construct a S3-

equivariant map (1◦ θ) : Sym3,(n)3,h → Un
3,h . Recalling that I ⊂ Sym3,(n)3,h is

the kernel of 3 ◦ χ , we can then compute the image of I in Un
3,h under 1◦ θ . In

Section 6, we will be able to use this result to explicitly classify the covariants in
Cn

3,h using Corollary 2.7. We begin with the following lemma that follows from
the calculation of the S3-orbits in Hn

3,h .

Lemma 4.1. Let M ∈Hn
3,h . Among the matrices A = (ai j ) in the S3-orbit of M in

Hn
3,h , there is a unique representative M̃ satisfying three properties:

(a) a11 ≥ a22 ≥ a33.

(b) If a11 = a22, then (a12, a13) is the largest choice in the lexicographical order-
ing among the possible choices for A.

(c) If a22 = a33 6= a11, then (a23, a13) is the largest choice in the lexicographical
ordering among the possible A.

Example 4.2. If M =
(

1 2 0
1 2 0
1 0 4

)
, then M̃ =

(
4 0 1
0 2 1
0 2 1

)
. If M =

(
2 1 1
2 2 0
0 1 4

)
, then M̃ =(

4 1 0
0 2 2
1 1 2

)
.

Definition 4.3. Let M = (mi j ) ∈Hn
3,h . We define εM = (−1)m21+m31+m32 ,

M∗ =

m11 m12+m21 m13+m31

0 m22 m23+m32

0 0 m33

 , and M = εM [M∗] ∈ Un
3,h,

where [M] represents the basis element represented by M. We define 1(M) = M̃
and extend it to a map 1 :Hn

3,h→ Un
3,h by

1
( ∑

H∈Hn
3,h

cH [H ]
)
=

∑
H∈Hn

3,h

cH1(H).

Example 4.4. Let M =
(

1 1 1
4 1 3
3 1 2

)
∈H10

3,4. Then 1(M)=−[M2,1] ∈ U10
3,4.

Letting S3 act trivially on Un
3,h , we have:
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Lemma 4.5. 1 : Hn
3,h → Un

3,h is a surjective S3-equivariant homomorphism of
vector spaces.

Proof. If M ∈Un
3,h , then 1(M)= [M]. So the subspace in Hn

3,h generated by [M],
for M ∈Un

3,h , surjectively maps onto Un
3,h . �

The composition map 1◦ θ : Sym3,(n)3,h → Un
3,h is a surjective S3-equivariant

homomorphism of vector spaces. To analyze its kernel, we define the vector spaces

a1;(n)3,h := a1 ∩Sym3,(n)3,h,

a2;(n)3,h := a2 ∩Sym3,(n)3,h,

I1 := a1;(n)3,h +〈P − σ ·P | P ∈ Sym3,(n)3,h〉 ⊂ Sym3,(n)3,h,

g := (1◦ θ)(I1)⊂ Un
3,h,

h := (1◦ θ)(a2;(n)3,h)⊂ Un
3,h .

We begin by determining g.

Proposition 4.6. (a) A basis of g is given by {[B]}, with B = (bi j ) ∈Un
3,h and

(i) b11 = b22 6= b33 and b12 ≡ 1 mod 2, or
(ii) b22 = b33 6= b11 and b23 ≡ 1 mod 2, or

(iii) b11 = b22 = b33 and b12 ≡ 1 mod 2.

(b) The induced map1◦ θ : Sym3,(n)3,h/I1→Un
3,h/g is an isomorphism of vector

spaces.

Proof of 4.6(a). Since 1◦ θ is S3-equivariant, g is generated by (θ ◦1)(a1;(n)3,h).
Now a1;(n)3,h is generated by the images (xab+xba)P , where P=

∏
a 6=b xλab

ab
∏

c xσc
c

is an order h monomial in Sym3 with weight (n−1, n−1, n), (n−1, n, n−1), or
(n, n−1, n−1). Let M= θ(P). By the S3-equivariancy, we can assume M= (mab)

with m11 ≥m22 ≥m33. If m11 >m22 >m33, then (1◦θ)(xab P)=−(1◦θ)(xba P)
and

(1◦ θ)((xab+ xba)P)= 0.

Now suppose m11=m22>m23 and (a, b)= (1, 2). By working through the various
cases, one finds that the only case when (1◦θ)(x12 P)+ (1◦θ)(x21 P) 6= 0 occurs
when m12 = m21. In this case, calculation shows (1◦ θ)(x12 P) = (1◦ θ)(x21 P)
and

(1◦ θ)((x12+ x21)P)= 2[B],

where B = (bi j ) is a matrix described in case (i). In particular, b12 = 2m12+ 1 is
odd. Similar calculations in the other cases establish the rest of (a). �

Proof of 4.6(b). By the definition of g, the map 1◦ θ is well-defined. More-
over it is surjective as 1◦ θ is surjective. To show it is injective, we need only
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show that ker1 ⊂ θ(I1) as θ is an isomorphism. Let α ∈ ker1 and express
α =

∑
M∈Hn

3,h
cM [M]. We can rewrite α as α =

∑
N∈Un

3,h
αN , where

αN =
∑

M∈Hn
3,h

1(M)=±[N ]

cM [M].

Let 1(αN ) = bN [N ]. Then 0 = 1(α) =
∑

N bN [N ]. Since the elements [N ], for
N ∈Un

3,h , form a basis of Un
3,h , we have bN = 0, 1(αN )= 0 and αN ∈ ker1. We

now fix N ∈Un
3,h and show αN ∈ θ(I1).

For each S3-orbit C in the set of M ∈ Hn
3,n such that 1(M) = ±[N ], let dC =∑

M∈C cM . Let MC ∈Un
3,h to be the unique representative of C specified by Lemma

4.1. Then

αN =
∑

1(M)=±[N ]

cM [M] =
∑

C

dC [MC ] +
∑

C

∑
M∈C

cM([M] − [MC ]),

where the sum is over the finite number of orbits C . Since 1 is constant on the
orbit C , we have

0=1(αN )=
∑

C

dC1([MC ]).

Taking the difference of the two equations, we have

αN =
∑

C

dC ([MC ] −1([MC ]))+
∑

C

∑
M∈C

cM([M] − [MC ]).

The definition of 1 shows that [MC ] −1([MC ]) ∈ θ(a1;(n)3,h) ⊂ θ(I1). As the
second summand is formally in θ(I1), αN ∈ θ(I1) and (b) is proved. �

Define φ :Un
3,h→Cn

3,h by φ =3◦χ ◦θ−1, where we restrict the domain of the
isomorphism θ−1

:Hn
3,h→ Sym3,(n)3,h to Un

3,h .

Corollary 4.7. φ induces an isomorphism Un
3,h/ (g+ h)∼= Cn

3,h .

Proof. By Corollary 2.7, we have an isomorphism 3 ◦ χ : Sym3,(n)3,h/I ∼= Cn
3,h .

Since k = 3, the syzygies of the first and second kind generate all the syzygies in
a. Hence I = I1 + a2;(n)3,h and (1◦ θ)(I ) = g+ h. Using Proposition 4.6(b), it
follows that 1◦θ induces an isomorphism Sym3,(n)3,h/I→Un

3,h/ (g+ h). Putting
these isomorphisms together and noting that 1 is the identity on Un

3,h , gives the
claimed isomorphism φ. �

5. Calculation of g + h

In this section, we explicitly calculate g+ h. This calculation is then used in the
next section to calculate Cn

3,h . We begin by calculating g.

Proposition 5.1. (a) If n+ h ≡ 0 mod 4, then g= {0}.
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(b) If n+ h ≡ 2 mod 4 and α =max(0, (h− n)/2), then g is generated by

{[Mh−2r,r ] : α ≤ r ≤ h/3} ∪ {[M(h−r)/2,r ] : α ≤ r < h/3, r ≡ h (mod 2)}.

Proof of 5.1(a). Let n+h = 4t for some t . Now by Proposition 4.6, g is generated
by [M], with matrices M of three types: (i), (ii), and (iii). Suppose M has type (i).
Then r = h− 2s and

r +
n− h

2
= h− 2s+

n− h
2
=

n+ h
2
− 2s = 2(t − s)

is even, contradicting the definition of M . Similarly, assuming M has types (ii),
(iii) leads to contradictions. Hence, g= {0}.

Proof of 5.1(b). By Proposition 4.6, g is generated by [Ms,r ], where (i) s= h−r−s
or (ii) h−r−s= r . Thus s= (h−r)/2 or h−2r . Each of the matrices Mh−2r,r , for
max(0, (h−n)/2)≤ r ≤ h/3, and M(h−r)/2,r , for 0≤ r ≤ h/3 and r ≡ h (mod 2), is
in Un

3,h . These matrices are distinct except when s = r = h−r−s, h≡ 0 (mod 3),
and r = s = h/3. �

Unfortunately, it is not as simple to describe the generators of h. Instead, we can
determine the generators of (g+h)/g. Then by combining them with the generators
of g, we will have a set of generators for g+h. Recalling the definition of Ms,r in
(7), we define

ms,r = [Ms,r ] − [Ms−1,r ] + [Ms−1,r+1] ∈ Un
3,h,

for nonnegative integers r, s satisfying r + s ≤ h.

Proposition 5.2. Let Sn,h be defined as in (8). Then (g + h)/g is generated by
1(ms+1,r ) for all (s, r) ∈ Sn−1,h−1.

Before proving Proposition 5.2, we need to establish some lemmas about the
functions εM , M∗, M , M̃ , and 1(M), defined in Definition 4.3.

Lemma 5.3. For σ ∈ S3, M ∈Hn
3,h , εσ(M) = εMεσ(M∗).

Proof. Let M = (mi j ). The lemma follows from straightforward calculation for
each σ ∈ S3. For example, when σ = (12), one has

εσ(M) = (−1)m12+m31+m32 = (−1)m21+m31+m32(−1)m12+m21 = εMεσ(M∗). �

Lemma 5.4. Suppose we are given σ ∈ S3, M ∈ Hn
3,h with σ(M)∗ = M∗. Then

σ(M) = sgn(σ )(n+h)/2 M , where sgn is the nontrivial homomorphism sgn : S3→

{±1}.

Proof. We have M = εM M∗. Then by Lemma 5.3,

σ(M)= εMεσ(M∗)σ(M)∗ = εσ(M∗)M .



SYMBOLIC COMPUTATION OF DEGREE-3 COVARIANTS FOR A BINARY FORM 525

If σ = 1, then the lemma trivially holds true. If σ 6= 1, then at least two of the
diagonal elements of M are equal. If σ = (12), then m11=m22. Since (σ (M∗))21=

(n+h)/2−m11−m22≡ (n+h)/2 mod 2, εσ(M∗)= (−1)(n+h)/2
= sgn(σ )(n+h)/2 and

the lemma is established. Similar calculations establish the lemma for the other
choices of σ . �

Lemma 5.5. Assume n+ h is even. If n+ h ≡ 0 mod 4 or the diagonal entries of
M ∈Hn

3,h are distinct, then 1(M)= εM1(M∗). Otherwise, 1(M)=±1(M∗).

Proof. Let σ ∈ S3 be such that σ(M)= M̃ . We then have

σ(M∗)= εσ(M∗)σ(M∗)∗

= εMεσ(M)σ(M)∗ (by Lemma 5.3)

= εM1(M).

Now if the diagonal elements of M are distinct, (̃M∗)= σ(M∗) and thus

1(M∗)= M̃∗ = σ(M∗)= εM1(M).

Now suppose the diagonal entries of M are not distinct. Then (̃M∗)= (σ1σ)(M∗),
where σ1 ∈ S3 has the property that (σ1(σ (M)))∗ = σ(M)∗. By Lemma 5.4,

1(M∗)= (σ1σ)(M∗)= sgn(σ1)
(n+h)/2σ(M)= sgn(σ1)

(n+h)/2εM1(M).

When n + h ≡ 0 mod 4, sgn(σ1)
(n+h)/2

= 1; otherwise, it equals ±1. Hence, the
lemma is established. �

Proof of Proposition 5.2. By definition, h is generated by

(1◦ θ)((xi j xk + x jk xi + xki x j )P), (9)

where P ∈ Sym3,d−1,h−1 is a monomial. Since 1 is invariant under the action of
S3 on Hn

3,h , one can assume that θ(P) = θ̃ (P). Then θ(P)∗ =Ms,r , with (s, r) ∈
Sn−1,h−1. It is also enough to consider the cases (i, j, k)= (1, 2, 3), (1, 3, 2). As-
sume (i, j, k)= (1, 2, 3). Then θ(x23x1 P)∗ =Ms+1,r and ( ˜θ(x23x1 P))∗ =Ms+1,r

by the assumption on P , so

(1◦ θ)(x23x1 P)= εP1(Ms+1,r ).

When n+h≡ 0 mod 4, by Lemma 5.5, θ(x31x2 P)∗=Ms,r , θ(x12x3 P)∗=Ms,r+1,
and thus

(1◦ θ)(x31x2 P)=−εP1(Ms,r ), (1◦ θ)(x12x3 P)= εP1(Ms,r+1).

Thus (9) equals εP1(ms+1,r ). When (i, j, k)= (1, 3, 2), one gets −εP1(ms+1,r ),
proving the lemma when n + h ≡ 0 mod 4. Now suppose n + h ≡ 2 mod 4 and
consider x31x2 P . If the diagonal elements of θ(x31x2 P) are distinct, we have
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(1 ◦ θ)(x31x2 P) = −εP1(Ms,r ) by Lemma 5.5. If they are not distinct, then
(1◦ θ)(x31x2 P) = −εP1(Ms,r ) in g/(g+ h) as both sides are 0 by Proposition
5.1. The same logic shows (1◦ θ)(x12x3 P) = εP1(Ms,r+1), establishing (9) and
proving the proposition when n+ h ≡ 2 mod 4. �

To make the generators of (g+ h)/g explicit, we define the following elements
of Hn

3,h :

ns,r = [Ms,r ] − (1+ (−1)(n+h)/2)[Ms−1,r ],

ps,r = (1+ (−1)(n+h)/2)[Ms,r ] + [Ms−1,r+1],

for integers s, r ≥ 0. In general, ns,r , ps,r will not be elements of Un
3,h .

Proposition 5.6. (g+ h)/g is generated by the following elements of Un
3,h :

(a) ms,r , where max(0, (h−n)/2)≤ r ≤ (h−4)/3, (h−r)/2+1≤ s ≤ h−2r−1.

(b) nh−2r,r , where max(0, (h− n)/2)≤ r ≤ (h− 2)/3.

(c) p(h−r+1)/2,r , where max(0, (h−n)/2)≤ r ≤ (h−3)/3 and r ≡ h+1 mod 2.

(d) [M(h+2)/3,(h−1)/3], if h ≡ 1 mod 3.

Proof. By Proposition 5.2, h is generated by 1(ms,r ), where (s−1, r) ∈ Sn−1,h−1.
It follows immediately that (s, r) ∈ Sn,h and Ms,r ∈ Un

3,h . However, the terms
Ms−1,r , Ms−1,r+1 might not be in Un

3,h , so we need to do a case-by-case analysis.
Since (s− 1, r) ∈ Sn−1,h−1, we have s− 1≥ h− s− r ≥ r . We separately analyze
the cases when we have equality or strict inequality.

Case (a): Suppose s − 1 > h − s − r > r . Then (s − 1, r), (s − 1, r + 1) ∈ Sn,h ,
and Ms−1,r , Ms−1,r+1 in Un

3,h . Thus 1(ms,r ) = ms,r . We now prove the claimed
inequalities for s, r . From the assumptions, we have 2s ≥ h − r + 2 and h ≥
s + 2r + 1, giving the claimed conditions on s. Combining these equations, we
obtain h≥ (h−r)/2+2r+2 and h≥ 3r+4. Thus r ≤ (h−4)/3. The lower bound
on r follows from (s− 1, r) ∈ Sn−1,h−1. Conversely, if s, r satisfies the bounds in
(a), then one can show that s− 1> h− s− r > r and (s− 1, r) ∈ Sn−1,h−1.

Case (b): Suppose s−1> h−s−r and h−s−r = r . Then (s−1, r) is an element
of Sn,h but (s− 1, r + 1) is not. Hence Ms−1,r ∈Un

3,h , but Ms−1,r+1 6∈Un
3,h . Since

s = h− 2r , we have

1(Ms−1,r+1)= (−1)s−1+(n−h)/2
[Ms−1,r ] = (−1)1+h+(n−h)/2

[Ms−1,r ],

and1(ms,r )= ns,r ∈Un
3,h . To establish the bounds, we see that s−1≥ r+1. Then

3r + 1= r + r + (r + 1)≤ r + (h− s− r)+ (s− 1)= h− 1

and r ≤ (h−2)/3. Conversely, if r satisfies the stated bounds in (b), and s= h−2r ,
one can show that (s− 1, r) ∈ Sn−1,h−1 and s− 1> h− s− r = r .
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Case (c): Suppose s − 1 = h − s − r and h − s − r > r . Then (s − 1, r + 1) is an
element of Sn,h , but (s−1, r) is not. Then Ms−1,r+1 ∈Un

3,h , but Ms−1,r 6∈Un
3,h . As

r = h+ 1− 2s, r and h have different parities. Then

1(Ms−1,r )= (−1)r+(n−h)/2
[Ms,r ] = (−1)1+h+(n−h)/2

[Ms,r ]

and1(ms,r )=[1+(−1)(n+h)/2
][Ms,r ]+[Ms−1,r+1]= ps,r . Now h−2r−1≥ a, so

b=h+1−2s≥h+1−2(h−2r−1) and r ≤ (h−3)/3. Conversely, when the stated
conditions on r hold, one can show that (s, r) ∈ Sn−1,h−1, with a = (h− r + 1)/2,
and s− 1= h− s− r > b.

Case (d): Suppose s − 1 = h − s − r = r . Then h − 1 = 3r and h ≡ 1 mod 3. In
this case, neither (s− 1, r) nor (s− 1, r + 1) is in Sn,h . Then

1(Ms−1,r )= (−1)r+(n−h)/2
[Ms,r ] = −(−1)(n+h)/2

[Ms,r ],

and 1(Ms−1,r+1)= (−1)(n+h)/2
[Ms,r ]. Thus

1(ms,r )=1([Ms,r ] − [Ms−1,r ] + [Ms−1,r+1])= (1+ 2(−1)(n+h)/2)[Ms,r ].

Regardless of whether n + h ≡ 0, 2 mod 4, [Ms,r ] ∈ h. Since s = (h + 2)/3,
r = (h− 1)/3, we obtain the result in (d) in the proposition. �

6. Calculation of degree-three covariants

In this section, we determine an explicit basis for Cn
3,h in Theorem 6.1 and derive

the formulas for dim Cn
3,h in Table 1 as a corollary. We establish these results by

combining the calculation of g+h from the previous section with Corollary 4.7 to
calculate Cn

3,h . To simplify the statement of the theorem, we use the map φ :Un
3,h→

Cn
3,h defined before Corollary 4.7. φ has the property that if M = (mi j ) ∈ Un

3,h ,
then

φ([M])=
∏
a 6=b

(ab)mab
∏

c

cmcc
x ,

where we use the classical symbolic notation for Cn
3,h (see page 516).

Theorem 6.1. Let n, h have the same parity. Then a basis of Cn
3,h is given as

follows.

(a) If n+ h ≡ 1 mod 2, then Cn
3,h = {0}.

(b) When n + h ≡ 0 mod 4, the elements φ([M(h−r)/2,r ]), where max(0, h−n
2 ) ≤

r ≤ h/3 and r ≡ h mod 2, form a basis.

(c) If n+h≡ 2 mod 4, the elements φ([M(h−r+1)/2,r ]), where max(0, h−n
2 )≤ r <

(h− 1)/3 and r ≡ h+ 1 mod 2 form a basis.
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Example 6.2. When n = 10, h = 12, Theorem 6.1(c) states that {φ([M6,1]),
φ([M5,3])} is a basis of C10

3,12. Using the classical symbolic notation (compare
Example 2.5), these covariants are (ac)4(bc)5a6

x b5
x cx and (ab)2(ac)3(bc)5a5

x b4
x c3

x .

Proof of 6.1. By Corollary 4.7,

Cn
3,h
∼= Un

3,h/ (g+ h)∼= (Un
3,h/g)/ (g+ h/g) .

By Lemma 3.7, (a) is established. We now consider cases (b) and (c). By the
same lemma, the set

{[Ms,r ] | (s, r) ∈ Sn,h}

is a basis for Un
3,h . We define an order on the basis elements Ms,r by defining

[Ms,r ] ≥ [Ms′,r ′] if (s, h− r − s, r) ≥ (s ′, h− r ′, s ′, r ′) in the lexicographic order.
We will prove the proposition by ordering the generators of g+ h, from largest
to smallest, by their largest terms (which will be distinct). Let a = dim Un

3,h and
b = dim(g + h). By expressing the generators of g + h in terms of the [Ms,r ],
we obtain a b× a upper-triangular matrix A of relations. A basis of the quotient
space Un

3,h/(g+ h) is then given by the cosets of [Ms,r ], for (s, r) corresponding
to nonpivot columns of A. We now separately analyze the details of parts (b) and
(c).

(b) When n+ h ≡ 0 mod 4, g= 0 and we are reduced to calculating the quotient
space Un

3,h/h. Proposition 5.6 gives a basis for the vector space h and the leading
terms of each of the ms,r , ns,r , ps,r specified in Proposition 5.6 are [Ms,r ]. We
note that by the proof of Proposition 5.6, the specified pairs (s, r) are distinct and
comprise all (s, r)∈ Sn,h with (s−1, r)∈ Sn−1,h−1. Hence the generators of Un

3,h/h

are the [Ms,r ] for those pairs (s, r)∈ Sn,h with (s−1, r) 6∈ Sn−1,h−1. The definition
of Sn,h shows that such a pair (s, r) occurs precisely when 3 | h and r = h/3 or
when h− r is even and s = (h− r)/2. In the first case, let h = 3t . Then r = t and
the condition on s shows s = t . As such, this situation is a subcase of the second
case. Cn

3,h is thus generated by the [Ms,r ], for (s, r) in the second case, and this is
what the proposition states.

(c) By Propositions 5.1 and 5.6, g+h is generated by [Ms,r ] where 2s = h− r or
2r = h − s, and by ms,r , nh−2r,r , p(h−r+1)/2,r . Since n+ h ≡ 2 mod 4, nh−2r,r =

[Mh−2r,r ], and p(h−r+1)/2,r =[M(h−r−1)/2,r+1] and both of them are included in the
former set. The leading term of ms,r is [Ms,r ] and the corresponding (s, r) specified
in Proposition 5.6 are all those pairs (s, r) ∈ Sn,h with s−1> h− s−r > r . Since
(s, r)∈ Sn,h implies s ≥ h−s−r ≥ r , the generators of Un

3,h/(g+h) are the [Ms,r ]

for which (s, r) ∈ Sn,h , s − 1 = h − s − r , and h − s − r > r , which is what the
proposition claims. �
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When n ≥ h:

n+ h ≡ 0 mod 4 n+ h ≡ 2 mod 4

h even
[ h

6

]
+ 1

[ h
6

]
h odd

[ h+3
6

] [ h+3
6

]
When 1

3 h ≤ n ≤ h:

h mod 3 n+ h ≡ 0 (mod 4) n+ h ≡ 2 (mod 4)

0
[ 3n−h

12

]
+ 1

[3n−h−2
12

]
+ 1

1
[ 3n−h

12

]
+ 1

[3n−h−2
12

]
2

[ 3n−h
12

]
+ 1

[3n−h−2
12

]
+ 1

Table 1. Formulas for dim Cn
3,h .

Corollary 6.3. The dimension of the vector space Cn
3,h is given by the formulas in

Table 1 when n, h have the same parity and n ≥ h/3. Otherwise dim Cn
3,h = 0.

Corollary 6.3 can also be derived via an explicit calculation using the classical
Cayley–Sylvester formula for calculating dim Cn

d,h [Sturmfels 2008, p. 153]. We
note that the case n=h appears twice in Table 1 with seemingly different formulas,
but calculation shows that the formulas agree.

Theorem 6.1 parametrizes all the covariants in Cn
3,h . We say f ∈ Cn

3,h is a
reducible covariant if f can be written as a linear combination of products gh of
covariants g, h with degree less than 3, deg g+ deg h = 3, and ord g+ ord h = h
Let Redn

3,h be the subspace of Cn
3,h generated by the reducible covariants. An

irreducible covariant f ∈ Cn
3,h is a covariant that is not reducible.

By Example 2.8, the only nonzero covariants of degree one are multiples of
(3 ◦ χ)(xn

1 ). By Example 2.9, the only nonzero degree-two covariants of order h
occur when 0≤ h≤ 2n and h≡ 2n mod 4. In this case, they are given by multiples
of (3 ◦ χ)(xn−(h/2)

12 xh/2
1 xh/2

2 ). Thus, Redn
3,h is a one-dimensional space precisely

when h ≥ n and h + n ≡ 0 mod 4, in which case it is generated by Mn,(h−n)/2.
Otherwise Redn

3,h = {0}.

Corollary 6.4. If h < n or h + n 6≡ 0 mod 4, then Redn
3,h = {0} and Cn

3,h con-
tains no reducible covariants. If h ≥ n and h + n ≡ 0 mod 4, then the covariants
φ([M(h−r)/2,r ]), where r ≡ h mod 2 and (h−n)/2< r ≤ h/3, form a basis for the
subspace of Cn

3,h complementary to Redn
3,h .

Proof. Only the second part remains to be shown. In this case, Redn
3,h is gener-

ated by [Mn,(h−n)/2]. We can assume h ≤ 3n as otherwise there are no nonzero
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covariants. If h = 3n, then (n, (h− n)/2) = (n, n), and [Mn,(h−n)/2] is one of the
basis elements of Cn

3,h given by Theorem 6.1. By deleting this basis element, the
remaining basis elements give a basis for the subspace of Cn

3,h complementary to
Redn

3,h . Now let h = 3n− 4k, where k ≥ 1. By using a syzygy of the second type,
we have

[Mn,(h−n)/2] = [Mn,n−2k] = 2[Mn−1,n−2k]

in Un
3,h/(g+ h). If k = 1, (n − 1, n − 2k) = ((h − r)/2, r) for n = h − 2k, and

[Mn,(h−n)/2] = [M(h−r)/2,r ] is again one of the basis elements of Cn
3,h given by

Theorem 6.1. By excluding this basis element, we obtain the desired basis for
the complementary subspace. Now suppose k > 1. Then by applying the second
syzygy k− 1 additional times, we obtain in Un

3,h/(g+ h)

[Mn,n−2k] = 2[Mn−k,n−2k] +

k−1∑
r=1

cr [Mn−k,n−2k+r ],

for some constants cr . Now by the ordering introduced in the proof of Theorem 6.1,
[Mn−k,n−2k]> [Mn−k,n−2k+r ] for 1≤ r ≤ k−1, and thus each [Mn−k,n−2k+r ] in the
summand can be expressed as a linear combination of [Ms,r ] given by Theorem 6.1
with [Ms,r ]< [Mn−k,n−2k]. Let I be the space generated by the [M(h−r)/2,r ] speci-
fied in the Corollary. Each [Mn−k,n−2k+r ] in the summand can then be expressed as
a linear combination of elements in I. Thus the space generated by [Mn,n−2k] and I

is also the space generated by [Mn−k,n−2k] and I. Since (n−k, n−2k)= ( h−r
2 , r)

for r = n − 2k, this is Cn
3,h , by Theorem 6.1. Thus I is the subspace of Cn

3,h
complementary to Redn

3,h . �

Historical remark. We would like to note a correction to a claim in Hilbert’s
fundamental book on covariants [1993]. First, we define the weightw of a covariant
of degree d, order h, and degree-n form to be w = (dn− h)/2. When d = 3,

w = (3n− h)/2= 2n− (n+ h)/2.

On [Hilbert 1993, p. 62], there appears the statement:

“Regarding the covariants of degree three, they all have odd weight p =
2π + 1 and are those which occur in the following expression, where
p = 3, 5, 7, . . . , n, respectively n− 1:”

Hilbert then gives an explicit formula for a covariant f p of weight p. In total, the
claim is that all degree-three covariants have odd weight and that there is exactly
one nonreducible covariant of each odd weight 3 ≤ p ≤ n. It is clear, both from
the Cayley–Sylvester formula and from Theorem 6.1, that this is incorrect. From
Theorem 6.1, one sees that in general there are many covariants with a given even
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weight when n+h≡ 0 mod 4. Similarly with n+h≡ 2 mod 4, there are generally
multiple covariants of a given odd weight.

Comparison with result of Kraft and Weyman. Kraft and Weyman [1999, Theo-
rem 6.7] establish a generating set for the covariants in Cn

3,h with similarities to our
Theorem 6.1. We now briefly discuss the differences between these results. Using
the classical symbolic notation (see page 516), let

P = (ab)α(bc)β(ca)γ an−α−γ
x bn−α−β

x cn−β−γ
x ∈ Cn

3,h

be a covariant of order h = 3n − 2m, where m = α + β + γ . We assume n ≥
max(α+ β, α+ γ, β + γ ). We define cat P := max(α, β, γ ). Kraft and Weyman
prove:

Theorem 6.5 (Kraft and Weyman’s abc-Theorem). Assume n, h ≥ 0.

(a) If n ≤ h, then P is a linear combination of covariants

Q = (ab)µ(bc)ηan−µ
x bn−µ−η

x cn−η
x

with µ+ η = m, µ≥ 2η and µ≥ cat P.

(b) If h = n, then P belongs to the ideal I ⊂ P(Vn) generated by all covariants
of degree k ≤ 2 and order h ≤ 3

4 n.

(c) If n ≥ h, then P belongs to the ideal J ⊂ P(Vn) generated by all covariants
with degree k ≤ 3 and order h ≤ 3

4 n.

Since Cn
3,h is generated by P , as α, β, γ vary, part (a) of Theorem 6.5 gives a

spanning set for the vector space Cn
3,h when n ≤ h. However, this spanning set

is almost always linearly dependent and doesn’t give a basis for Cn
3,h . For ex-

ample, when n = 10, h = 12, part (a) shows that C10
3,12 is generated by the three

symbolic monomials Q corresponding to (µ, η) = (6, 3), (7, 2), and (8, 1) (the
covariant corresponding to (µ, η) = (9, 0) is zero). However, dim C10

3,12 = 2 by
Table 1, and Example 6.2 shows that the two monomials (ac)4(bc)5a6

x b5
x cx and

(ab)2(ac)3(bc)5a5
x b4

x c3
x form a basis for C10

3,12.
Similarly, parts (b), (c) of Theorem 6.5 show that the vector space of covariants

Cn
3,h is contained in the respective ideals I,J of the ring P(Vn), but do not establish

a basis for Cn
3,h . To see the difference, we consider the case when n= h = 3. Then

part (b) states that C3
3,3 is contained in the ideal I of P(V3) (a ring containing both

covariant and noncovariant functions) generated by reducible covariants. However,
by Corollary 6.4, we know that Red3

3,3={0} and C3
3,3 is generated as a vector space

by a single irreducible covariant.
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Isometric composition operators acting on the
Chebyshev space

Thomas E. Goebeler, Jr. and Ashley L. Potter

(Communicated by David Larson)

Norms of certain composition operators are given in terms of their symbols in
some finite-dimensional setting. Then a family of isometric composition opera-
tors acting on certain vector spaces is identified.

1. Introduction

Much research has been done concerning composition operators over the last five
decades. However, this research has primarily focused on a host of standard ques-
tions about composition operators in the realm of complex functions. Recently the
first author has proposed a number of questions regarding composition operators in
the real function area for undergraduate student research supported by the Ursinus
College Summer Fellows Program [Doperak 2006; Gareau 2005; Kunaszuk 2006;
Potter 2007]. This topic offers accessibility for undergraduate research while pro-
viding fertile ground for genuinely new results.

This paper focuses on one particular real function space, the Chebyshev space,
T , where we explore norm-related ideas for composition operators, specifically
norms and isometries. The ultimate goal of this research is to find the norm of
a composition operator Cg acting on the Chebyshev space in terms of its sym-
bol g. We begin by considering norms of composition operators in the infinite-
dimensional space, and move on to examine the topic in the finite-dimensional
space. After looking at the various finite-dimensional subspaces, we begin to look
at qualities that would lead to the symbol inducing an isometry.

2. Definitions

We set down some terminology and basic facts here. A composition operator Cg

acts on functions f according to the rule Cg( f )= f ◦g. The function g is called the
symbol of the operator. Necessarily g must have range contained in the domain of

MSC2000: 47B33, 47B38.
Keywords: composition operator, norm, isometry.
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f for this to make sense. The typical assumptions are that Cg has a vector space F

of functions as its domain, that the functions f ∈F and g have a common domain
D, and that g(D)⊆ D.

To speak of an operator’s norm, it must first be known that the operator is
bounded on its domain space. The following definition is operational for any linear
operator, not just composition operators.

Definition 1. A linear operator A is bounded from a vector space V to another
vector space W provided there exists an M ∈ R such that ‖A f ‖W ≤ M · ‖ f ‖V for
all f ∈ V . This constant M in the inequality is referred to as a bound.

If an operator A : F→ G is known to be bounded, we can give it a norm (the
operator norm), defined as ‖A‖ = sup f 6=0 ‖A f ‖G/‖ f ‖F.

The setting for the present work is a real function space. This is atypical of
composition operator research, which sees the majority of work done on complex
function spaces. We find this setting surprisingly rich, once we make some modifi-
cations to the questions we ask. The reader interested in more information regard-
ing composition operators on spaces of complex functions can consult [Cowen and
MacCluer 1995], which is widely regarded as the best resource for beginners in
the field.

For the purposes of this paper, we make the following real-function definition
of the Chebyshev space.

Definition 2. The Chebyshev space T is herein the completion of the set of all
continuous functions defined on the interval [−1, 1], taking on real values, and
obeying the following integral convergence condition:

‖ f ‖2 =
∫ 1

−1
| f (x)|2

1
√

1− x2
dx <∞.

There are many functions in the vector space T , including polynomials and
many other elementary functions. In fact, the monomials form a basis for T .

Orthogonalizing the basis vectors {1, x, x2, . . .}with respect to the inner product

〈u, v〉 =
∫ 1

−1
u(x)v(x)

1
√

1− x2
dx

leads to 1, x, x2
−

1
2 , . . . , which are the Chebyshev polynomials (of the first kind).

However, the polynomials are most commonly normalized so that if vn is the n-th
Chebyshev polynomial, vn(1)= 1. Doing so shows the first four are v0 = 1, v1 =

x, v2 = 2x2
− 1, v3 = 4x3

− 3x .
More information about the Chebyshev polynomials can be found in [Lebedev

1972]. Initially we seek a formula for the norm of Cg in terms of a calculation
involving the symbol g, but as it will be shown, it seems likely that Cg is unbounded
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on the Chebyshev space for all but a few symbols. We thus reconsider the ques-
tion of norm for the restriction of the composition operator to finite-dimensional
subspaces.

Definition 3. The finite dimensional subspace Tn of T is the subspace of T that
contains all polynomials of degree at most n. More concisely, we can say that
Tn = Span{1, x, x2, . . . , xn

}.
To say f ∈ Tn means that f is a linear combination of the basis vectors, in other

words, f = c0 · 1+ c1 · x + c2 · x2
+ · · ·+ cn · xn.

Since Tn is finite-dimensional we know that Cg is automatically bounded, simply
by virtue of being linear. See [Horn and Johnson 1985]. This turns out to be a
crucial restriction that leads to both norm formulas and identification of isometric
composition operators. For more information regarding norms, see [Akhiezer and
Glazman 1993; Dunford and Schwartz 1958; Reed and Simon 1980].

3. Preliminary investigation

As is always the case when the domain and range spaces are the same and use the
same norm, the identity function g(x) = x induces a composition operator with
norm 1:

‖Cg‖ = sup
f 6=0

‖Cg( f )‖
‖ f ‖

=
‖ f ◦ g‖
‖ f ‖

=
‖ f ‖
‖ f ‖
= 1.

The next example suggests most composition operators will fail to be bounded
on T . Consider the symbol g(x) = ax for |a| < 1. In the following, suppose
0 < a < 1. This condition is imposed to guarantee that range(g) ⊂ [−1, 1]. A
straightforward substitution (valid since g is an increasing absolutely continuous
function) leads us to

‖Cax( f )‖2 =
∫ 1

−1
|Cax( f )(x)|2

1
√

1− x2
dx =

∫ 1

−1
[ f (ax)]2

1
√

1− x2
dx

=
1
a

∫ a

−a
[ f (u)]2

1√
1−

( u
a

)2
dx .

But u
a
≥ u for a ∈ (0, 1) so

1√
1−

( u
a

)2
≥

1
√

1− u2
.

Thus,

‖Cax( f )‖2 ≥
1
a

∫ a

−a
[ f (u)]2

1
√

1− u2
du.
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If this lower bound is not convergent as an improper integral, the operator is
unbounded; therefore this case will be investigated further. Let

fa(x)=
1

4√
|a− x |

and observe that fa ∈ T , as∫ 1

−1
| fa|

2 1
√

1− x2
dx =

∫ 1

−1

∣∣∣∣ 1
4√
|a− x |

∣∣∣∣2 1
√

1− x2
dx

=

∫ 1

−1

1
√

1− x

1
√

1+ x

1
√
|a− x |

dx <∞

is an improper integral with singularities as both endpoints of the interval of inte-
gration and at x = a. Note (Cax( fa))(x)= fa(ax)=|a|−1/4

|1−x |−1/4. Therefore,

‖Cax( fa)‖
2
=

∫ 1

−1
| fa(ax)|2

1
√

1− x2
dx =

∫ 1

−1

∣∣∣∣ 1
4√
|a|
·

1
4√1− x

∣∣∣∣2 1
√

1− x2
dx

=
1
√
|a|

∫ 1

−1

1
√

1−x
·

1
√

1−x
·

1
√

1+x
dx =

1
√
|a|

∫ 1

−1

1
1− x

·
1

√
1+ x

dx =∞.

The divergence is driven by the factor 1/(1 − x). We conclude that Cax is
unbounded for a ∈ (0, 1), and, by symmetry, for a ∈ (−1, 0). Note that the operator
C−x is bounded since Cx is bounded and the integral and weight are symmetric
about 0. (For the reader with a background in Lebesgue spaces, notice also that
when a = 0, Cax amounts to being the operator of point-evaluation at 0. Since
our space is really the space L2([−1, 1], dx/

√
1− x2), that is, the completion

of the polynomials in the Chebyshev norm, C0 fails to make sense. Indeed, all
point-evaluation operators on such an L2-space are unbounded.)

A similar argument shows that when g(x) = ax + b, with range(g) ⊆ [−1, 1],
Cg is again unbounded. Algebra shows the conditions on a and b are |a| ≤ 1 and
|b| ≤ 1− |a|. This means graph(g) ⊆ [−1, 1] × [−1, 1]; this Cartesian product
of intervals will be called the “box.” We include some examples to illustrate the
phrases “in the box” and “out of the box” (Figure 1).

Again, a test function shows Cg is unbounded: let fa,b(x) = 1/ 4√
|a+ b− x |

and perform the norm calculation of Cax+b( fa,b).

4. A change of venue

The unboundedness of operators with such elementary symbols leads us to restrict
the operator Cg to finite-dimensional subspaces of T .
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Figure 1. g(x) in the box (top line); g(x) outside the box (bottom).

4.1. T1 → T1. In order for Cg to map Tn back to Tn , g must be at most degree one
and thus g(x)= ax+b for some a, b ∈R. A concrete subcase would be T1→ T1,
and thus input functions are of the form c0+c1x while g(x)= ax+b. In order for
Cg : Tn→ T2n , g must be at most degree two, g(x)= ax2

+bx+ c for a, b, c ∈R.
A concrete subcase would be T1→ T2, and thus again f ∈ T1 has the form c0+c1x
while g(x)= ax2

+ bx + c.
Employing the definition of the norm of an operator we have

‖Cg‖
2
T1→T1

= sup
f 6=0

‖Cg( f )‖2

‖ f ‖2
=max

f 6=0

‖Cg( f )‖2

‖ f ‖2

= max
c2

0+c2
1 6=0

∫ 1
−1(c0+ c1(ax + b))2 1

√
1−x2 dx∫ 1

−1(c0+ c1x)2 1
√

1−x2 dx

= max
c2

0+c2
1 6=0

a2c2
1+ 2b2c2

1+ 4bc1c0+ 2c2
0

c2
1+ 2c2

0
.

It is proper to replace the supremum with a maximum since we are working
on a finite dimensional space; details of this thought can be found in [Horn and
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Figure 2. Two views of the “ridge”.

Johnson 1985]. The quantity being maximized in the last line will be called the
norm quotient.

After finding partial derivatives, and solving for c1, critical lines are found.
These critical lines correspond to “ridges” of the norm quotient, see Figure 2,
rather than isolated maxima or minima.

The following critical lines were found:

c1 =
c0(a2

+ 2b2
− 1)± c0

√
(a2+ 2b2− 1)2+ 8b2

2b
.

After expanding and simplifying, the following formula is obtained:

‖Cg‖
2
T1→T1

=

√
(a2+ 2b2− 1)2+ 8b2+ a2

+ 2b2
+ 1

2
.

At this point an interesting question arises: how do these norms change when
viewing the operators successively T2→T2, T3→T3, . . . , Tn→Tn , . . . , as n→∞?
In other words, can we determine for all symbols g the limit lim

n→∞
‖Cg‖Tn→Tn ?

4.2. T1 → T2. We restrict the domain of Cg to polynomials of the form c0+ c1x
and restrict the form of the symbol to ax2

+ bx + c. Thus we are viewing the
operator as Cg : T1→ T2. Throughout this section, we assume a 6= 0, or else this
reduces to the situation in Section 4.1, T1→ T1.

Before proceeding with the calculation of the norm, we will address the con-
straints on a, b, and c for g(x) to stay within the [−1, 1] interval. By inspection,
|c| ≤ 1 because otherwise g(x) would be outside the box, for then it would have
an intercept outside the box. Using the fact that |c| ≤ 1, it becomes clear that
|a + c| ≤ 1. To see this, consider the endpoints. Evaluation of g at −1 yields
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−1≤ a−b+ c ≤ 1. Evaluation of g at 1 yields −1≤ a+b+ c ≤ 1. Adding these
inequalities gives us −2 ≤ 2a+ 2c ≤ 2 which can be reduced to −1 ≤ a+ c ≤ 1
and thus |a+ c| ≤ 1.

By combining the previous constraints, it must be true that |a| ≤ 2. To put
constraints on b, in terms of a and c, there are two conditions:

• The values of ax2
+ bx + c at the endpoints of the interval [−1, 1] cannot be

above or below the corners of the [−1, 1]× [−1, 1] box.

• If the vertex of ax2
+ bx + c occurs for x ∈ [−1, 1], it cannot be above the

upper boundary or below the lower boundary of the [−1, 1]× [−1, 1] box.

The endpoints concerning b will be addressed first:

g(−1)= a− b+ c, g(1)= a+ b+ c,

−1≤ a− b+ c ≤ 1, −1≤ a+ b+ c ≤ 1,

−1− a− c ≤−b ≤ 1− a− c, −1− a− c ≤ b ≤ 1− a− c,

−1+ (a+ c)≤ b ≤ 1+ (a+ c), −1− (a+ c)≤ b ≤ 1− (a+ c).

For a+ c > 0, it is clear that

−1− (a+ c)≤−1+ (a+ c)≤ b ≤ 1− (a+ c)≤ 1+ (a+ c).

Thus, −1+ (a + c) ≤ b ≤ 1− (a + c), or, |b| ≤ |1− (a + c)|. For a + c < 0,
following a similar approach, we arrive at |b| ≤ |1+ (a + c)|. Combining both
cases, the inequality limiting the values of b is

|b| ≤
∣∣1− |a+ c|

∣∣.
The next condition for the bounds of b concerns the vertex location within the
[−1, 1]×[−1, 1] box. The vertex is where x =− b

2a . (Recall that we have assumed
a 6=0.) If the vertex is outside the box (|b|>2|a|), we need only consider the values
of the symbol at x =±1, as above. However, if the vertex is in the box (|b| ≤ 2|a|),
further constraints must be imposed for graph(g) to be in the box.

To find the bounds on b when the vertex is inside the box, calculate:

g
(
−

b
2a

)
= a

(
−

b
2a

)2
+ b

(
−

b
2a

)
+ c.

We require |a (−b/2a)2+b (−b/2a)+c| ≤ 1, which simplifies to |c−b2/4a| ≤ 1.
Algebra shows we therefore want −4(1− c)≤ b2/a ≤ 4(1+ c).

This leads to two cases, depending upon the sign of a. If a > 0, the necessary
condition is −4a(1− c) ≤ b2

≤ 4a(1+ c), or, |b| ≤ 2
√

a(1+ c). If a < 0, the
necessary condition is 4a(1+ c)≤ b2

≤−4a(1− c), or, |b| ≤ 2
√
−a(1− c).
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Summarizing, for graph(g) to be in the box, we need{
|c| ≤ 1,
|a+ c| ≤ 1,
|b| ≤

∣∣1− |a+ c|
∣∣,

and if |b| ≤ 2|a|, also {
|b| ≤

√
a(1+ c) , a > 0,

|b| ≤
√
−a(1− c) , a < 0.

Now that the constraints on a, b, and c for g(x) = ax2
+ bx + c to stay within

the [−1, 1]×[−1, 1] box have been established, computing the actual norm of the
composition operator will be the next step.

With 0 6= f ∈ T1,

‖Cg‖
2
T1→T2

= sup
‖Cg( f )‖2

‖ f ‖2
=max

∫ 1

−1
[c0+ c1(ax2

+ bx + c)]2
1

√
1− x2

dx∫ 1

−1
[c0+ x1x]2

1
√

1− x2
dx

=max
3a2c2

1+ 8ac1(cc1+ c0)+ 4(b2c1+ 2(c2c2
1+ 2cc0c1+ c2

0))

4(2c2
0+ c2

1)
.

The quantity being maximized in the last line will be called the norm quotient.
After finding partial derivatives the following critical points are found:

c1 =
c0(3a4

+8ac+4b2
+8c−4)

4a+8c

±

c0

√
9a4
+48a3c+8a2(3b2

+14c+1)+64ac(b2
+2c2
+1)

+16b4
+32b2(2c2

−1)+64c4
+64c2

+16

4a+8c
.

To attain a formula, the value for c1 is substituted into the norm quotient. After
expanding and simplifying using a computer algebra system, the following formula
is obtained:

‖Cg‖
2
T1→T2

=

√
9a4
+48a3c+8a2(3b2

+14c+1)+64ac(b2
+2c2
+1)

+16b4
+32b2(2c2

−1)+64c4
+64c2

+16

8

+
b2

2
+c2
+ac+

3a2
+4

8
.

We can raise the companion question as to the norm of the operator when view-
ing it successively T2→ T4, T3→ T6, . . . , Tn→ T2n , . . . , as n→∞.
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4.3. T1 → T3. Following the template of the previous section, we discover the
norm of a composition operator in the T1→ T3 subspace:

‖Cg‖
2
T1→T3

=
5a2
+ 12ac+ 2(3b2

+ 8bd + 4(c2
+ 2d2

+ 1))
16

+
1
16

(
25a4
+ 120a3c+ 4a

(
15b2
+ 40bd + 4(14c2

+ 5(2d2
− 1))

)
+ 48ac(3b2

+ 8bd + 4(c2
+ 2d2

− 1))

+ 4
(
9b4
+ 48b3d + 8b2(3c2

+ 14d2
+ 1)+ 64bd(c2

+ 2d2
+ 1)

)
+64(c4

+ 2c2(2d2
− 1)+ 4d4

+ 4d2
+ 1)

)1/2
.

Likewise we can ask about norms viewing the operator T2→ T6, T3→ T9, . . . ,
Tn→ T3n , . . . , as n→∞.

There are more potentially interesting questions open to us as the number of
coefficients increases. Finding a norm formula for general symbols is the ultimate
goal.

5. Isometries

Definition 4. An isometry is a bijective map f : X → Y between two normed
spaces that preserves lengths, that is, ‖ f (x)‖Y = ‖x‖X , where ‖ · ‖X and ‖ · ‖Y are
the norms associated with the spaces X and Y .

For our purposes, the isometry will be viewed as acting between two finite-
dimensional subspaces Tn and Tm of T . More precisely, Cg will act as an isometry
when the norm of the input ‖ f ‖ equals the norm of the output ‖Cg( f )‖, and thus
automatically ‖Cg‖ = 1.

Theorem 5. When the symbol g(x) is a normalized Chebyshev polynomial in the
subspace Tn, n > 0, the induced operator Cg : T1→ Tn is an isometry.

Proof. Let vn(x) be the Chebyshev polynomial (so the symbol g(x) is vn(x), the
polynomial of degree n) and f (x) any nonzero linear polynomial. Then

‖Cvn‖
2
= sup

‖Cvn ( f )‖2

‖ f ‖2
=max

‖ f ◦ vn‖
2

‖ f ‖2
=max

∫ 1
−1[c0+c1(vn(x))]2 1

√
1−x2 dx∫ 1

−1[c0+c1x]2 1
√

1−x2 dx

=max

∫ 1
−1[c

2
0+ 2c0c1vn(x)+ c2

1(vn(x))2] 1
√

1−x2 dx∫ 1
−1[c

2
0+ 2c0c1x + c2

1x2] 1
√

1−x2 dx

=max

∫ 1
−1 c2

0
1

√
1−x2 dx + 2c0c1

∫ 1
−1 vn(x) 1

√
1−x2 dx + c2

1

∫ 1
−1(vn(x))2 1

√
1−x2 dx

π
2 [c

2
1+ 2c2

0]
.
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But
∫ 1

−1
vn(x)

1
√

1−x2
dx = 0 when 0 6= n. So,

‖Cvn‖
2
=max

πc2
0+

1
2πc2

1
1
2π(c

2
1+ 2c2

0)
= 1.

This calculation shows that the norm quotient is independent of the choice of c0

and c1, and thus ‖Cvn ( f )‖ = ‖ f ‖. �

We were encouraged to look for more isometric composition operators and be-
gan with those acting from T1→ T3. With the previous theorem in mind, the first
general form of the symbol considered was g(x)= ax3

+cx , since that is the form
of the Chebyshev polynomial of degree three. With 0 6= f ∈ T1,

‖Cax3+cx( f )‖2

‖ f ‖2
=
‖ f ◦ (ax3

+ cx)‖2

‖ f ‖2
=

∫ 1
−1[c0+ c1(ax3

+ cx)]2 1
√

1−x2 dx∫ 1
−1[c0+ c1x]2 1

√
1−x2 dx

=
5a2c2

1+ 12acc2
1+ 8(c2c2

1+ 2c2
0)

8(c2
1+ 2c2

0)
.

To find what the values of a and c must be for Cg to act as an isometry, we
forced this norm quotient to be 1. This leads to 25a2

+ 40c2
= 40, the equation of

an ellipse, which amounts to requiring

c =
−3a±

√
16− a2

4
. (5-1)

We can conclude that any symbol of form g(x) = ax3
+ cx , with c as in (5-1),

will act as an isometry in T1→ T3, assuming the symbol is admissible.
We continued this technique with the symbols g(x) = ax3

+ d , g(x) = ax3
+

bx2
+cx , g(x)=ax3

+cx+d, and g(x)=ax3
+bx2

+d, as well as other examples.
However, each time we found dependence on c0 and c1, and thus Cg could not act
isometrically on the whole subspace.

With the success of finding the isometry family for the symbol g(x)=ax3
+cx in

comparison to the lack of success with the examples explored above, we wondered
if this was the only form of g that could act as an isometry. We backtracked to the
general form g(x)= ax3

+ bx2
+ cx + d and constructed some test functions.

From Section 4.3 where we found ‖Cg‖T1→T3 , we began testing with various
functions f ∈ T1 to find necessary conditions on the form of g for Cg to be an
isometry. The first such functions are f1(x)= x+1 and f2(x)= x−1. Recall that

‖Cg( f )‖2

‖ f ‖2
=

5a2c2
1+12acc2

1+2(3b2c2
1+8bc1(dc1+c0)+4(c2c2

1+2(d2c2
1+2dc0c1+c2

0)))

8(2c2
0+c2

1)
.
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We see that

‖Cg(x + 1)‖2T3

‖x + 1‖2T1

=
5a2
+ 12ac+ 2(3b2

+ 8b(d + 1)+ 4(c2
+ 2(d2

+ 2d + 1)))
24

,

‖Cg(x − 1)‖2T3

‖x − 1‖2T1

=
5a2
+ 12ac+ 2(3b2

+ 8b(d − 1)+ 4(c2
+ 2(d2

− 2d + 1)))
24

.

For Cg to qualify as an isometry, each norm quotient must be 1 and thus the
difference of the two norm quotients must be 0:

0= ‖Cg(x + 1)‖2T3
−‖Cg(x + 1)‖2T3

=
4b− 8d

3
.

Thus 4b−8d
3 = 0, or b = 2d . Next we used f3(x)= x + 1

2 , and f4(x)= x − 1
4 . The

norm quotients for f3(x) and f4(x) with b = 2d are∥∥Cg
(
x + 1

2

)∥∥2
T3

‖x + 1
2‖

2
T1

=
5a2
+ 12ac+ 4(2c2

+ 18d2
+ 8d + 1)

12
,

∥∥Cg
(
x − 1

4

)∥∥2
T3

‖x − 1
4‖

2
T1

=
5a2
+ 12ac+ 8c2

+ 72d2
− 16d

9
.

We set each new norm quotient equal to 1 and solved for d . In solving

‖Cg
(
x + 1

2

)
‖

2
T3
= ‖x + 1

2‖
2
T1

for d, we find

d±1 =−
2
9
±

√
2
√
−45a2− 4(27ac+ 2(9c2− 13))

36
. (5-2)

While for
∥∥Cg

(
x − 1

4

)∥∥2
T3
=
∥∥x − 1

4

∥∥2
T1

we have

d±2 =
1
9
±

√
2
√
−45a2− 4(27ac+ 2(9c2− 10))

36
. (5-3)

We are seeking coefficients for g that will induce an isometry. Thus a single choice
for d must serve for all test functions. The expressions for d above must therefore
be equal and their difference 0. We examined each of the four pairings and present
the most illuminating one, which turns out to be d+1 = d−2 . Rearranging terms gives

√
2
√
−45a2− 4(27ac+ 2(9c2− 13))

36
+

√
2
√
−45a2− 4(27ac+ 2(9c2− 10))

36
=

1
3
,
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which can be solved for c by squaring both sides, isolating the product of radicals
on one side of the equation, squaring again, and simplifying. The solution is

c =
−3a±

√
16− a2

4
,

which is (5-1). When we substitute either expression for c into (5-2), we find
d1 = 0, −4

9 . Likewise, using (5-3), we get d2 = 0, 2
9 .

Thus, for Cg to be an isometry d must be 0, and since we already discovered
b= 2d, necessarily b= 0. Therefore for a symbol g to induce an isometry is for g
to be of the form g(x)= ax3

+ cx . This was the form first investigated at the start
of this subsection where we discovered the only family of the form g(x)=ax3

+cx
is when c is as in (5-1). Therefore, the only family that enables g to induce as an
isometry from T1 to T3 is the one described above.

Now that we have specified the form of the symbol g, we must determine the
constraints on g to be in the [−1, 1] × [−1, 1] box. That is, we must make sure
there are symbols satisfying the condition for Cg to be an isometry and which are
themselves admissible.

There are two basic criteria for g(x)= ax3
+ cx to stay in the box:

• The values of ax3
+cx at the endpoints of the interval [−1, 1] cannot be above

or below the corners of the [−1, 1]×[−1, 1] box (that is, the graph enters the
left side of the box and exits on the right, not the top or the bottom).

• If the local extrema of ax3
+cx (if any) occur for x ∈ [−1, 1], they cannot be

above the upper boundary or below the lower boundary of the [−1, 1]×[−1, 1]
box (that is, the graph does not penetrate the top or bottom of the box).

The endpoints will be considered first; we require at the left endpoint −1 ≤
−(a+ c) ≤ 1, and at the right endpoint −1 ≤ a+ c ≤ 1. These requirements can
be summarized by |a+ c| ≤ 1. Graphically (with a as the horizontal axis and c as
the vertical axis), this is represented by a “strip” in the ac plane, between the lines
c = 1− a and c =−1− a. This is seen in Figure 3.

Figure 3. Strip of admissibility. The slanted shading indicates
regions of inadmissibility.
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Figure 4. Regions of admissibility, when a and c have the same
sign (left), and when a and c have opposite signs, |c|>3|a| (right).
The vertical shading indicates further investigation is needed.

Next, we consider the local extrema of g(x) = ax3
+ cx which occur when

x2
=−c/3a. Two cases arise: when a and c have the same sign, and when a and

c have opposite signs. We consider the case when they have the same sign first.
If a and c have the same sign, g′(x) will have no real roots and thus g has no

local extrema. Thus, in addition to the strip described above, quadrants I ( a, c≥ 0)
and III ( a, c ≤ 0) are part of the admissible region; see Figure 4, left.

If a and c have opposite signs, g has local extrema. The roots of g′ are outside
the box if −c/3a > 1. This corresponds to the cones bounded by c = ±3a in the
ac plane; see Figure 4, right.

On the other hand, if −c/3a ≤ 1, or |c| ≤ 3|a|, then
∣∣g(±√−c/3a

)∣∣ ≤ 1 must
be true. Evaluation at the critical points requires that

−1≤ g
(
±
√
−c/3a

)
≤ 1.

Without loss of generality, consider the case of c negative. Now we are considering

−1≤ a
(√
−c
3a

)3
+ c

√
−c
3a
≤ 1 ⇒ − 1≤ a

(
−c
3a

)3/2
+ c

√
−c
3a
≤ 1 ⇒

−1≤ a
√
−c

3a

√
−c
3a
+ c

√
−c
3a
≤ 1 ⇒ − 1≤ 1

3
|c|
√
−c
√

3a
+ c
√
−c
√

3a
≤ 1 ⇒

−
√

3a ≤
√
−c
(
−

1
3 c+ c

)
≤
√

3a ⇒ −
√

3a ≤ 2
3 c
√
−c ≤

√
3a.

Next, we use this relation to solve for c:

−
√

3a ≤ 2
3(−c)3/2 ≤

√
3a ⇒ −

3
2

√
3a ≤ (−c)3/2 ≤ 3

2

√
3a ⇒

−c ≤ ( 3
2

√
3a)2/3 ⇒ −c ≤ 3

( 1
4

)1/3
(
√

a)2/3 ⇒ c ≥−3(a/4)1/3.
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Figure 5. Cubic with cones, a and c of opposite signs, |c| ≤ 3|a|.
The vertical shading indicates regions of inadmissibility.

Similarly, when c ≥ 0, we have

c ≤ 3(−a/4)1/3.

The corresponding region is shown in Figure 5. Keep in mind that the cubic is
relevant only outside the cones.

The combinations of the previous four regions is seen in Figure 6, which repre-
sents the total admissible area for g(x).

Lastly, we consider the graph of c in terms of a from the condition to be an
isometry (5-1). Graphing both the positive and negative roots reveals an ellipse,
seen in Figure 7. This ellipse represents all the possibilities of g(x) within the
family. The parts that lie in the admissible region are shown with heavy printing.
The positive and negative Chebyshev polynomials are at the extreme ends the major
axis of the ellipse, sitting as isolated points. This means there exists a nontrivial
family of isometries acting from T1 to T3, represented by the continuous arc of the
ellipse in the admissible region, along with the isometries identified by Theorem
5, represented by isolated points at the major vertices of the ellipse. Not only have
these been identified, but these are the totality of all possible composition isome-
tries between these subspaces. This is a very satisfying answer to the question.

Figure 6. Total region of admissibility for g(x) (unshaded).
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Figure 7. Admissible isometry-inducing symbols.

6. Conclusion

Some simple formulas for computing norms of composition operators on finite-
dimensional subspaces of the Chebyshev space show some direction for future lines
of investigation. We raised the more specific question of isometric composition
operators, especially in the case of T1→ T3. This revealed a family of operators
whose symbols’ coefficients vary over a continuum and a pair of isolated symbols
corresponding to the Chebyshev polynomials of order 3. The geometric connection
to a norm question was surprising and pleasing.
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Markov partitions for hyperbolic sets
Todd Fisher and Himal Rathnakumara

(Communicated by Kenneth S. Berenhaut)

We show that if f is a diffeomorphism of a manifold to itself, 3 is a mixing
(or transitive) hyperbolic set, and V is a neighborhood of 3, then there exists a
mixing (or transitive) hyperbolic set 3̃ with a Markov partition such that 3 ⊂
3̃ ⊂ V . We also show that in the topologically mixing case the set 3̃ will have
a unique measure of maximal entropy.

1. Introduction

A dynamical system consists of a space and a rule to dictate the evolution of the
points in the space. In particular, a discrete dynamical system (X, f ) consists of
a topological space X and a map f : X → X . The nth iterate of f , denoted f n ,
is defined as the map f composed n times, where n ∈ N. If f is a bijection, then
its inverse f −1 exists and we can form the nth iterate of f −1 by composition,
f −n
: X→ X .

We assume in this paper that the maps associated with dynamical systems are
homeomorphisms so that f −1 exists and f −n is well-defined. In the study of dy-
namical systems it is important to look at the overall effect of the rule for individual
points in the space. In this analysis we look at orbits of points in the space where
the orbit of a point x ∈ X is defined as

O(x)= { f n(x) ∈ X : n ∈ Z}.

Throughout the paper we let M be a compact, smooth, boundaryless manifold
and denote the set of diffeomorphisms from M to itself by Diff(M). A set X is
invariant under f if f (X)= X . Invariant sets play an important role in dynamical
systems and often allow one to decompose a space into invariant “indecomposable”
sets. A compact set 3⊂ M that is invariant under f ∈Diff(M) is a hyperbolic set

MSC2000: 37A35, 37D05, 37D15.
Keywords: Markov partitions, hyperbolic, entropy, specification, finitely presented.
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if there exists a splitting of the tangent space T3 f = Eu
⊕Es and positive constants

C ≥ 1 and λ < 1 such that for any point x ∈3 and any n ∈ N we have

‖D f n
x v‖ ≤ Cλn

‖v‖ for v ∈ E s
x ,

‖D f −n
x v‖ ≤ Cλn

‖v‖ for v ∈ Eu
x .

Hyperbolic sets were introduced by Smale and Anosov in the 1960s. The com-
pactness of the manifold together with the expansion and contraction in the tangent
bundle allows for complicated and interesting orbit structures. Additionally, hyper-
bolic sets are structurally stable, or in other words, the dynamics of a hyperbolic
set are preserved under perturbations.

One of the main tools in studying hyperbolic sets is the use of a Markov partition
introduced by Adler and Weiss for hyperbolic toral automorphisms of the 2-torus
[Adler and Weiss 1967]. Markov partitions are defined in Section 2. It was shown
in [Fisher 2006] that if f ∈Diff(M), 3 is a hyperbolic set for f , and V is a neigh-
borhood of f , then there exists a hyperbolic set 3̃ for f such that 3⊂ 3̃⊂ V and
3̃ has a Markov partition. For a Markov partition there is a canonically associated
symbolic space called a subshift of finite type. (For the definition of a subshift of
finite type see Section 2.)

Often one is interested in studying hyperbolic sets that satisfy additional prop-
erties. Two such properties are topological mixing and transitivity. A dynamical
system (X, f ) is topologically mixing if for any open sets U and V there exists
some N ∈N such that f n(U )∩V 6=∅ for all n ≥ N . A dynamical system (X, f )
is transitive if there exists a point x ∈ X such that the forward orbit of x ,

O+(x)= { f n(x) : n ∈ N},

is dense in X . A standard result about transitivity is the following: if X is a locally
compact Hausdorff space, then (X, f ) is topologically transitive if and only if for
any open sets U and V in X there exists some n ∈ N such that f n(U ) ∩ V 6= ∅
[Brin and Stuck 2002, page 31].

The main result of the present work is that we can strengthen the result on
Markov partitions in [Fisher 2006] with respect to topological mixing and transi-
tivity.

Theorem 1.1. If3 is a topologically mixing hyperbolic set for f ∈Diff(M) and V
is a neighborhood of3, then there exists a hyperbolic set 3̃ for f containing3 and
contained in V such that (3̃, f ) has a Markov partition coming from an associated
mixing subshift of finite type. Furthermore, if 3 is transitive, then (3̃, f ) has a
Markov partition coming from an associated transitive subshift of finite type.

We note that a standard result is that if the subshift of finite type is mixing
(or transitive) and associated to a Markov partition for a hyperbolic set, then the
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hyperbolic set is mixing (or transitive). Bowen [1974] provided a nice connection
between mixing hyperbolic sets and the entropy for the system. The topological
entropy of a dynamical system, denoted htop( f ), is a number that, in a certain
manner, measures the topological complexity of the system. Whereas, the measure
theoretic entropy, denoted hµ( f ), of a dynamical system is a number that, in some
manner, measures the complexity of the system as seen by the measure µ.

A measure µ is invariant for the dynamical system (X, f ) if

µ( f −1(A))= µ(A)

for all measurable sets A. We denote the set of invariant Borel probability measures
as M( f ). If X is a compact metrizable space and f is continuous, then we know
that M( f ) 6=∅ [Katok and Hasselblatt 1995, page 135]. The variational principle
says that if f is a homeomorphism of a compact metrizable space, then htop( f )=
supµ∈M( f ) hµ( f ) [Katok and Hasselblatt 1995, page 181]. A measure µ ∈ M( f )
such that htop( f ) = hµ( f ) is a measure of maximal entropy. If there is a unique
measure of maximal entropy, then f is called intrinsically ergodic. From Theorem
1.1 and Bowen’s results we are then able to show the following.

Corollary 1.2. If 3 is a topologically mixing hyperbolic set and V is a neighbor-
hood of 3, then there exists a hyperbolic set 3̃ containing 3 and contained in V
such that 3̃ is intrinsically ergodic with respect to f .

2. Background

As we will be looking at subshifts of finite type we first review some definitions
and facts about subshifts of finite type. Let A=[ai j ] be an n×n matrix with entries
of zeros and ones such that there is one or more one in each row and column. Such
a matrix is called an adjacency matrix. Let An = {1, ..., n} and call a transition
from i to j to be admissible for A if ai j = 1. Define

6A =
{
ω = (ωk)k∈Z |ωk ∈An and ωkωk+1 is admissible for all k ∈ Z

}
.

The map on 6A defined by σ(ω) = ω′ where ω′j = ω j+1 is called the shift map.
The subshift of finite type is the space (6A, σ ) together with the product metric on
6A. A matrix A is positive if each entry is positive. A matrix A is primitive if
there is some power N ∈ N such that AN is positive.

If a matrix A is primitive, then the subshift of finite type associated with A
is topologically mixing. Furthermore, a subshift of finite type associated with an
M×M matrix A is transitive if and only if for each i, j ( 1≤ i, j ≤M) there exists
some n ∈ N such that an

i j > 0 [Robinson 1999, page 80].
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A topological semiconjugacy between a pair of dynamical systems (X, f ) and
(Y, g) exists if there is a continuous surjective map h : X→ Y such that

h ◦ f = g ◦ h.

The space (Y, g) is called a factor of (X, f ), and (X, f ) is called an extension of
(Y, g).

A dynamical system (X, f ) where X is a compact metric space and f is a
homeomorphism is expansive if there exists a constant c > 0 such that for all
x, y ∈ X if d( f n(x), f n(y)) < c for all n ∈ Z, then x = y.

We now review some facts about expansive and finitely presented dynamical
systems. For ε > 0 and x ∈ X the ε-stable set is

W s
ε (x)=

{
y ∈ X | d( f n(x), f n(y)) < ε for all n ≥ 0

}
,

and the ε-unstable set is

W u
ε (x)=

{
y ∈ X | d( f −n(x), f −n(y)) < ε for all n ≥ 0

}
.

For x ∈ X and f : X→ X , an expansive homeomorphism, the stable set is

W s(x)=
{

y ∈ X | lim
n→∞

d( f n(x), f n(y))= 0
}

and the unstable set is

W u(x)=
{

y ∈ X | lim
n→∞

d( f −n(x), f −n(y))= 0
}
.

Let (Y, f ) be expansive and fix ε < c/2, where c is an expansive constant of
(Y, f ). Following [Fried 1987] we define

Dε =
{
(x, y) ∈ Y × Y |W s

ε (x) meets W u
ε (y)

}
and [·, ·] : Dε→ Y so that [x, y] =W s

ε (x)∩W u
ε (y). It follows that [·, ·] is contin-

uous.

Definition 2.1. A rectangle is a closed set R ⊂ Y such that R× R ⊂ Dε.

For R a rectangle and x ∈ R, denote the stable and unstable sets of x in R,
respectively, as

W s(x, R)= R ∩W s
ε (x), W u(x, R)= R ∩W u

ε (x).

A rectangle R is proper if R = R̊, where R̊ denotes the interior of R.

Definition 2.2. Let (Y, f ) be expansive with constant c > 0 and 0 < ε < c/2. A
finite cover R of Y by proper rectangles with diameter(R) < ε for any R ∈R is a
Markov partition if Ri , R j ∈R, x ∈ R̊i , and f (x) ∈ R̊ j , then

f (W s(x, Ri ))⊂ R j , f −1(W u( f (x), R j )
)
⊂ Ri , and R̊i ∩ R̊ j =∅ if i 6= j.
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For a Markov partition R of a system (X, f ) we define the adjacency matrix A
such that ai j = 1 if f (R̊i ) ∩ R̊ j 6= ∅. The subshift of finite type (6A, σ ) is said
to be associated with R and there is a canonical semiconjugacy h from (6A, σ ) to
(X, f ).

Fried [1987] defined finitely presented systems as expansive homeomorphisms
of a compact space that are factors of a subshift of finite type. In the same paper
he shows that any finitely presented dynamical system has a Markov partition.

Remark 2.3. For f ∈Diff(M) and 3 a hyperbolic set for f , the system (3, f |3)
is expansive. Furthermore, any subshift of finite type is expansive. Also, for a
hyperbolic set 3 for a diffeomorphism and x ∈3, the sets W s(x) and W u(x) are
injectively immersed submanifolds of Euclidean spaces.

3. Results

Proof of Theorem 1.1. Before proceeding to the proof of Theorem 1.1 we first
review some facts about shadowing for hyperbolic sets. A sequence {xk}

b
a is an ε-

chain if d( f (xk), xk+1)<ε for all k where−∞≤a<b≤∞. A point y δ-shadows
an ε-chain {xk} if d( f k(y), xk)< δ for all k. We next state the Shadowing Theorem
[Brin and Stuck 2002, page 113].

Theorem 3.1 (Shadowing Theorem). Let M be a Riemannian manifold, d the nat-
ural distance function, f a diffeomorphism of M to itself , and 3 a hyperbolic set
for f . Then for every δ > 0 there exists an ε > 0 such that if {xn} is an ε-chain of
f and d(xk,3) < ε for all k, then there is some y ∈

⋃
x∈3 Bε(x) that δ-shadows

the ε-chain {xk}.

Proof of Theorem 1.1. We first assume that 3 is topologically mixing. To prove
the theorem it will be sufficient to show that the subshift of finite type constructed
in [Fisher 2006] giving the hyperbolic set 3̃ will be topologically mixing.

Let U be a neighborhood of 3. A standard result for hyperbolic sets states
that there is a neighborhood V of 3 such that V ⊂ U and 3V =

⋂
n∈Z f n(V ) is

hyperbolic [Katok and Hasselblatt 1995, page 271]. Let d(·, ·) be an adapted metric
on 3V . Note that this can be extended continuously to a neighborhood V ′ ⊂U of
3V .

Fix η > 0 and δ ≤ η such that for any two points x, y ∈3V , if d(x, y) < δ then

f −1(W s
η ( f (x))

)
∩ f

(
W u
η ( f −1(y))

)
=W s

η (x)∩W u
η (y)

consists of one point, and the set
⋃

x∈3 B2η(x) is contained in V ∩V ′; see [Fisher
2006] for an argument explaining the existence of η and δ. Fix 0 < ε ≤ δ/2 as in
the conclusion of the Shadowing Theorem so that every ε-orbit is δ/2-shadowed
and contained in V ∩ V ′.
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Let ν < ε/2 such that d( f (x), f (y))< ε/2 and d( f −1(x), f −1(y))< ε/2 when
d(x, y) < ν for any x, y ∈3V . Let {pi }

N
i=1 be a ν-dense set of points in 3 and let

the adjacency matrix A be defined by

ai j =

{
1 if d( f (pi ), p j ) < ε,

0 if d( f (pi ), p j )≥ ε.

Let (6A, σ ) be the subshift of finite type associated with A. Then we know there
exists a hyperbolic set 3̃ contained in V̄ [Fisher 2006] such that 3̃ ⊂ 3V , that
contains 3 and there exists a semiconjugacy β : 6A → 3̃. To see that 3̃ is
topologically mixing it is sufficient to see that 6A is topologically mixing.

We now show that 6A is topologically mixing by showing that A is primitive.
Given sets Bν(pi ) and Bν(p j ) there exists some Ni j such that for all n ≥ Ni j we
have

f n(Bν(pi ))∩ Bν(p j ) 6=∅,

since 3 is topologically mixing for f . We let M =max{Ni j }. Then

f n(Bν(pi ))∩ Bν(p j ) 6=∅

for all n ≥ M . We now show that this implies that an
i j > 0 for all n ≥ M . This

is equivalent to showing there is a sequence of (n+1)-symbols coming from AN

such that each transition is allowed and the sequence starts with i and ends with j
[Robinson 1999, page 76].

Indeed, let n ≥ M and x ∈ f n(Bν(pi ))∩ Bν(p j ). Since

N⋃
k=1

f (Bν(pk))=3,

we know that there exists some pi1 such that x ∈ f (Bν(pi1)). By the definition
of ν we know that d( f (pi1), p j ) < ε and i1 to j is an allowed transition in 6A.
Inductively, let 1≤ k ≤ n− 2 and assume that for each l such that 1≤ l ≤ k there
is some pil such that f −l(x) ∈ f (Bν(pil )) and

d( f (pil ), p j ) < ε if l = 1,
d( f (pil ), pil−1) < ε else.

Then ikik−1 · · · i1 j is a sequence of k+1 symbols in AN with allowed transitions
and f −l(x) ∈ Bν(pil ) for all 1 ≤ l ≤ k. We know that f −(k+1)(x) ∈ f (Bν(pik+1))

for some ik+1 ∈AN and
d( f (pik+1), pik ) < ε.

Hence, ik+1 to ik is an allowed transition in 6A and ik+1ik · · · i1 j is a sequence
of k+2 symbols in AN with allowed transitions. Therefore, there is a sequence
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in−1in−2 · · · i1 j of n-terms in AN with allowed transitions. Finally, we know that
f −n(x) ∈ Bν(pi ) and

f −(n−1)(x) ∈ f (Bν(pi ))∩ Bν(pin−1).

So i to in−1 is an allowed transition. Hence, i in−1 · · · i1 j is an allowed word in 6
and an

i j > 0. Therefore, A is primitive and 6A is topologically mixing.
The proof of the transitive case is similar. Indeed, given sets Bν(pi ) and Bν(p j )

there exists some Ni j such that

f Ni j (Bν(pi ))∩ Bν(p j ) 6=∅.

Hence, a similar argument as above shows that aNi j
i j > 0 and 6A is transitive. �

Intrinsic ergodicity for mixing hyperbolic sets. The proof of Corollary 1.2 will
use the property of specification. A specification, S = (τ, P), for a dynamical
system consists of

(1) a finite collection τ = {I1, . . . , In} of finite intervals Ii = [ai , bi ] ⊂ Z, and

(2) a map P :
⋃m

i=1 Ii −→ X such that f t2−t1(P(t1))= P(t2). for all t1, t2 ∈ Ii ∈ τ .

A specification S is said to be r-spaced, where r ∈ N, if ai+1 > bi + r for all
i ∈{1, . . . , n− 1} and the minimal such r is called the spacing of S. A specification
S = (τ, P) provides a way of parametrizing a collection of orbit segments τ of f .
We say that S is ε-shadowed by x ∈ X if d( f n(x), P(n)) < ε for all n ∈

⋃m
i=1 Ii .

Definition 3.2. Let X be a compact metric space and f : X → X a homeomor-
phism. The dynamical system (X, f ) is said to have the specification property if
for all ε > 0 there exists an Mε ∈ N such that any Mε-spaced specification S is
ε-shadowed by a point of X .

The next result is stated without proof in [Sigmund 1974]. We provide a proof
for completeness.

Lemma 3.3. If (X, f ) has the specification property and (Y, g) is a factor of
(X, f ), then (Y, g) has the specification property.

Proof. Fix ε > 0 and let dX and dY denote metrics for X and Y , respectively. Let
ε′ > 0 such that if dX (x1, x2) < ε

′, then

dY (h(x1), h(x2)) < ε,

where x1, x2 ∈ X . Such an ε′ > 0 can always be chosen since h is continuous. Fix
Mε′ ∈N such that any Mε′-spaced specification is ε′-shadowed by a point of X and
let Mε = Mε′ .



556 TODD FISHER AND HIMAL RATHNAKUMARA

Let S = (τ, P) be an Mε-spaced specification in (Y, g) where τ = {I1, . . . , Im}

is a collection of Mε-spaced intervals. Let

B = {y1, y2, . . . , ym} ⊂ Y,

where yi = P(ai ) for all 1≤ i ≤ m.
Fix A = {x1, . . . , xm} ⊂ X such that h restricted to A is a bijection onto B and

h(xi )= yi for 1≤ i ≤ m. The orbit segment for xi in Ii is given by{
f ai (xi ), . . . , f bi (xi )

}
for 1≤ i ≤ m.

Define PX :
⋃m

i=1 Ii → X such that P(ai )= xi for all i such that 1≤ i ≤ m.
Now, given that (X, f ) has the specification property, we know there exists an

ε′-shadowing point x for the specification (τ, PX ) and h(x) ∈ Y . Furthermore,

h( f ai (xi ))= gai (yi )

since h is a semiconjugacy. Hence, d
(
h(x), h(P(n))

)
< ε for all n ∈

⋃m
i=1 Ii and

h(x) is an ε-shadowing point for the specification S. �

Theorem 3.4 [Bowen 1974]. Let X be a compact metric space and f be an ex-
pansive homeomorphism with the specification property. Then f is intrinsically
ergodic.

Weiss [1973] showed that a mixing subshift of finite type has the specification
property. Since subshifts of finite type are expansive, we know from Theorem 3.4
that a topologically mixing subshift of finite type is intrinsically ergodic.

From Lemma 3.3 we know that a factor of a mixing subshift of finite type is
intrinsically ergodic.

Corollary 3.5. Any topologically mixing finitely presented system is intrinsically
ergodic.

Proof. Let (X, f ) be a topologically mixing finitely presented system. To prove
the corollary we show there is a topologically mixing subshift of finite type that
is an extension of (X, f ). Let R be a Markov partition for (X, f ) and A be the
adjacency matrix associated with R. Let Ri and R j be rectangles in R. Since
(X, f ) is topologically mixing and the rectangles are proper, we know there exists
some Ni j ∈N such that f n(R̊i )∩ R̊ j 6=∅ for all n≥ Ni j . Using arguments as in the
proof of Theorem 1.1, we know that an

i j > 0 for all n≥ Ni j . Define N =max(Ni j ).
Then An is positive for all n ≥ N and the subshift of finite type associated with the
Markov partition R is topologically mixing. �

Proof of Corollary 1.2. Let f ∈Diff(M) for some manifold M , let 3 be a topolog-
ically mixing hyperbolic set for f , and V be a neighborhood of 3. From Theorem
1.1 we know that there exists a topologically mixing hyperbolic set 3̃ contained
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in V and containing 3 with a Markov partition. Therefore, 3̃ is finitely presented
and from Corollary 3.5 we know that 3̃ is intrinsically ergodic. �
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Ineffective perturbations in a planar elastica
Kaitlyn Peterson and Robert Manning

(Communicated by Natalia Hritonenko)

An elastica is a bendable one-dimensional continuum, or idealized elastic rod. If
such a rod is subjected to compression while its ends are constrained to remain
tangent to a single straight line, buckling can occur: the elastic material gives
way at a certain point, snapping to a lower-energy configuration.

The bifurcation diagram for the buckling of a planar elastica under a load
λ is made up of a trivial branch of unbuckled configurations for all λ and a
sequence of branches of buckled configurations that are connected to the trivial
branch at pitchfork bifurcation points. We use several perturbation expansions to
determine how this diagram perturbs with the addition of a small intrinsic shape
in the elastica, focusing in particular on the effect near the bifurcation points.

We find that for almost all intrinsic shapes ε f (s), the difference between the
buckled solution and the trivial solution is O(ε1/3), but for some ineffective f ,
this difference is O(ε), and we find functions u j (s) so that f is ineffective at
bifurcation point number j when 〈 f, u j 〉 = 0. These ineffective perturbations
have important consequences in numerical simulations, in that the perturbed bi-
furcation diagram has sharper corners near the former bifurcation points, and
there is a higher risk of a numerical simulation inadvertently hopping between
branches near these corners.

1. Introduction

Consider a common scenario for symmetry breaking in bifurcation theory. A
problem exhibiting some symmetry has a bifurcation diagram with a number of
bifurcation points (BPs). The addition of a perturbation breaks this symmetry and
removes the BPs, splitting the diagram into separate components. An example of
this scenario is shown in Figure 1, in which a pitchfork bifurcation is perturbed to
yield two separate branches.

MSC2000: 34B15, 34E10, 34G99, 74K10.
Keywords: elastic rod, intrinsic shape, undetermined-gauges perturbation expansion, pitchfork

bifurcations.
This work was supported by NSF grant DMS-0384739.
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Figure 1. Standard perturbation of a pitchfork bifurcation into
two separate branches.

To give a specific example, the buckling of a uniform, isotropic, intrinsically
straight rod in three dimensions has a bifurcation diagram containing pitchfork BPs
corresponding to the classic Euler buckling modes. There is a natural perturbation
to consider for this three-dimensional buckling problem: the presence of intrinsic
curvature. Even rods designed to be straight are likely to have small curvature
imperfections, and these can break the qualitative nature of the bifurcation diagram
from the pitchfork structure seen in the intrinsically straight case.

Such elastic rod models have been used to represent the bending and twisting
of DNA. For many DNA sequences, the intrinsic shape is nearly straight, but the
minimum-energy stacking configurations of consecutive base-pairs do introduce
small intrinsic bends that depend on the specific sequence of the DNA. Multiple
studies have sought to determine these stacking configurations as a function of
sequence [De Santis et al. 1992; Bolshoy et al. 1991; Olson et al. 1998; Dixit
et al. 2005], and then derive from these stacking configurations the corresponding
intrinsic curvature for a continuum elastic rod [Manning et al. 1996].

These DNA models have seen increasing use in studying a phenomenon called
DNA looping: the bending and twisting of DNA a few hundreds of base-pairs long
in response to prescribed relative positions and orientations of the two ends (these
boundary conditions coming from, for example, a bound protein of known structure
[Swigon et al. 2006; Goyal et al. 2007; Kahn and Crothers 1998] or laser tweezer
experiments [Seol et al. 2007; Marko and Siggia 1995]). Given the wide variety
of DNA sequences, and the almost-as-wide variety of parameters for determining
local bending from sequence, it would be beneficial to have an automated algorithm
to compute the lowest-energy components of the bifurcation diagram given spec-
ified choices of DNA sequence, stacking parameters, and boundary conditions. A
strong understanding of the splitting of the unperturbed pitchfork diagram for base
cases such as buckling or periodic boundary conditions is an important precursor
to ensuring that such an automated algorithm finds all relevant components of the
diagram.
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How typical is the “standard” splitting shown in Figure 1? We analyzed this
question for one of the simplest bifurcation problems—the buckling of a planar
elastica—under the family of perturbations of (infinitesimal) intrinsic curvature.
Like the three-dimensional buckling problem described above, this problem ex-
hibits a sequence of pitchfork BPs. This two-dimensional problem is useful as a
base case for the more general three-dimensional DNA looping problem. The for-
mulation of two-dimensional bending is simple enough that closed-form analysis
is not too unwieldy; at the same time, it seems reasonable to suppose that the three-
dimensional results would be analogous, since, in some sense, three-dimensional
bending is composed of two orthogonal directions of two-dimensional bending.
The particular buckling boundary conditions we choose yield a classic problem in
mechanical engineering, but are not the typical boundary conditions for DNA loop-
ing. Still, a likely computational approach to determining configurations obeying
arbitrary DNA looping boundary conditions would involve beginning from one of
a small number of simple configurations, one of which would be the straight-rod
configuration studied here (in addition, to, perhaps, a circle and a semicircle).

Thus, this choice of a simple model problem should allow us to focus on the
fundamental questions of which perturbations are atypical and how the bifurcation
diagrams of atypical perturbations differ from the typical case. Our main finding
is that for these atypical cases, the perturbation of the BP is significantly smaller
than in the typical case, leading us to label these perturbations as ineffective.

This question is related to the analysis of unfolding a pitchfork bifurcation di-
agram in dynamical systems; see [Glendinning 1994; Iooss and Joseph 1980].
The standard example is to consider the algebraic equation λx − x3

= 0, which
exhibits a pitchfork BP at λ= 0. The addition of a second parameter, for example,
α + λx − x3

= 0, splits the diagram as in Figure 1 if α 6= 0. The boundary case
α = 0 is the analogue of the ineffectiveness condition we derive for the elastica,
although the analysis and final result are more involved since our mathematical
setting is an ODE (plus boundary conditions and an integral constraint) rather than
an algebraic equation, and the perturbations considered are a space of functions
rather than a single parameter. Furthermore, in the standard unfolding study, the
focus is generally on α= 0 as the transition between qualitative behaviors, whereas
we focus on determining the leading-order behaviors of solutions both away from,
and directly on, this boundary case.

In addition to this theoretical analysis, we present some computational results
motivated by the idea of deriving an automated algorithm to determine DNA loop-
ing configurations. One approach to performing such computations is to use exactly
the symmetry-breaking path considered here: begin with the symmetric problem
for which solutions are known, and proceed via a continuation algorithm to nu-
merical solutions for the perturbed problem. We explore how these continuation
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algorithms can fail if the perturbation is ineffective (or even nearly ineffective),
due to the presence of sharp corners in a branch of solutions. Thus, in designing
a system for automatically computing such bifurcation diagrams for a wide range
of intrinsic shapes, the ineffectivity conditions we derive serve as an important red
flag that numerical difficulties may arise in a specific subset of computations.

Our analysis proceeds as follows. First, we formulate the planar buckling prob-
lem in Section 2, including an O(ε) intrinsic-curvature term. Next, in Section 3,
we apply a standard perturbation expansion to the trivial branch of ε=0 unbuckled
configurations. Away from the BPs, this expansion gives an O(ε) approximation
to the perturbation of the trivial branch. At the BPs, this analysis breaks down
for most intrinsic curvature profiles, but for certain special profiles, it does still
yield an O(ε) solution. These cases are exactly the ineffective perturbations, and
we derive conditions for when they occur. In Section 4, we apply an alternative
perturbation technique called undetermined gauges to the effective perturbations at
the BPs and find an O(ε1/3) leading-order term for the perturbation of the unbuck-
led configuration. Finally, in Section 5, we present several examples illustrating
the theory and a computational study verifying the numerical difficulties created
by ineffective or nearly ineffective perturbations.

2. The planar buckling problem

We consider an inextensible and unshearable elastic rod in the plane, assumed for
simplicity to have total arc-length 1. We parametrize the rod by arc-length s, and
denote the configuration of the rod at arc-length-value s by (x(s), y(s)). We choose
coordinates and boundary conditions as shown in Figure 2: the s= 0 end of the rod
is at the origin, we impose clamped boundary conditions at each end requiring the

x

y

s=0

s=1

θ

Figure 2. Boundary conditions on the planar elastica. The s = 0
end of the rod is held at the origin with vertical tangent, while the
s = 1 end of the rod is held at x = 0, also with vertical tangent.
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tangent vectors to be vertical, and further require x(1) = 0. The inextensibility–
unshearability constraint implies that (x ′(s), y′(s)) is a unit vector; this allows
us to describe the rod by a single unknown function θ(s), where (x ′(s), y′(s)) =
(cos θ(s), sin θ(s)). The clamped boundary conditions are given by θ(0)= θ(1)=
0, and the additional constraint x(1)= 0 can be rewritten as

∫ 1
0 sin θ(s)ds = 0.

We place a mass m > 0 at the s = 1 end of the rod, and assume the following
functional for the energy of the rod-plus-mass system:

E[θ ] ≡
∫ 1

0

(K
2
(θ ′(s)− ε f (s))2+mg cos θ(s)

)
ds.

The first term represents the bending energy of the rod, and the second term the
potential energy of the load. The term ε f (s) is used to model intrinsic curvature:
the minimum-energy configuration of the rod has θ ′(s) = ε f (s), and deviations
from ε f (s) involve a quadratic energy cost, weighted by the stiffness parameter
K . For simplicity, we express energy in units of K , and define λ=mg/K > 0, so
that the energy functional becomes

E[θ ] =
∫ 1

0

(1
2
(θ ′(s)− ε f (s))2+ λ cos θ(s)

)
ds.

We thus consider the calculus of variations problem to find critical points of E
subject to the boundary conditions θ(0)= θ(1)= 0 and the isoperimetric constraint∫ 1

0 sin θ(s)ds = 0. These critical points are found by solving the ordinary differ-
ential equation (ODE) defined by the Euler–Lagrange equation (with Lagrange
multiplier µ included because of the isoperimetric constraint):

θ ′′(s)= ε f ′(s)− λ sin θ(s)+µ cos θ(s).

Thus, the mathematical problem we considered was, given known values for the
load λ, perturbation parameter ε, and intrinsic curvature profile f (s) (with f ′ not
identically zero, since otherwise ε has no effect), find solutions (θ(s), µ) of

θ ′′(s)= ε f ′(s)− λ sin θ(s)+µ cos θ(s),

θ(0)= θ(1)= 0,
∫ 1

0
sin θ(s)ds = 0.

(1)

For ε= 0, the solutions to (1) as λ varies yield the familiar force-length diagram
seen in Figure 3. (All bifurcation diagrams in this article were computed using
the parameter-continuation package AUTO97 [Doedel et al. 1991a; 1991b].) One
solution (for each value of λ) is θ(s)≡0, µ=0 (a straight rod), and this corresponds
to the horizontal line at the top of Figure 3. We call this the trivial branch.
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Figure 3. Bifurcation diagram for a planar elastica with no intrin-
sic curvature (ε = 0). The height of the top of the rod (y(1)) is
plotted against the imposed load λ.

There are pitchfork bifurcation points1 at all values of λ satisfying

2− 2 cos
√
λ−
√
λ sin
√
λ= 0 (2)

(see Section 3 for a derivation of this equation). This equation has a countable
sequence of solutions that we will label as 0< λ1 < λ2 < · · · . For n odd,

λn = (n+ 1)2π2,

whereas for n even,

(n+ 0.5)2π2 < λn < (n+ 1)2π2, with (n+ 1)2π2
− λn→ 0 as n→∞.

Two properties of λn (for n even) will be useful to us:

Lemma 1. For n even,

sin
√
λn =

4
√
λn

λn + 4
, cos

√
λn =

4− λn

λn + 4
.

Proof. By (2), we have

1− cos
√
λn =

√
λn sin

√
λn

2
, 1+ cos

√
λn = 2−

√
λn sin

√
λn

2
.

1The appearance of the pitchfork bifurcation points in Figure 3 differs slightly from the standard
picture from Figure 1 since the two outer prongs of the pitchfork are folded on top of each other due
to the choice of y(1) as ordinate.
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Multiplying these two equations, we find

sin2
√
λn =

√
λn sin

√
λn −

λn sin2√λn

4
.

Collecting terms,

sin2
√
λn
(
1+

λn

4

)
=

√
λn sin

√
λn,

and since sin
√
λn 6= 0 for n even, we may divide both sides by it and solve for

sin
√
λn to find the desired result.

The formula for cos
√
λn follows from the formula

cos
√
λn =−

√
1− sin2

√
λn

(note the minus sign due to the fact that
√
λn is just below an odd multiple of π ). �

Lemma 2. For n even, −λn − λn cos
√
λn + 2

√
λn sin

√
λn = 0.

Proof. Since (n+ 0.5)2π2 < λn < (n+ 1)2π2, we have

sin
√
λn 6= 0 and 1− cos(

√
λn) 6= 0.

Thus
sin
√
λn

1− cos
√
λn
=

1+ cos
√
λn

sin
√
λn

, (3)

since cross-multiplying yields the identity 1− cos2√λn = sin2√λn . By (2), the
left side of (3) equals 2/

√
λn , and therefore,

1+ cos
√
λn

sin
√
λn

=
2
√
λn
.

Cross-multiplying, and multiplying both sides by
√
λn , yields the desired equality.

�

3. Perturbation of trivial branch for small ε

For fixed λ> 0, f (s), and ε > 0, we now seek a solution to (1) that will be close to
the solution on the trivial branch for ε=0. We use a standard perturbation analysis,
writing

θ(s)= θ0(s)+ εθ1(s)+ · · · , µ= µ0+ εµ1+ · · · .

The O(1) terms θ0(s) and µ0 vanish since µ= 0 and θ(s)≡ 0 on the trivial branch.
Therefore, we seek the O(ε) terms θ1(s) and µ1, by plugging these expansions into
(1). After Taylor expanding sin θ and cos θ and isolating the O(ε) terms we find

θ ′′1 = f ′(s)− λθ1+µ1, θ1(0)= θ1(1)= 0,
∫ 1

0
θ1(s)ds = 0. (4)
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By a standard integrating factor approach, we find the general solution to the ODE
in (4):

θ1(s)=
1
√
λ

∫ s

0
f ′(t) sin(

√
λ(s− t)) dt +

µ1

λ
+C1 cos(

√
λs)+C2 sin(

√
λs)

When we require that this general solution satisfy the remaining conditions in (4),
we find three linear equations in µ1, C1, and C2:1/λ 1 0

1/λ cos
√
λ sin

√
λ

1/λ (sin
√
λ)/
√
λ (1− cos

√
λ)/
√
λ


µ1

C1

C2



=

 0

(1/
√
λ)
∫ 1

0 f ′(t) sin(
√
λ(1−t)) dt

(1/
√
λ)
∫ 1

0

∫ s
0 f ′(t) sin(

√
λ(s− t)) dt ds

 (5)

The bottom term on the right side can be simplified by switching the order of
integration: ∫ 1

0

∫ 1

t

f ′(t)
√
λ

sin
(√
λ(s− t)

)
ds dt,

and then computing the inner integral:

1
λ

∫ 1

0
f ′(t)

[
1− cos

(√
λ(1−t)

)]
dt.

Inserting this into (5), and multiplying both sides by λ, gives1 λ 0
1 λcos

√
λ λsin

√
λ

1
√
λsin
√
λ
√
λ(1−cos

√
λ)


µ1

C1

C2

=
 0
√
λ
∫ 1

0 f ′(t)sin(
√
λ(1−t)) dt∫ 1

0 f ′(t)[1−cos(
√
λ(1−t))] dt

 (6)

The matrix on the left has determinant λ3/2(2 cos
√
λ−2+

√
λ sin
√
λ), so (6) has

a unique solution if 2 cos
√
λ−2+

√
λ sin
√
λ 6= 0. In other words, referring back

to (2), we have shown that away from the bifurcation points, that is, for λ 6= λn , the
standard perturbation expansion yields a solution, that is, a O(ε) approximation to
θ(s) near the trivial branch.

(We note that the BP condition (2) can be derived by a computation much like
the one just completed; in that instance, we would be looking for solutions near
the trivial branch to the problem without the f ′ term. We would use the same
perturbation expansion, resulting in (6) but with a zero vector as the right side, and
so we would have a nontrivial solution (a BP) exactly when the determinant of the
matrix vanishes.)
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What is particularly interesting for our study is whether (6) might have a solution
even at a bifurcation point. Here we can use a fact from linear algebra (see [Shifrin
and Adams 2002, Section 3.4], for example):

Theorem 1. For an n× n matrix A, the column space of A is equal to the orthog-
onal complement of the null-space of AT .

Denote by b the right-hand side of (6). We want to know whether b is in the
column space of the matrix A on the left side, which by Theorem 1 is true if and
only if 〈b, u〉 = 0 for all null-vectors u of AT . The null-vector for λ = λn has a
different form depending on whether n is odd or even.

If n is odd, then λn = (n+ 1)2π2 and

AT
=

 1 1 1
(n+1)2π2 (n+1)2π2 0

0 0 0

 ,
so the null space of AT is span {(−1, 1, 0)}.

If n is even, no obvious simplification can be made to the form of the matrix:

AT
=

1 1 1
λ cos

√
λ

√
λ sin
√
λ

0 λ sin
√
λ
√
λ(1− cos

√
λ)

 ,
but, using (2) and Lemma 2, one sees that the null-space of AT is span {(−1,−1,2)}.

Combining these null-vectors of AT with Theorem 1 shows that (6) has a solu-
tion at λn if and only if ∫ 1

0
f ′(t) sin(

√
λn(1−t)) dt = 0 for n odd,∫ 1

0
f ′(t)

[
2− 2 cos

(√
λn(1−t)

)
−

√
λn sin

(√
λn(1−t)

)]
dt = 0 for n even.

(7)

Intrinsic curvature profiles f satisfying (7) for some n are the ineffective perturba-
tions for bifurcation point λn .

4. Undetermined-gauges analysis of bifurcation points

We now turn to the analysis of the bifurcation points λ = λn . In Section 3 we
showed that for the ineffective perturbations defined by (7), the standard pertur-
bation analysis predicts an O(ε) lowest-order term for θ1 and µ1, but that this
analysis fails for the remaining perturbations. Here we investigate those cases by
applying a more general technique, the methods of undetermined gauges [Murdock
1999], which is used to derive the leading-order behavior when it does not follow
the standard O(ε) pattern.
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We are, as before, considering (1), but now we formulate a more general pertur-
bation expansion for θ and µ. This expansion is computed one term at a time, so
we begin by writing

θ(s)= δ1(ε)θ1(s), µ= δ1(ε)µ1,

where δ1(ε) is an unknown function of ε that our analysis will determine. We will
restrict attention to the family δ1(ε) = ε

a for a real. We insert these expressions
into (1) and expand the sin and cos as Taylor series:

δ1θ
′′

1 = ε f ′(s)− λn(δ1θ1+ · · · )+ (δ1µ1)(1+ · · · ),

δ1θ1(0)= δ1θ1(1)= 0,
∫ 1

0
(δ1θ1+ · · · ) ds = 0.

We want to look at the leading order terms, but in the ODE, there is a question
of whether δ1 or ε is dominant, or if they could be of the same order. If ε were
dominant, then the leading-order terms of the ODE would be the nonsensical 0=
ε f ′(s). If δ1 and ε were of the same order, that is, δ1 = ε, then the leading-order
terms of the ODE would give the same equation as in the standard perturbation
expansion, which we know from Section 3 has no solution. Hence, the dominant
term must be δ1, so we keep the O(δ1) terms to find

θ ′′1 =−λnθ1+µ1, θ1(0)= θ1(1)= 0,
∫ 1

0
θ1(s) ds = 0.

The general solution of the ODE is θ1(s)=C1 cos(
√
λns)+C2 sin(

√
λns)+µ1/λn .

Imposing θ1(0)= 0, we find µ1 =−λnC1, and then the other two conditions give
the linear system cos

√
λn−1 sin

√
λn

sin
√
λn

√
λn
−1

1−cos
√
λn

√
λn

[C1

C2

]
=

[
0
0

]
.

Since the determinant of the matrix in this system is zero by (2), we have nontrivial
solutions (C1,C2), namely any nonzero null-vector of the matrix. If n is odd, the
matrix simplifies to

[ 0
−1

0
0

]
, so (0, 1) is a null-vector and the solution coming from

this first gauge — still with n odd — is

θ1 = C sin(
√
λns)= C sin(π(n+ 1)s) (C 6= 0 to be determined),

µ1 = 0.
(8)
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On the other hand, if n is even, then (sin
√
λn, 1− cos

√
λn) is a null-vector of the

matrix, which means that the solution coming from this first gauge is

θ1 = k
[
sin
√
λn
(
cos(

√
λns)− 1

)
+ (1− cos

√
λn ) sin(

√
λn s)

]
,

µ1 =−kλn sin
√
λn.

By (2), 1− cos
√
λn =

1
2

√
λn sin

√
λn , so that this solution can be rewritten as

θ1 = k sin
√
λn
(
cos(

√
λns)− 1+ 1

2

√
λn sin(

√
λns)

)
, µ1 =−kλn sin

√
λn.

For simplicity, we write k sin
√
λn/2 as a single constant C for the final form of

the solution for n even:

θ1 = C
(
2 cos(

√
λns)−2+

√
λn sin(

√
λns)

)
(C 6=0 to be determined),

µ1 =−2Cλn.
(9)

In order to determine C and δ1, we add another gauge.

θ = δ1(ε)θ1(s)+ δ2(ε)θ2(s), µ= δ1(ε)µ1+ δ2(ε)µ2,

for δ2(ε) an unknown function of ε (again in the family εa), by definition of lower
order in ε than δ1. As before, we insert these expressions into (1) and Taylor-expand
the sin and cos terms, looking for the next-lowest-order terms after O(δ1).

For the boundary conditions, these next-lowest-order terms give δ2(ε)θ2(0) =
δ2(ε)θ2(1) = 0, or θ2(0) = θ2(1) = 0. As for the integral condition, since sin θ =
θ − θ3/6+ · · · , there are two next-lowest-order candidates: δ2 from the θ term,
and δ3

1 from the θ3 term. We list them both for the time being:∫ 1

0

(
δ2θ2(s)− 1

6(δ1)
3θ1(s)3+ · · ·

)
ds = 0, (10)

Finally, we look at the ODE. The sin term yields the same two possible second-
lowest-order terms δ2 or (δ1)

3 as in the integral condition, and so, in fact, does the
cos term (δ2 from the δ2µ2 term in µ times the 1 in the cos expansion, or (δ1)

3

from the δ1µ1 term in µ times the −(δ1θ1)
2/2 from the cos expansion):

δ2θ
′′

2 = ε f ′(s)− λn
[
δ2θ2(s)− 1

6(δ1)
3(θ1(s))3+ · · ·

]
+
[
δ2µ2−

1
2(δ1)

3µ1(θ1(s))2+ · · ·
]
. (11)

Overall, there are three candidates for next-lowest-order term: ε, δ2, and (δ1)
3.

We have to consider all possibilities for the relative rankings of these terms, in-
cluding ties. The arguments below rule out all possibilities except having all three
of the same order.
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Case 1: ε lowest-order. This cannot be true, since the dominant terms in (11)
would give 0= f ′(s), but by assumption f ′ is not identically zero.

Case 2: (δ1)
3 lowest-order. This cannot be true, since the dominant terms in (11)

would give
0=− 1

6

(
θ1(s)

)2
(θ1(s)+ 3µ1),

and neither θ1 nor θ1+ 3µ1 is identically zero.

Case 3: δ2 lowest-order. The dominant terms in (11) would give the same equation
we solved for θ1 and µ1 (including the boundary and integral conditions), so that
θ2 = θ1 and µ2 =µ1. Thus, our gauge expansions would reduce to θ = (δ1+δ2)θ1

and µ= (δ1+ δ2)µ1, and we would essentially be back where we began this step,
having replaced the unknown δ1(ε) by another unknown δ1(ε) + δ2(ε), without
having learned anything about the connection of δ1 to ε. Thus, we reject this case.

Case 4: ε and (δ1)
3 tied for lowest-order. Since (δ1)

3
= ε, the dominant terms in

(11) would give 0 = f ′(s)− 1
6(θ1(s))3. This requires the perturbation f ′ to take

the very particular form of the cubes of the functions (8) or (9). Since this case
does not yield a solution for a general perturbation, we reject this case.

Case 5: ε and δ2 tied for lowest-order. This cannot be true: we would have δ2= ε

and the dominant terms in (11) would give the same equation (4) from the standard
perturbation expansion, as well as the same integral and boundary conditions, and
we know that this system has no solution for λ= λn and the effective perturbations
we are considering in this section.

Case 6: δ2 and (δ1)
3 tied for lowest order. We have (δ1)

3
= δ2 and the dominant

terms in (11) would give

θ ′′2 =−λnθ2+
1
6λn(θ1)

3
+µ2−

1
2µ1(θ1)

2.

This equation can be solved in closed form using the forms of µ1 and θ1 from (8)
and (9), as follows.

For n odd, we have µ1 = 0 and θ1 = C sin(
√
λns), and the ODE has solution

θ2(s)= C1 cos(
√
λns)+C2 sin(

√
λns)

+µ2/λn −
1

16C3s
√
λn cos(

√
λns)+ 1

192C3 sin
(
3
√
λns

)
.

Applying θ2(0)= θ2(1)= 0 leads to the impossible conclusion that C = 0.
For n even, the solution of the ODE is

θ2(s)= C1 cos(
√
λns)+C2 sin(

√
λns)+µ2/λn +

8
3C3

+
1

16C3(λn − 12)(2− λns) cos(
√
λns)+ 1

96C3(3λn − 4) cos(3
√
λns)

+
1

192C3
√
λn(λn − 12)

[
24s sin(

√
λns)+ sin(3

√
λns)

]
.
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The condition θ2(0)= 0 allows us to solve for µ2, leaving

θ2(s)= C1
[
cos
(√
λns

)
−1
]
+C2 sin(

√
λns)+ 1

96C3(148−15λn)

+
1

16C3(λn−12)(2−λns) cos(
√
λns)+ 1

96C3(3λn−4) cos(3
√
λns)

+
1

192C3
√
λn(λn−12)

[
24s sin(

√
λns)+ sin(3

√
λns)

]
. (12)

Next we impose the boundary condition θ2(1)= 0, and using Lemma 1, we find

θ2(1)=−
2λn

4+ λn
C1+

4
√
λn

4+ λn
C2+

C3λ2
n(λn − 12)

16(4+ λn)
= 0. (13)

Recalling (10), since δ2 = (δ1)
3, the integral condition is∫ 1

0

(
θ2(s)− 1

6(θ1(s))3
)

ds = 0.

Again using Lemma 1, we can simplify this to

−
λn

4+ λn
C1+

2
√
λn

4+ λn
C2+

C3λn(20+ λn)

8(4+ λn)
= 0. (14)

Subtracting two times (14) from (13) gives

C3λ2
n(λn − 12)

16(4+ λn)
−

C3λn(20+ λn)

4(4+ λn)
=

C3λn(λn − 20)
16

= 0,

which implies either C = 0, λn = 0, or λn = 20, none of which is true.
Having ruled out all other cases, we can conclude that δ2, (δ1)

3 and ε are all of
the same order, that is, δ1 = ε

1/3 and δ2 = ε. In particular, we have shown that
θ = O(ε1/3).

In fact, this second gauge allows us to completely determine the leading-order
behavior of θ(s) and µ, as summarized by the following theorem:

Theorem 2. For n odd, we have θ(s)=Cε1/3 sin(
√
λns)+· · · and µ= εµ2+· · · ,

with λn = π(n+ 1),

C=
(16
λn

∫ 1

0
f ′(t) sin(

√
λn(1−t))dt

)1/3
, µ2=−

∫ 1

0
f ′(t)

[
1−cos(

√
λn(1−t))

]
dt.

For n even, we have θ(s) = Cε1/3(2 cos(
√
λns)− 2+

√
λn sin(

√
λns))+ · · · and

µ=−2ε1/3Cλn + · · · , with

C=
( 16
(λn)2(λn−20)

∫ 1

0
f ′(t)

[
2−2 cos(

√
λn(1−t))−

√
λn sin(

√
λn(1−t))

]
dt
)1/3

.
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Proof. For n even, all that remains is to determine C , while for n odd, we must
compute C and µ2. The derivation largely follows the computations in Case 6.
The ODE to be solved is

θ ′′2 = f ′− λnθ2+
1
6λn(θ1)

3
+µ2−

1
2µ1(θ1)

2, (15)

identical to Case 6 except for the addition of f ′ to the right side. Therefore, the
solution of the ODE will be the expression found in Case 6 plus the term

1
√
λn

∫ s

0
f ′(t) sin(

√
λn(s− t)) dt, (16)

the solution to the equation θ ′′2 = f ′−λnθ2 seen in Section 3. Since this new term
vanishes at s = 0, it will have no effect on the first step from Case 6 (in which we
get an expression for µ2 using the condition θ2(0)= 0).

Thus, for n odd, the solution to (15) plus θ2(0)= 0 is

θ2(s)= C1
(
cos(

√
λns)− 1

)
+C2 sin(

√
λns)− 1

16C3s
√
λn cos(

√
λns)

+
1

192C3 sin(3
√
λns)+

1
√
λn

∫ s

0
f ′(t) sin

(√
λn(s− t)

)
dt.

Next we impose the condition θ2(1) = 0 to find the given formula for C . Note
that the integral does not vanish (and hence C 6= 0 as required) since that is our
definition of what makes a perturbation f ′ effective.

Finally, we impose the condition

∫ 1

0
θ2(s) ds = 0

(for n odd, the quantity (θ1)
3
= sin3(π(n+1)s) has zero integral, so this term drops

out of the integral condition) to find

C1=
1
√
λn

∫ 1

0

∫ s

0
f ′(t) sin(

√
λn(s−t))dt ds=

1
λn

∫ 1

0
f ′(t)

[
1−cos(

√
λn(1−t))

]
dt,

where the second equality comes from switching the order of integration as in
Section 3. Since µ2=−C1λn (from the θ2(0) condition), we find the given formula
for µ2.

For n even, the solution to (15) plus θ2(0)= 0 is (12) plus the term (16). Using
the same steps as in Case 6, the boundary condition θ2(1) = 0 and the integral
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condition yield the equations

−
2λn

4+ λn
C1+

4
√
λn

4+ λn
C2+

C3λ2
n(λn − 12)

16(4+ λn)
+

1
√
λn

∫ 1

0
f ′(t) sin(

√
λn(1−t)) dt = 0,

−
λn

4+ λn
C1+

2
√
λn

4+ λn
C2+

C3λn(20+ λn)

8(4+ λn)
+

1
λn

∫ 1

0
f ′(t)(1−cos(

√
λn(1−t)))dt=0.

Subtracting twice the second equation from the first yields the formula for C . �

5. Examples

Bifurcation diagrams with effective and ineffective perturbations. We consider
four perturbations f ′:

f ′1, effective for both BPs,

f ′2, ineffective for the first BP and effective for the second,

f ′3, effective for the first BP and ineffective for the second,

f ′4, ineffective for both BPs.

Specifically, we first define

u1(s)=
√

2 sin(
√
λ1(1− s)),

u2(s)=
1
√
λ2

[
2− 2 cos(

√
λ2(1− s))−

√
λ2 sin(

√
λ2(1− s))

]
.

These are length-1 elements in L2 in the directions of the functions that define
ineffectiveness for the BPs, in the sense that f ′ is ineffective at the n-th BP if
〈 f ′, un〉 = 0. We note that u1 and u2 are orthogonal.

We define our four perturbations by

f ′1 = (u1+ u2)/
√

2, f ′2 = u2, f ′3 = u1,

f ′4(s)=
√

2π2− 3(s+ sin(2πs)/π)/(π
√

6).

By design, all the f ′j have length 1 (to allow comparisons); f ′2 is orthogonal to u1,
f ′3 is orthogonal to u2, f ′4 is orthogonal to both u1 and u2; and all other pairings of
f ′j with uk are not close to orthogonal.

The bifurcation diagrams for these perturbations, with ε = 1, are shown in the
four panels of Figure 4. The difference between effective and ineffective pertur-
bations is clear: in each case where a perturbation is effective, the diagram is
relatively smooth near the former BP, whereas in the ineffective cases, the diagram
has a sharp corner. Indeed, to numerically compute some of these corners required
a significant amount of care, for example, the use of a very small step size, or a
temporary increase in ε by an order of magnitude just to get onto the perturbation
of the bifurcating branch.
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Figure 4. Bifurcation diagrams for elastica perturbed by intrinsic
curvature profiles f ′ (see previous page for the specific functions
used): (a) effective perturbation at both BPs; (b) ineffective at
the first BP, effective at the second; (c) effective at the first BP,
ineffective at the second; (d) ineffective at both BPs.

Leading-order behaviors in ε. Finally, we show two examples illustrating the
lowest-order expressions for θ(s) and µ found in Section 4. In our first example,
We take f ′(s) = s, a perturbation that is effective at λ = λ1 (〈 f ′, u1〉 = 0.39) and
ineffective at λ = λ2 (〈 f ′, u2〉 = 0). In Figure 5, we show the graphs of θ(s) for
λ= λ1, λ2, and for ε = 1

4 ,
1
2 , and 1.

Our theoretical prediction for the behavior at λ = λ1 comes from Theorem 2
(since f ′ is effective). We compute λ1 = 2π ,

C =
( 16

4π2

∫ 1

0
t sin(2π(1−t)) dt

)1/3
= 0.401,

and

µ2 =−

∫ 1

0
t
(
1− cos(2π(1−t))

)
dt =−0.5.
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Figure 5. Graphs of θ(s) for f ′(s) = s, λ = λ1, λ2 and ε = 1
4 ,

1
2 , 1. For λ= λ1, the dependence of θ on ε seems to be larger than
O(ε), in line with the O(ε1/3) prediction of the theory. The values
of θ( 1

4) (the maxima) and µ are also reported. For λ = λ2, the
dependence of θ on ε appears to be approximately O(ε), in line
with the fact that f ′ is ineffective at λ2.

Thus, our predicted behavior at λ= λ1 is

θ(s)≈ 0.401ε1/3 sin(2πs), µ≈−0.5ε.

The shape of the actual solution θ(s) in Figure 5 matches the predicted sin(2πs),
and the scaling with ε is clearly larger than O(ε). Furthermore, from the table
inset in the figure, we see that both θ( 1

4) (the heights of the peaks) and µ are close
matches with our predicted formulas.

As for λ = λ2, since f ′ satisfies the ineffectivity condition, we expect θ(s)
to have O(ε) behavior rather than O(ε1/3). Indeed, we see in Figure 5 that this
appears to be the case, as θ(s) appears to be roughly halved when ε is halved.
In this case, our theory does not give a predictive formula for the leading-order
behavior of θ(s) or µ; the system (6) has an infinite number of solutions, and one
would have to proceed to higher-order terms in the standard perturbation expansion
in order to determine which of these solutions is relevant.

In our second example, we take f ′(s) = sin(3πs), a perturbation that is inef-
fective at λ = λ1 (〈 f ′, u1〉 = 0) and is effective at λ = λ2 (〈 f ′, u2〉 = −0.67). In
Figure 6, we show the graphs of θ(s) for λ= λ1, λ2 and ε = 1

4 ,
1
2 , and 1.

Our theoretical prediction for the behavior at λ = λ2 comes from Theorem 2
(since f ′ is effective). Using the formulas in that theorem, we compute λ2 =

80.7629 and C = 0.05557. Thus, our predicted behavior at λ= λ2 is

θ(s)≈−0.05557ε1/3(2 cos(8.987s)− 2+ 8.987 sin(8.987s)), µ≈ 8.976ε1/3.
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Figure 6. Graphs of θ(s) for f ′(s) = sin(3πs), λ = λ1, λ2 and
ε = 1

4 , 1
2 , 1. For λ = λ1, the dependence of θ on ε appears to be

approximately O(ε), in line with the fact that f ′ is ineffective at
λ1. For λ= λ2, the dependence of θ on ε appears to be larger than
O(ε), in line with the O(ε1/3) prediction of the theory. The values
of θ(1

2) and µ are also reported.

The shape of the actual solution θ(s) in Figure 6 matches the predicted functional
form, and the scaling with ε is clearly larger than O(ε). Furthermore, from the
table inset in the figure, we see that both θ( 1

2) (which from our theoretical formula
should equal 0.623ε1/3) and µ are close matches with our predicted formulas.

Computational impact. Apart from an interest in understanding on a theoretical
level how a shape perturbation affects the bifurcation diagram for buckling, we
were also motivated by a pragmatic concern: to what extent ineffective pertur-
bations would interfere with the design of an automated algorithm to compute
bifurcation diagrams for a given intrinsic shape. The sharp corners in parts (b), (c)
and (d) of Figure 4 suggest potential computational challenges, and we explored
that question more concretely with the following numerical study.

We generated intrinsic shapes in three different categories (random, nearly in-
effective, and ineffective) as follows. Let f1(s), f2(s), f3(s), f4(s) be the Gram–
Schmidt orthonormal basis (in L2([0, 1])) generated by the functions {s, s2, s3, s4

}:

f1(s)=
√

3s,

f2(s)= 4
√

5s2
− 3
√

5s,

f3(s)= 15
√

7s3
− 20
√

7s2
+ 6
√

7s,

f4(s)= 168s4
− 315s3

+ 180s2
− 30s.

The intrinsic shape function f ′(s) is defined as a linear combination

c1 f1(s)+ c2 f2(s)+ c3 f3(s)+ c4 f4(s)
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of these basis functions, the coefficients ci being chosen according to different
rules for the three cases. For a random perturbation, we choose four independent
random numbers x1, x2, x3, x4 from a normal distribution with mean 0 and standard
deviation 1, and then define

c j = x j/
√
(x1)2+ (x2)2+ (x3)2+ (x4)2.

For an ineffective perturbation, we take x1, x2, x3 as above, but then choose x4 such
that f ′(s) is ineffective, according to the n = 1 case of (7), and then normalize
to define the c j as in the random case. For a nearly ineffective perturbation, we
generate x1, x2, x3, x4 as in the ineffective case, but then add to x4 a random
number with normal distribution with mean 0 and standard deviation 0.01, before
normalizing to define the c j as in the random case.

Given each intrinsic shape, we performed a parameter continuation computation
in AUTO97 to attempt to compute the first branch of buckled configurations for that
intrinsic shape. We began the computation with λ = 28, zero intrinsic shape, and
a straight rod configuration. Then we turned on the intrinsic shape via parameter
continuation, by multiplying the intrinsic shape function f ′(s) by a parameter µ
that was slowly increased from 0 (no intrinsic shape) to 1 (intrinsic shape deter-
mined by f ′). Then we increased λ to a target maximum value of 50. A successful
computation would follow the bend of the branch of solutions, with significant rod
buckling occurring around λ= 4π2 and continuing until λ reaches 50; see part (a)
of Figure 4. However, in cases where a sharp corner exists near λ= 4π2, as in the
other parts of Figure 4, the computation could jump branches and end at a nearly
straight configuration at λ= 50.

To assess in an automated way the success of this computation, we did a third pa-
rameter continuation step that decreasedµ from 1 back down to 0. Thus, successful
runs end at the λ = 50 point on the first bifurcating branch for the intrinsically-
straight rod (that is, Figure 3), while unsuccessful runs end with the rod completely
extended. Inspection of the value of y(1) at the end of the third parameter contin-
uation step allowed easy distinction of these two cases.

Results of these computations are shown in Table 1. The body of the table
shows the percentage of successful runs out of a total of 300 attempts. To give
a sense of variability of these results, we report in parentheses the corresponding
standard deviation for a binomial random variable with N = 300 and p taken as
the observed percentage of successes: σ =

√
p(1− p)/N . (For results reported as

100% (or 0%), all (or none) of the 300 computations were successful, and thus no
meaningful estimate of σ can be provided).

AUTO97 allows a variety of parameter-stepping algorithms, and Table 1 shows
the results for six different approaches: three with fixed step size and three with
variable step size. The step sizes 1τ are in terms of a pseudoarc-length that is a
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continuation random nearly ineffective ineffective
method shape shape shape

1τ = 0.02 100% 41% (±3%) 0%
1τ = 0.04 100% 16% (±2%) 0%
1τ = 0.1 100% 0.7% (±0.5%) 0%

0.002≤1τ ≤ 0.2 99.7% (±0.3%) 7% (±2%) 5% (±1%)
0.004≤1τ ≤ 0.4 99.7% (±0.3%) 21% (±2%) 5% (±1%)

0.01≤1τ ≤ 1 98.7% (±0.7%) 3% (±0.9%) 0%

Table 1. Percentage of successful computations of the first branch
of buckled configurations for different intrinsic shapes: those that
are ineffective (in the sense of Section 3), those that are nearly
ineffective (small perturbations of exactly ineffective shapes), and
randomly chosen shapes (see text for detailed descriptions of the
three cases). Each row represents one step-size strategy within the
AUTO97 parameter continuation algorithm.

combination of the change in the parameter value λ and the change in the solution
vector of the discretized Euler–Lagrange equations (1); this approach allows the
traversing of “folds” in the bifurcation diagram where1λ=0. Thus, one can infor-
mally think of the change in the parameter λ in each step as being some fraction of
1τ (though what that fraction is will vary according to the change in the solution
vector at that point on the branch). For the variable step-size computations, the step
size 1τ is allowed to varying over two orders of magnitude, with an initial value
in the middle (for example, (1τ)init = 0.02 with 0.002 ≤ 1τ ≤ 0.2 throughout
the computation in row 4 of Table 1). AUTO97 adjusts the step size with each
step according to the convergence properties of the previous step, striving to take
smaller steps when the convergence is more difficult.

Random and ineffective shapes behave radically differently for the range of step
sizes shown here, and even the nearly ineffective shapes show a relatively high rate
of computational failure, suggesting that this phenomenon will be met in practice
for some shapes (despite the fact that the set of precisely ineffective shapes is
measure zero). As would be expected, for fixed step sizes, smaller ones are more
successful, though of course at the cost of computation time. (Even for ineffective
perturbations, a sufficiently small step size will yield successful branch tracking,
though 1τ needs to be significantly smaller than 0.02). For variable step sizes,
the data suggests a more complicated situation, including some behavior in the
nearly ineffective column that is not monotonic with step-size bounds. This might
be explained by the fact that the automated adjustment in step size presumably
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increases the step size consistently in the early part of the computation when the
rod is barely changing, and this increased step size might increase the probability of
jumping over a corner in the branch (though the likelihood of this jump might also
depend sensitively on the initial point chosen, since that could determine whether
the jump happens to straddle the corner). Further study would be needed to fully
understand this behavior, but it seems clear at least that the ineffectivity condition
derived here is a useful flag for intrinsic shapes that call for a strong decrease in
the step size.
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A tiling approach to Fibonacci product identities
Jacob Artz and Michael Rowell

(Communicated by Arthur T. Benjamin)

In 1998 Filipponi and Hart introduced a number of Fibonacci product identities.
This paper provides a combinatorial proof for such identities via tilings. The
methods used in the proof are then further used to produce some new Zeckendorf
representations and a known Fibonacci identity.

1. Introduction

The discovery of the Fibonacci sequence is credited to Leonardo of Pisa (c. 1170–
1250), posthumously nicknamed Fibonacci (“son of Bonaccio”). He is said to have
come upon it while considering the breeding of rabbits [Russel 2008]. We define
the Fibonacci sequence recursively.

Definition 1.1. Let f0 = 1, f1 = 1. For n ≥ 2, set fn = fn−1+ fn−2. We say that
fn is the n-th Fibonacci number.

The first few terms of the Fibonacci sequence are 1, 1, 2, 3, 5, 8, 13, 21, . . . .
Fibonacci numbers can also be explicitly defined, although the statement of each
term is somewhat less elegant than its recursive counterpart:

Fn =
1
√

5

[(
1+
√

5
2

)n

−

(
1−
√

5
2

)n]
.

For the purpose of this paper, we introduce an interpretation of the Fibonacci se-
quence which allows us to combinatorially prove Fibonacci identities. We will in-
terpret the n-th Fibonacci number as the number of tilings of a 1×n board using 1×
1 squares and 1×2 dominoes. Thus, ( f0, f1, f2, f3, f4, . . . )= (1, 1, 2, 3, 5, . . . ).
(For more on this interpretation, see [Benjamin and Quinn 2003].)

Zeckendorf’s Theorem says that any positive integer n can be represented as a
sum of distinct, nonconsecutive Fibonacci numbers, excluding f0. This was first
published in [Lekkerkerker 1952], though it had been proved by Zeckendorf many
years before. Finding the Zeckendorf representation of a particular number n is in

MSC2000: 05A19, 11B39.
Keywords: Fibonacci products, tiling.
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fact easy: starting from n, successively subtract the largest Fibonacci number that
will fit. (With some thinking this also justifies the theorem: basically, repeats are
impossible because fn≤2 fn−1, so what’s less at each stage is strictly less than what
was just subtracted; and consecutive Fibonacci numbers don’t occur, because if fn

and fn+1 occurred one would instead have used fn+2. See also [Brown 1964].)
It is an interesting problem to find explicitly the Zeckendorf representation of

various numbers. For example, the following identities are found in [Filipponi and
Hart 1998]:

Theorem 1.2. For k ≥ 0 and n ≥ 2k,

f2k+1 fn = fn+2k + fn+2k−4+ · · ·+ fn−2k+4+ fn−2k =
k∑

i=0
fn+2k−4i .

Theorem 1.3. For k ≥ 1 and n ≥ 2k,

f2k fn = fn+2k−1+ fn+2k−5+ · · ·+ fn−2k+3+ fn−2k =
k−1∑
i=0

fn+2k−1−4i + fn−2k .

Wood [2007] presents combinatorial proofs for the expansion of f4 fn and f5 fn ,
but no unifying counting argument is shown. Gerdemann [2009] provides a com-
binatorial proof of the existence of Zeckendorf representations but, due to the
algorithmic nature of the proof, is unable to produce closed form identities like
the Fibonacci products provided above.

In the sequel we give examples of how tilings of one-row boards can help prove
Fibonacci identities, starting with simple examples in Section 2 and continuing with
provide combinatorial proofs for Theorems 1.2 and 1.3 in Section 3. In Section 4,
we use the methods from Section 3 to find new Zeckendorf representations and a
known Fibonacci identity. Directions for future research are given in Section 5.

2. Basic methods of tiling

A cell is a space of length one appearing on a 1× n board. While the meaning of
this term may seem obvious, we wish to eradicate any confusion with the term tile,
defined as a one- or two-cell piece used to create a tiling of the board.

We now illustrate two basic methods of showing Fibonacci identities using
tilings; see Benjamin and Quinn [2003].

Considering the location of a fault. A fault in a tiling is the coordinate of any
boundary between tiles. For example, in this tiling of length 5 with 3 tiles, the
faults are at positions 1 and 3:
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Theorem 2.1. For n, m ≥ 1,

fm+n = fm fn + fm−1 fn−1.

Proof. The left side of our equation, fm+n , is the number of ways of tiling a board
of length m+ n.

To interpret the right side, we consider the cell at position m of a board of length
m+n. If the board has a fault at m, then there are fm ways to tile the first m tiles,
and fn ways to tile the remaining n tiles. Therefore, there are fm fn ways to tile
the entire board. If the board does not have a fault at m, then there must be a
domino covering cells m and m + 1. Using similar reasoning as in our previous
case, there are fm−1 fn−1 ways to tile the entire board. Therefore, there are a total
of fm fn + fm−1 fn−1 ways to tile a board of length m+ n. �

Finding correspondences. In the second method, we show identities by interpret-
ing a side as multiple copies of board. We again give illustrate the method by
giving the proof of another basic identity.

Theorem 2.2. For n ≥ 2,
2 fn = fn+1+ fn−2.

Proof. We will show that two copies of each tiling of length n can be mapped
to the set counted by tilings of length n + 1 and those of length n − 2. Begin by
examining our first copies of tilings of length n. We append a square to each of
our length-n tilings to form the set of all boards length of n+1 that end in a square
tile. We now consider our second copies of our length-n tiling. If the last tile is a
square, remove the last square and add a domino, resulting in all n+ 1 tilings that
end in a domino. If the last tile is a domino, then remove the domino to form all
tilings of length n− 2. �

3. Fibonacci products and tiling

Before tackling Theorems 1.2 and 1.3, we begin with proving a simple, yet very
useful identity,

Theorem 3.1. For k, n ≥ 2,

fk fn = fn+k−1+ fk−2 fn−2.

Proof. We begin by noting that the left side counts the number of tilings of length
n+ k that have a fault at n.

We then note that fn−2 fk−2 counts the number of tilings of length n+k−4 that
have a fault at n−2. Inserting two dominoes between cells n−2 and n−1 yields
all tilings of length n+ k with a fault at n and with dominoes on both sides of the
fault.
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We now inspect fn+k−1, all tilings of a board length n + k − 1. For all tilings
that do not have a fault at n (implying there is a fault at n− 1), we insert a square
between cells n− 1 and n, creating all tilings of length n+ k with a fault at n and
with a square to the left of the fault and a domino to the right. For all tilings that do
have a fault at n, we insert a square between cells n and n+ 1, creating all tilings
of length n+ k with a fault at n and a square to the right of the fault.

The set of all tilings of length n+k with a fault at n is exactly equal to the three
cases defined above. �

We can now see that inductively applying this theorem to the term fk fn will
allow us to combinatorially prove Theorems 1.2 and 1.3. For example (n ≥ 6),

f7 fn = fn+6+ f5 fn−2 = fn+6+ fn+2+ f3 fn−4

= fn+6+ fn+2+ fn−2+ f1 fn−6 = fn+6+ fn+2+ fn−2+ fn−6.

Proof of Theorem 1.2. The theorem is trivial for k = 0. Assuming the theorem is
true for k ≤ m, we see that

f2(m+1)+1 fn = fn+2m+2+ f2m+1 fn−2 by Theorem 3.1

= fn+2m+2+
m∑

i=0
fn+2m−2−4i by the inductive hypothesis

=

m+1∑
i=0

fn+2m+2−4i . �

Proof of Theorem 1.3. In the case k = 1, our theorem reduces to Theorem 2.2.
Assuming that the theorem is true for k ≤ m, we see that

f2(m+1) fn = fn+2m+1+ f2m fn−2 by Theorem 3.1

= fn+2m+1+
m−1∑
i=0

fn+2m+1−4i + fn−2mby inductive hypothesis

=

m∑
i=0

fn+2m+1−4i + fn−2m . �

We now have a unifying combinatorial proof for the following identities:

f2 fn = fn+1+ fn−2,

f3 fn = fn+2+ fn−2,

f4 fn = fn+3+ fn−1+ fn−4,

f5 fn = fn+4+ fn + fn−4,

f6 fn = fn+5+ fn+1+ fn−3+ fn−6,

f7 fn = fn+6+ fn+2+ fn−2+ fn−6,

· · ·
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We note that the proofs of Theorems 1.2 and 1.3 need not rely on induction. In
Theorem 1.2, the term fn+2k−4i can be interpreted as all tilings of length n+2k+1
that have a fault at n and whose nearest square tile to the fault is exactly 2i cells
away. Because 2k+1 is odd, we are guaranteed to have a square tile within at most
2k of the fault, thus i ranges from 0 to k. Theorem 1.3 is slightly different in that
we are not guaranteed to have a square tile within 2k − 2 of our fault. Thus, we
must add the term fn−2k to account for all tilings of length n + 2k with a square
no closer than 2k cells from the fault at n.

4. Further observations

Using Theorem 3.1, we can determine other closed form Zeckendorf representa-
tions and a known Fibonacci identity.

Lemma 4.1. For k ≥ 1 and n ≥ 2k,

( f2k + f2k−2) fn = fn+2k + fn−2k .

Proof. In the case k = 1, our lemma reduces to the case k = 1 in Theorem 1.2.
Assuming our lemma is true for k ≤ m and applying Theorem 3.1 we see that

( f2m+2+ f2m) fn = fn+2m+1+ fn+2m−1+ ( f2m + f2m−2) fn−2

= fn+2m+1+ fn+2m−1+ fn+2m−2+ fn−2m−2

= fn+2m+2+ fn−2m−2,

where our second to last line follows from the inductive hypothesis, and the last
line follows from the recursive definition of the Fibonacci sequence. �

As with our two main theorems, we can prove Lemma 4.1 without induction.
Using Theorem 1.3 we see that

( f2k + f2k−2) fn =
2k−2∑
i=0

f2k−1+n−2i + fn−2k+2+ fn−2k .

It is left to show that

fn+2k =
2k−2∑
i=0

f2k−1+n−2i + fn−2k+2.

This can be done by considering the position of the last square. Note that f2k−1+n−2i

counts the number of tilings of length n+ 2k with the last square in the (n+ 2k+
1−2i) cell followed by dominoes. Our sum accounts for all tilings of length n+2k
with the last square appearing somewhere past the (n− 2k + 2) cell. We then see
that fn−2k+2 counts the remaining tilings of length n+2k, namely those which end
in k− 1 dominoes.
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Lemma 4.2. For k ≥ 1 and n > 2k,

( f2k−1+ f2k+1) fn = fn+2k+1− fn−2k−1.

Proof. In the case k=1, we repeatedly use our recursive definition of the Fibonacci
sequence,

fn+3−4 fn = ( fn+2+ fn+1)−4 fn = ( fn+1+ fn)+( fn+ fn−1)−4 fn

=
(
( fn+ fn−1)+ fn

)
+( fn+ fn−1)−4 fn = − fn+2 fn−1 = fn−3,

where our last line follows from Theorem 2.2. Assuming our lemma is true for
k ≤ m and applying Theorem 3.1 we see that

( f2m+1+ f2m+3) fn = f2m+n + f2m−1 fn−2+ f2m+2+n + f2m+1 fn−2

= fn+2m + fn+2m+2+ fn+2m−1− fn−2m−3

= fn+2m+3− fn−2m−3,

where our second to last line follows from using our inductive hypothesis and our
last line follows from the recursive definition of the Fibonacci sequence. �

Using Theorem 1.2 and Lemma 4.1 we can now give the Zeckendorf represen-
tation of the following family of identities:

3 fn = ( f0+ f2) fn = fn+2+ fn−2,

4 fn = ( f1+ f3) fn = fn+2+ fn + fn−2,

7 fn = ( f2+ f4) fn = fn+4+ fn−4,

11 fn = ( f3+ f5) fn = fn+4+ fn+2+ fn + fn−2+ fn−4,

18 fn = ( f4+ f6) fn = fn+6+ fn−6,

· · ·

Combining Lemmas 4.1 and 4.2 we obtain our Fibonacci identity, which appears
in a more general form as Identity 48 in [Benjamin and Quinn 2003].

Theorem 4.3. For k ≥ 1 and n > k,

( fk+1+ fk−1) fn = fn+k+1− (−1)k fn−k−1. (4-1)

5. Future work

As previously mentioned, Theorems 1.2 and 1.3 first appeared in [Filipponi and
Hart 1998] with some other Fibonacci products. The authors also presented Zeck-
endorf representations for 2 fk fn, 3 fk fn, 4 fk fn and 5 fk fn . It is not difficult to
see that these formulas can also be obtained using our counting method presented
above. One only needs to determine the appropriate recurrence relation.
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Also, while the proofs in Section 4 relied on the use of Theorem 3.1, it is not
entirely clear how to construct a counting proof for Theorem 4.3. It would be
interesting to see a combinatorial proof of the identity.
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Frame theory for binary vector spaces
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Matthew Tobin and Mark Tomforde

(Communicated by David Larson)

We develop the theory of frames and Parseval frames for finite-dimensional vec-
tor spaces over the binary numbers. This includes characterizations which are
similar to frames and Parseval frames for real or complex Hilbert spaces, and the
discussion of conceptual differences caused by the lack of a proper inner product
on binary vector spaces. We also define switching equivalence for binary frames,
and list all equivalence classes of binary Parseval frames in lowest dimensions,
excluding cases of trivial redundancy.

1. Introduction

There are many conceptual similarities between frames and error-correcting linear
codes. Frame theory is concerned with stable linear embeddings of Hilbert spaces
obtained from mapping a vector to its frame coefficients [Duffin and Schaeffer
1952; Christensen 2003; Han et al. 2007]. The linear dependencies incorporated
in the frame coefficients of a vector help recover from errors such as noise, quan-
tization and data loss [Goyal et al. 1998; 2001; Rath and Guillemot 2003; 2004;
Püschel and Kovačević 2006], just as linear codes help recover from symbol de-
coding errors and erasures [MacWilliams and Sloane 1977]. Frame design for
specific purposes has been related to optimization problems of a geometric nature
[Casazza and Kovačević 2003; Strohmer and Heath 2003; Holmes and Paulsen
2004] or even a discrete one [Bodmann and Paulsen 2005; Xia et al. 2005; Kalra
2006], including combinatorial considerations that are more commonly associated
with error-correcting codes. On the other hand, one may ask whether concepts
from frame theory yield insights in the binary setting. This is the motivation of the
present paper.
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We translate many of the essential results on frames for finite-dimensional real
or complex Hilbert spaces to analogous statements for vector spaces over the binary
numbers. In the first part, we show that in the binary case, the spanning property
of a family of vectors is equivalent to having a reconstruction identity with a dual
family. This means, both properties can be used interchangeably as a definition
of frames, as on finite dimensional real or complex Hilbert spaces. On the other
hand, we demonstrate that an attempt to define binary frames similarly to the real or
complex case via norm inequalities fails in binary vector spaces, because they lack
an inner product and a polarization identity. In the main part of this paper, we focus
on Parseval frames, which have a particularly simple reconstruction identity. We
characterize binary Parseval frames in terms of their frame operator and develop a
notion of switching equivalence for binary frames, similar to the concept for real
or complex frames [Goyal et al. 2001; Holmes and Paulsen 2004; Bodmann and
Paulsen 2005]. Moreover, we introduce the notion of trivial redundancy, caused
by repeated vectors or the inclusion of the zero vector in the frame. Ignoring cases
of trivial redundancy and choosing representatives from each switching equiva-
lence class simplifies the enumeration of binary Parseval frames. By an exhaustive
search, we have found that if k ∈{4, 5, . . . , 11}, then all frames that are not trivially
redundant in Z4

2 with k vectors belong to one switching equivalence class. Further
simplifications for the search of all binary Parseval frames are obtained from a
combinatorial consideration, which might be useful for a future effort to catalogue
binary Parseval frames in larger dimensions.

The remainder of this paper is organized as follows. In Section 2, we define
frames for finite-dimensional binary vector spaces. Section 3 specializes the dis-
cussion to Parseval frames. Finally, in Section 4, we define switching equivalence
for binary frames and give a catalogue of representatives from each equivalence
class of Parseval frames in lowest dimensions, excluding trivially redundant ones.

2. Preliminaries

In this section we first revisit the essentials of frames over the fields R or C, the real
or complex numbers. We then proceed to develop the concept of frames over the
field Z2, that is, the field with two elements {0, 1}, where 0 is the neutral element
with respect to addition, and 1 is the neutral element with respect to multiplication.
The main insight of this section is that while there are equivalent characterizations
of certain types of frames when the ground field is R or C, this is not true over Z2,
because the polarization identity is no longer available due to the lack of an inner
product.

If H is a finite-dimensional Hilbert space over R or C with inner product 〈 · , · 〉,
then a family of vectors F := { f1, f2, . . . , fk} in H is called a frame if there exist
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real numbers A and B such that 0< A ≤ B <∞ and

A‖x‖2 ≤
k∑

j=1
|〈x, f j 〉|

2
≤ B‖x‖2 for all x ∈H. (2-1)

The inequalities displayed in (2-1) are known as the frame condition, and it can
be shown that when H is finite dimensional, then the set F satisfies the frame
condition if and only if span F = H [Han et al. 2007, Proposition 3.18]. In this
case, there exist vectors {g1, g2, . . . , gk} which provide the reconstruction identity

x =
k∑

j=1
〈x, f j 〉g j for all x ∈H .

While the family {g j }
k
j=1 may not be unique, there is a canonical choice. If we

define the so-called frame operator S on H by Sx =
k∑

j=1
〈x, f j 〉 f j , then setting

g j = S−1 f j for j ∈ {1, 2, . . . , k} yields the reconstruction identity [Christensen
2003]. The family {g j }

k
j=1 is also called the canonical dual frame.

A frame F={ f1, . . . , fk} is called a Parseval frame (or sometimes a normalized
tight frame) if we can choose A = B = 1 in the frame condition, so that

k∑
j=1
|〈x, f j 〉|

2
= ‖x‖2 for all x ∈H. (2-2)

Using the polarization identity, it can be shown (see [Han et al. 2007, Proposi-
tion 3.11]) that F is a Parseval frame if and only if

x =
k∑

j=1
〈x, f j 〉 f j for all x ∈H. (2-3)

The simple form of the reconstruction formula for Parseval frames has many prac-
tical uses in engineering and computer science [Goyal et al. 1998; 2001; Kovačević
and Chebira 2008].

We now turn to frames over the binary numbers.
The first two goals in this paper are to develop the notion of frames and of

Parseval frames for finite-dimensional vector spaces over the field Z2. Any such
vector space has the form Zn

2 = Z2⊕ · · ·⊕Z2 for some n ∈ N.

Definition 2.1. A family of vectors F={ f1, f2, . . . , fk} in Zn
2 is a frame if it spans

Zn
2 .

We have chosen this form of the definition because the field Z2 has no notion of
positive elements, so that it is impossible to find a properly defined inner product,
let alone a norm on Zn

2 , which would be needed to formulate a direct analogue of
the frame condition (2-1).
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Nevertheless, we want to show that an analogue of the reconstruction identity
can be deduced with the help of a Z2-valued “dot product” in place of an inner
product.

Definition 2.2. We define a bilinear map ( · , · ) : Zn
2 × Zn

2 → Z2, called the dot
product on Zn

2 , by 
a1
...

an

 ,
b1
...

bn


 := n∑

i=1

ai bi .

We see that the dot product ( · , · ) is symmetric and Z2-linear in each component,
but it is degenerate: It is possible to have x ∈ Zn

2 with (x, x) = 0 but x 6= 0.
Furthermore, because the dot product is degenerate, it does not provide a norm on
Zn

2 . Nonetheless, we will use the dot product as an analogue of the inner products
on Rn and Cn , and for expressions in Rn or Cn involving 〈x, y〉 or ‖x‖2, we shall
consider analogous expressions in Zn

2 involving (x, y) or (x, x), respectively.
To establish the equivalence between the spanning property and the reconstruc-

tion identity for frames, we unfortunately cannot simply use the same strategy as
in the real or complex case. If we take the dot product instead of an inner product
to define the frame operator, then the spanning property of the frame does not
guarantee that the frame operator is invertible. To see this, we note that the family
{1, 1} is spanning for Z2, but the analogue of the frame operator maps every x ∈Z2

to x + x = 0. A similar family can be obtained for any Zn
2 , n ≥ 1, by repeating

vectors of an arbitrary spanning set.
To build an alternative strategy that relates the spanning property with the ex-

istence of a reconstruction identity, we first recall that the dot product mediates a
canonical mapping between vectors and linear functionals.

Lemma 2.3. If φ : Zn
2→ Z2 is a linear functional then there exists a unique z ∈ Zn

2
such that φ(x)= (x, z) for all x ∈ Zn

2 .

Proof. Let φ be a linear functional. Let {e1,. . . ,en} be the canonical basis for
Zn

2 , and let z = φ(e1)e1 + · · · + φ(en)en . We now observe that if x ∈ Zn
2 , with

x =
∑n

i=1 ai ei for ai ∈ Z2, then φ(x)=
∑n

i=1 aiφ(ei )= (x, z) .
To verify the uniqueness, assume there is z′ such that φ(x) = (x, z′) = (x, z).

Choosing x among the canonical basis vectors gives φ(ei )= (ei , z′)= (ei , z) and
thus z and z′ are identical. �

Theorem 2.4. Given a family F = { f j }
k
j=1 in Zn

2 , then F is a frame if and only if
there exist vectors {g j }

k
j=1 such that for all y ∈ Zn

2

y =
k∑

j=1

(y, g j ) f j . (2-4)
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Proof. We note that if (2-4) is true, then necessarily { f j }
k
j=1 is spanning.

Conversely, assume that { f j }
k
j=1 is a frame for Zn

2 . In a first step, we prove
that there are linear functionals {γ1, γ2, . . . , γk} such that y =

∑k
j=1 γ j (y) f j for

all y ∈ Zn
2 . For any family of linear functionals γ1, γ2, . . . , γk , we note that the

expression
∑k

j=1 γ j (y) f j is linear in y, so it is enough to show that there exist
linear functionals giving

wi =
k∑

j=1
γ j (wi ) f j for all vectors in some basis w1, . . . , wn of Zn

2.

To establish this, we choose a subset of { f1, . . . , fk} which is spanning and linearly
independent, that is, a basis. Without loss of generality, assume that this set is
{ f1,. . . , fn}. Choosing the dual basis {γ1, . . . , γn} to { f1, . . . , fn}, characterized
by

γ j ( fi )= δi j , for all i, j ∈ {1, 2, . . . n},

we obtain
n∑

j=1
γ j ( fi ) f j = fi .

Thus if we enlarge the set {γ j }
n
j=1 by setting γ j = 0 if j > n, then

fi =
k∑

j=1
γ j ( fi ) f j

and by linearity

y =
k∑

j=1
γ j (y) f j for any y ∈ Zn

2 .

In the final step of the proof, we apply the preceding lemma which yields for
each γ j a corresponding vector g j satisfying γ j (y)= (y, g j ) for all y ∈ Zn

2 . �

3. Parseval frames for Zn
2

In this section we present the definition of Parseval frames for Zn
2 and illustrate the

conceptual differences between such frames in the real or complex case and in the
binary case.

Definition 3.1. A family of vectors F= { f1, . . . , fk} in Zn
2 is a Parseval frame if

x =
k∑

j=1

(x, f j ) f j for all x ∈ Zn
2 . (3-1)

Observe that a binary Parseval frame necessarily spans Zn
2 , and moreover if F is a

Parseval frame, we must have k ≥ n.
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It is natural to ask if, in analogy with the real and complex cases, being a Parseval
frame in Zn

2 is equivalent to having a Parseval identity as in (2-2). It turns out that
this is not the case.

Proposition 3.2. If F= { f1, . . . , fk} is a Parseval frame for Zn
2 , then

k∑
j=1

(x, f j )
2
= (x, x) for all x ∈ Zn

2 . (3-2)

However, in general, the converse does not hold.

Proof. If F is a Parseval frame, then using the Z2-linearity of the first component
of the dot product, for any x ∈ Zn

2 we have

(x, x)=
( k∑

j=1

(x, f j ) f j , x
)
=

k∑
j=1

(x, f j )( f j , x)=
k∑

j=1

(x, f j )
2.

To see that the converse does not hold in general, consider
(

1
1

)
∈ Z2

2, then for
any x =

( a1
a2

)
∈ Z2

2 we have(
x,
(

1
1

))
= a1+ a2 = a2

1 + a2
2 = (x, x).

Hence F=
{(

1
1

)}
satisfies (3-2). However, F contains one element, so F does not

span Z2
2, and F is not a Parseval frame. �

Remark 3.3. More generally, we can produce counterexamples for any n ≥ 2,
meaning sets which give the Parseval property without spanning Zn

2 . First we con-
sider even n. Let { f1, . . . , fk} be the family of all vectors which contain exactly
two 1’s. Thus, there are k =

( n
2

)
such vectors. If the first vector is chosen as

f1 = (1, 1, 0, . . . , 0)t and x = (a1, a2, . . . , an)
t , then over Z2,

(x, f1)
2
= (a1+ a2)

2
= a2

1 + a2
2 .

Evaluating other dot products similarly gives

k∑
j=1

(x, f j )
2
=

n∑
i=1

a2
i

because each a2
i appears in n − 1 terms in the sum, and n − 1 mod 2 = 1 by the

assumption that n is even.
However, the vectors { f j }

k
j=1 are not spanning for Zn

2 , because they contain an
even number of 1’s and so does any linear combination of them.

If n is odd, then we split Zn
2 = Z2 ⊕ Zn−1

2 and construct the above family
{ f1, f2, . . . , fk} for the second summand. Now this family can be enlarged by
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the first canonical basis vector e1 to {e1, f1, f2, . . . , fk} which has the Parseval
property but is not spanning, because { f1, f2, . . . , fk} does not span Zn−1

2 .

4. Towards a catalogue of binary Parseval frames

In principle, all Parseval frames for Zn
2 could be catalogued individually, but even

for relatively small n this is already an extensive list. In order to obtain a more
efficient way of enumerating Parseval frames, we use an equivalence relation which
has been called switching equivalence for real or complex frames [Goyal et al.
2001; Holmes and Paulsen 2004; Bodmann and Paulsen 2005]. It is most easily
formulated in terms of the Grammian of a Parseval frame, as defined below. The
catalogue of frames can then be reduced to representatives of each equivalence
class. To prepare the definition of the equivalence relation, we discuss certain
matrices related to frames.

We write A ∈ Mm,n(Z2) when A an m × n matrix with entries in Z2. We often
view A as a linear map from Zm

2 to Zn
2 by left multiplication. In particular, A ∈ Mn

denotes an n×n matrix which is associated with a map from Zn
2 to itself. We write

Ai, j for the (i, j)th entry of A, and we let A∗ denote the transpose of A; that is,
A∗ ∈ Mn,m(Z2) with A∗i, j := A j,i . By the rules of matrix multiplication, we have
(Ax, y)= (x, A∗y) for all A ∈ Mn(Z2).

Definition 4.1. If U ∈ Mn(Z2), then we say U is a unitary if U is invertible and
U−1
=U∗.

Lemma 4.2. If x ∈ Zn
2 and (x, y)= 0 for all y ∈ Zn

2 , then x = 0.

Proof. Write

x =

a1
...

an

 .
If {e1, . . . , en} is the standard basis for Zn

2 , then for all 1 ≤ i ≤ n we have ai =

(x, ei )= 0. Thus x = 0. �

Proposition 4.3. Let U ∈Mn(Z2), then U is a unitary if and only if for all x, y∈Zn
2

we have (U x,U y)= (x, y).

Proof. If U is a unitary, then U∗ =U−1 and for all x, y ∈ Zn
2 we have

(U x,U y)= (x,U∗U y)= (x, I y)= (x, y).

Conversely, if (U x,U y)= (x, y) for all x, y ∈ Zn
2 , then for a given x ∈ Zn

2 we see
that (U∗U x, y) = (U x,U y) = (x, y) for all y ∈ Zn

2 , and Lemma 4.2 implies that
U∗U x = x . Since x was arbitrary, this shows that U∗U = I , and because U is
square, we have that U is invertible and U−1

=U∗. �
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In contrast the case of Hilbert spaces over F=R or C, the condition 〈U x,U x〉=
〈x, x〉 for all x ∈ Fn is not equivalent to unitarity when the field F is Z2.

We have the following counterexamples for n ≥ 2.

Proposition 4.4. For any n≥2, there exist A∈Mn(Z2) such that (Ax, Ax)= (x, x)
for all x ∈ Zn

2 but A is not invertible, and thus not unitary.

Proof. We define the matrix A by

Ai, j =

{
1 if i = j = 1 or j − i = 1 ,
0 else.

This means, the last row of A contains only zeros and thus A does not have full
rank and is not invertible.

However, given x = (a1, a2, . . . , an)
t we have

Ax =



a1+ a2

a3

a4
...

an

0


,

and thus

(Ax, Ax)= (a1+ a2)
2
+ a2

3 + · · ·+ a2
n =

n∑
i=1

a2
i = (x, x). �

Definition 4.5. Let F = { f1, . . . , fk} ⊆ Zn
2 . The analysis operator for F is the

k× n matrix containing the frame vectors as rows,

2F =

← f1 →

...

← fk →

 .
The synthesis operator for F is the n× k matrix

2∗F =

↑ ↑

f1 · · · fk

↓ ↓

 ,
with the elements of F as columns. The frame operator for F is the n× n matrix

SF :=2
∗

F2F,

and the Grammian operator for F is the k× k matrix

GF :=2F2
∗

F.
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Note that (GF)i, j = ( f j , fi ) for all 1≤ i, j ≤ k. When there is no ambiguity in the
choice of F, we shall omit the F subscript on these matrices and simply write 2,
2∗, S, and G.

Theorem 4.6. Let F = { f1, . . . , fk} ⊆ Zn
2 , then F is a Parseval frame if and only

if SF is equal to the identity matrix.

Proof. Let {e1, . . . , en} be the standard basis for Zk
2. Observe that for any x ∈ Zn

2
we have 2Fx =

∑k
i=1(x, fi )ei . Also, for any 1≤ i ≤ n we have 2∗Fei = fi . Thus

we have

SFx =2∗F2Fx =2∗F

( k∑
i=1

(x, fi )ei

)
=

k∑
i=1

(x, fi )2
∗

Fei =

k∑
i=1

(x, fi ) fi .

It follows that
∑k

i=1(x, fi ) fi = x for all x ∈ Zn
2 if and only if SFx = x for all

x ∈ Zn
2 . Thus F is a Parseval frame if and only if SF is the identity matrix. �

Definition 4.7. Given two families F = { f1, . . . , fk} and G = {g1, . . . , gk} in Zn
2 ,

then we say F is unitarily equivalent to G if there exists a unitary U ∈Mn(Z2) such
that U fi = gi for all 1≤ i ≤ k.

It is easy to show that unitary equivalence is an equivalence relation.

Proposition 4.8. Let F={ f1, . . . , fk}⊆Zn
2 and G={g1, . . . , gk}⊆Zn

2 be Parseval
frames, then F is unitarily equivalent to G if and only if GF = GG.

Proof. Since F and G are Parseval frames, it follows from Theorem 4.6 that SF

and SG are the identity matrices. Suppose that GF =GG. Define U to be the n×n
matrix U :=2∗G2F, then

U∗U = (2∗G2F)
∗2∗G2F =2

∗

F2G2
∗

G2F =2
∗

FGG2F

=2∗FGF2F =2
∗

F2F2
∗

F2F = SFSF = I.

Since U is square, it follows that U is invertible and U−1
= U∗, so that U is a

unitary. Furthermore,

U2∗F =2
∗

G2F2
∗

F =2
∗

GGF =2GGG =2
∗

G2G2
∗

G = SG2
∗

G =2
∗

G.

Thus U times the i th column of 2∗F is equal to the i th column of 2∗G. Thus for all
1≤ i ≤ k we have U fi = gi , so that F and G are unitarily equivalent.

Conversely, if F and G are unitarily equivalent, then there exists a unitary U ∈
Mn(Z2) such that U fi = gi for all 1≤ i ≤ k. Thus Proposition 4.3 implies that

(GF)i, j = ( f j , fi )= (U f j ,U fi )= (g j , gi )= (GG)i, j .

Hence GF = GG. �
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Example 4.9. We present two examples of unitary equivalence. First set

F=

{( 0
1
0
0
1

)
,

( 0
1
0
1
1

)
,

( 0
1
1
0
1

)
,

( 1
0
1
1
1

)
,

( 1
1
0
0
1

)
,

( 1
1
1
1
0

)}
,

H=

{( 0
1
0
1
0

)
,

( 0
1
0
1
1

)
,

( 0
1
1
1
0

)
,

( 1
0
1
1
1

)
,

( 1
1
0
1
0

)
,

( 1
1
1
0
1

)}
.

Computing the Grammian for both F and H we find

GF = GH =



0 0 0 1 0 1
0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 0 0 1
0 0 0 0 1 0
1 0 0 1 0 0


.

First notice the structure of 2∗ created by F and H:

2∗F =


0 0 0 1 1 1
1 1 1 0 1 1
0 0 1 1 0 1
0 1 0 1 0 1
1 1 1 1 1 0

 , 2∗H =


0 0 0 1 1 1
1 1 1 0 1 1
0 0 1 1 0 1
1 1 1 1 1 0
0 1 0 1 0 1

 .

The fourth and fifth rows have swapped places, so naturally one would expect the
unitary operator to reflect that. In fact, the proof gives a direct way to compute U ,
namely if fi =Uhi then U =2∗F2H. Computing U confirms this:

2∗F2H =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 1 0

 .

Next, take for F and H two Parseval frames found in Z5
2 with six elements:

F=

{( 0
0
0
1
1

)
,

( 0
0
1
0
1

)
,

( 0
1
0
0
1

)
,

( 1
0
0
0
1

)
,

( 1
1
1
1
0

)
,

( 1
1
1
1
1

)}
,

H=

{( 0
1
1
1
1

)
,

( 1
0
0
0
1

)
,

( 1
0
0
1
0

)
,

( 1
0
1
0
0

)
,

( 1
1
0
0
0

)
,

( 1
1
1
1
1

)}
.
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Here, while not quite as obvious, differences in the two Parseval frames can be
expressed in terms of row manipulations of the synthesis operator, which amount
to left multiplication with a unitary U , 2∗F =U2∗H.

We introduce an additional way to identify frames which coarsens the equiva-
lence relation.

Definition 4.10. Two families F={ f1, f2, . . . , fk} and G={g1, g2, . . . , gk} in Zn

are called switching equivalent if there is a unitary U and a permutation π of the
set {1, 2, . . . , k} such that

f j =Ugπ( j) for all j ∈ {1, 2, . . . } .

Theorem 4.11. Two Parseval frames F and H are switching equivalent if and only
if there exists a permutation π of the index set such that (GF)i, j = (GH)π(i),π( j).

Proof. The condition on the Grammians amounts to the identity

GF = MGH M∗

for a permutation matrix with entries

Mi, j =

{
1 if π(i)= j,
0 else .

Being identical up to conjugation by permutation matrices defines an equivalence
relation for Grammians, and thus for frames, which is coarser than unitary equiv-
alence.

Moreover, with a similar proof as in the preceding proposition, we see that the
two Grammians are related by conjugation with a permutation matrix M if and
only if there exists a unitary U such that

2∗F =U2∗H M∗ . �

Apart from switching equivalence, there are other simple ways in which two
Parseval frames can be related to each other. For example, adding zero vectors to
a Parseval frame gives another Parseval frame. Moreover, adding pairs of arbitrary
vectors to a Parseval frame preserves the Parseval property. In both cases, we have
artificially increased the redundancy by enlarging the frame. In our catalogue, we
discard Parseval frames with such a trivial source of redundancy.

Definition 4.12. A Parseval frame F = { f1, f2, . . . , fk} for Zn
2 is called trivially

redundant if there is j ∈ {1, 2, . . . k} with f j = 0, or if there are two indices i 6= j
with fi = f j .

After repeated vectors are removed, Parseval frames can be interpreted as sets
of vectors. We consider the set-theoretic complement of such a Parseval frame.
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Theorem 4.13. Let n ≥ 3. Let F = { fi }
k
i=1 be a family without repeated vectors

in Zn
2 and G = Zn

2 \F. If F is a Parseval frame for Zn
2 , then G is also a Parseval

frame.

Proof. Let X =
{

x ∈ Zn
2

}
, then we count 2n

− 1 nonzero elements in X. Thinking
of X as a sequence { fi }

m
i=0 where m = 2n

−1 and the entries of fi are given by the
binary expansion of i , let 2∗X be the matrix with fi as the i th column.

By simple counting, there are 2n−1 elements with 1 in the i th position. This
means, in each row of 2∗X the number 1 appears exactly 2n−1 times. Furthermore
there are 2n−2 elements with 1 in the i th and j th position, similarly for any fixed
choice of 1 or 0 in the i th and j th position. If n ≥ 3, then 2n−2 is even and
consequently, the dot product of any row of 2∗X with itself or any other row is
equal to 0, i.e. 2∗X2X = 0.

If F is a Parseval frame, then 2∗F2F = I which implies via the matrix product
that there is an odd number of elements in F with 1 in the i th position, and that
among the elements with a 1 in the i th position there is an even number of elements
with a 1 in the j th position.

As remarked above, in the entire space there is an even number of elements
with 1 in the i th position and an even number of elements with 1 in the i th and j th
position. Thus there is an odd number of elements in the complement G = X \F

with 1 in the i th position and an even number of such elements with 1 in the j th
position, that is 2∗G2G = I . Hence G is a Parseval Frame. �

Corollary 4.14. If F is a Parseval frame for Zn
2 which is not trivially redundant,

and G is its set-theoretic complement, then both F and G \ {0} are Parseval frames
and one of them contains at most 2n−1

− 1 vectors.

Proof. After removing the zero vector from G, the union of both Parseval frames
F and G \ {0} contains 2n

− 1 vectors. This implies that one of the two frames
contains at most half this number, meaning at most 2n−1

− 1 vectors. �

To complete the catalogue of binary Parseval frames for Zn
2 , it is only necessary

to find one representative from each switching equivalence class of Parseval frames
with at most 2n−1

− 1 vectors. Once these Parseval frames have been found, their
complements complete the list, because the switching equivalence of a pair of
frames is equivalent to that of their complements.

Proposition 4.15. Two frames that are not trivially redundant are switching equiv-
alent if and only if their set-theoretic complements are.

Proof. This is a consequence of the fact that unitaries are one-to-one maps on the
set Zn

2 . Thus, if a unitary U maps a frame F to a frame G, then it also maps the
complement of F to the complement of G, and vice versa. �
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n k vectors

3 3 1 2 4
4 3 5 6 7

4 4 1 2 4 8
5 1 6 10 12 14
6 1 3 5 9 14 15
7 1 2 3 7 11 12 15
8 4 5 6 8 9 10 13 14
9 2 4 6 7 8 10 11 12 13

10 2 3 4 5 7 8 9 11 13 15
11 3 5 6 7 9 10 11 12 13 14 15

Table 1. Representatives of all switching-equivalence classes, ex-
cluding trivially redundant Parseval frames, for Z3

2 and Z4
2.

We conclude with Table 1, a complete list of representatives of switching-equi-
valence classes of Parseval frames for n = 3 and n = 4, excluding ones that are
trivially redundant. Each frame vector in our list is recorded by the integer obtained
from the binary expansion with the entries of the vector. For example, if a frame
vector in Z4

2 is f1= (1, 0, 1, 1), then it is represented by the integer 20
+22
+23
=13.

Accordingly, in Z4
2, the standard basis is recorded as the sequence of numbers

1, 2, 4, 8.
As explained above, the part of the table with k > 2n−1

− 1 vectors has been
obtained by taking complements of Parseval frames with k ≤ 2n−1

− 1 vectors,
according to Corollary 4.14 and Proposition 4.15. An exhaustive search shows
that there is only one switching equivalence class for n = 3 and k ∈ {3, 4} and for
n = 4 and each k ∈ {4, 5, 6, 7}, consequently also for k ∈ {8, 9, 10, 11}.
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Some results on the size of sum and product sets
of finite sets of real numbers

Derrick Hart and Alexander Niziolek

(Communicated by Andrew Granville)

Let A and B be finite subsets of positive real numbers. Solymosi gave the sum-
product estimate max(|A+ A|, |A · A|)≥ (4dlog |A|e)−1/3

|A|4/3, where d e is the
ceiling function. We use a variant of his argument to give the bound

max(|A+ B|, |A · B|)≥ (4dlog |A|edlog |B|e)−1/3
|A|2/3 |B|2/3.

(This isn’t quite a generalization since the logarithmic losses are worse here than
in Solymosi’s bound.)

Suppose that A is a finite subset of real numbers. We show that there exists
an a ∈ A such that |a A+ A| ≥ c|A|4/3 for some absolute constant c.

1. Introduction

Given finite subsets A and B of an additive group, the sum set of A and B is

A+ B = {a+ b : a ∈ A, b ∈ B}.

Similarly, define the product set by

A · B = {ab : a ∈ A, b ∈ B}.

If M and N are numbers (depending on A and B) we write M & N to mean that
M ≥ cN for some constant c > 0 (independent of A and B). We write M ≈ N to
mean that cN ≤ M ≤ c′N for c, c′ > 0.

Suppose that A = B is an arithmetic progression. Then

|A+ A|. |A| and |A · A|& |A|2−δ,

where here and throughout δ→ 0 as |A| →∞ and | · | denotes the size of the set.
In contrast, if A = B is a geometric progression then

|A+ A|& |A|2 and |A · A|. |A|.

MSC2000: 11B13, 11B75.
Keywords: sum-product estimate, multiplicative energy, Solymosi bound.
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These examples led Erdős and Szemerédi [1983] to ask whether both the product
set and sum set can be small at the same time. They conjectured that it is not
possible in the following sense.

Conjecture 1. Let A be a finite subset of Z. Then

max(|A+ A|, |A · A|)≥ |A|2−δ.

They showed that
max(|A+ A|, |A · A|)≥ |A|1+ε,

for a positive ε.
The explicit bound ε ≥ 1

31 was given by Nathanson [1997], and ε ≥ 1
15 by Ford

[1998]. A breakthrough was achieved by Elekes [1997], who connected the prob-
lem to incidence geometry and applied the Szemerédi–Trotter incidence theorem
to obtain ε ≥ 1

4 . This was improved by Solymosi [2005] to ε ≥ 3
14 − δ. These

bounds hold in the more general context of finite subsets of R.
Recently, by a short and ingenious argument it was shown by Solymosi [2009]

that ε ≥ 1
3 − δ. In Section 3 we mimic Solymosi’s argument with a few changes to

give an analogous estimate for sums and products of different sets.
Given the strong relationship between sums and products one may ask a related

question: how large is the set A · B +C guaranteed to be? Elekes (see [Alon and
Spencer 2000]) showed that |A·B+C |&

√
|A| |B| |C |with certain size restrictions

on the three sets. His argument relied on the aforementioned Szeremedi–Trotter
incidence theorem and is short enough to present in the next few lines.

Let P be a set of points in R2 and L a set of lines. We say a point p ∈ P is
incident to a line l ∈ L if p lies on l. In this case, we denote this incidence by
(p, l) ∈ P × L .

Theorem 2 [Szemerédi and Trotter 1983]. Let IP,L denote the number of inci-
dences between P and L. Then bound

IP,L . |P|2/3 |L|2/3+ |P| + |L|.

Let L = {y = ax + c : a ∈ A, c ∈ C} and P = B × A · B +C . Clearly, given
any a ∈ A, b ∈ B, c ∈ C , the point (b, ab+ c) is incident to the line y = ax + c.
Therefore, by Szemeredi–Trotter, |A| |B| |C |. |A|2/3 |B|2/3 |C |2/3 |A · B+C |2/3.

In the context of Fq , the finite field containing q elements, similar questions
have been explored as well. Bourgain [2005] showed that for A ⊆ Fq such that
|A| & q3/4, one has A · A + A · A + A · A = Fq ; in particular, if |A| ≈ q3/4,
then |A · A+ A · A+ A · A| & |A|4/3. In [Hart and Iosevich 2008] it was shown
that if |A| & q3/4, then A · A + A · A = F∗q ; in particular, if |A| ≈ q3/4, then
|A · A + A · A| & |A|4/3. Due to the misbehavior of the zero element, it is not
possible to guarantee that A · A+ A · A = Fq unless A is a positive proportion of
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the elements of Fq . Under the weaker conclusion that |A · A + A · A| & q it is
shown in the same paper that one may take |A|& q2/3. Shparlinski [2008] applied
multiplicative character sums to show that if |A| & q2/3, then |A · A + A| & q ,
implying that if |A| ≈ q2/3, then |A · A+ A|& |A|3/2.

Theorem 3 [Chapman et al. 2009, Theorem 2.10]. Let A be a subset of F∗q . Then

|A|−1
∑
a∈A

|a A+ A|&min(q, |A|3q−1).

In particular, if |A| ≈ q2/3, there exists a subset A′ of A with |A′|& |A| such that

|a A+ A|& |A|3/2 ≈ q,

for all a ∈ A′.

It is natural to ask whether a similar statement holds in the case that A is a finite
subset of the real numbers. We show that this is in fact the case in Section 4.

2. Statement of results

Define the multiplicative energy of the finite subsets A, B,C, D of real numbers
by

E(A, B,C, D)=
∣∣{(x1, x2, y1, y2) ∈ A× B×C × D : x1 y2 = x2 y1

}∣∣.
For A, B finite subsets of positive real numbers with |A| ≤ |B|, the argument of
[Solymosi 2009] gives the bound

E(A, B, A, B)≤ 4dlog |A|e |A+ A| |B+ B|. (2-1)

A short Cauchy–Schwarz argument gives that E(A, B, A, B) ≥ |A|2|B|2/|A · B|,
which in turn gives the sum-product inequality

|A|2|B|2 ≤ 4dlog |A| e|A+ A| |B+ B| |A · B|. (2-2)

In the case that A = B, this immediately implies the Solymosi sum-product
bound discussed in the introduction:

max(|A+ A|, |A · A|)≥ (4dlog |A|e)−1/3
|A|4/3. (2-3)

We will use a slight variant of the argument of Solymosi to give a different
bound on the multiplicative energy:

Theorem 4. Let A, B,C, D be finite subsets of positive real numbers. Then

E(A, B,C, D)≤ 4dlog(min(|A|, |C |))edlog(min(|B|, |D|))e|A+ B| |C + D|.
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(Notice that the logarithmic loss is worse than what was obtained by Solymosi.)
Using the fact that E(A, B, A, B) ≥ |A|2|B|2/|A · B|, we obtain the following

sum-product estimate.

Corollary 5. Let A, B be finite subsets of positive real numbers. Then

max(|A+ B|, |A · B|)≥ (4dlog |A|edlog |B|e)−1/3
|A|2/3 |B|2/3. (2-4)

One may compare this to the result of applying Plünnecke’s inequality to (2-2):

max(|A+ B|, |A · B|)≥ (4dlog |A|e)−1/5
|A|3/5 |B|3/5. (2-5)

We will also show this:

Theorem 6. Let A, B,C be finite subsets of R such that |B|1/2 |C |−1/2 . |A| .
|B|2|C |. Then

|A|−1
∑
a∈A

|aB+C |& |A|1/3 |B|1/3 |C |2/3. (2-6)

In particular, there exists an a ∈ A such that

|aB+C |& |A|1/3 |B|1/3 |C |2/3. (2-7)

3. Proof of Theorem 4

We begin by writing

E(A, B,C, D)=
∑

x1 y2=x2 y1

A(x1)B(x2)C(y1)D(y2)

=

∑
t 6=0

∑
x1=t x2
y1=t y2

(A×C)(x1, y1)(B×D)(x2, y2),

where A( · ) denotes the characteristic function of the set A and × denotes the
Cartesian product. Summing in t we have

E(A, B,C, D)=
∑

y∈(B×D)

|(A×C)∩ lm y |,

where lm y is the line through the origin and the point y with slope m y . Each
y ∈ (B×D) lies on some line lm y with m y ∈ D · B−1

= {db−1
: d ∈ D, b ∈ B}.

Since the quantity |(A×C)∩ lm y | is constant and nonzero for each y on lm y with
slope m y in C · A−1, we have

E(A, B,C, D)=
∑
m∈M

|(A×C)∩ lm | |(B×D)∩ lm |,
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where M = C · A−1
∩ D · B−1. We then take a dyadic decomposition

E(A, B,C, D)=
∑∑

0≤i≤dlog(min(|A|,|C |))e
0≤ j≤dlog(min(|B|,|D|))e

∑
m∈Mi, j

|(A×C)∩ lm | |(B×D)∩ lm |,

where Mi, j = {m ∈ M : 2i
≤ |(A×C)∩ lm | < 2i+1, 2 j

≤ |(B×D)∩ lm | < 2 j+1
}.

Therefore, for some i ′ and j ′,

E(A, B,C, D)
dlog(min(|A|, |C |))edlog(min(|B|, |D|))e

≤

∑
m∈Mi ′, j ′

|(A×C)∩ lm | |(B×D)∩ lm |.

Set n = |Mi ′, j ′ | and order the elements of Mi ′, j ′ : m1 < m2 < . . . < mn . This gives

E(A, B,C, D)
dlog(min(|A|, |C |))edlog(min(|B|, |D|))e

≤ 4n2i ′+ j ′ .

Given that |(A×C)∩lml+(B×D)∩lml+1 | = |(A×C)∩lml | |(B×D)∩lml+1 |, noting
that any two sum sets (A×C)∩lml+(B×D)∩lml+1 and (A×C)∩lmk+(B×D)∩lmk+1

are disjoint for any l 6= k gives

n2i ′+ j ′
≤

∣∣∣∣ n⋃
l=1

((A×C)∩ lml + (B×D)∩ lml+1)

∣∣∣∣≤ |A+ B| |C + D|.

Here, in an abuse of notation, (B×D) ∩ lmn+1 is the orthogonal projection of
(B×D) ∩ lmn onto the vertical line running through the minimal element of B.
We may without loss of generality assume that the minimal element of B is also
the minimal element of A∪ B.

4. Proof of Theorem 6

We will need a lemma, whose proof we will delay until the end of the section.

Lemma 7. Let A, B,C be finite subsets of R such that |B|1/2 |C |−1/2 . |A| .
|B|2 |C |. Then∣∣{(a, b, c, d, e) ∈ A× B×C × B×C : ab+ c = ad + e

}∣∣. |A|2/3 |B|5/3 |C |4/3.
With this lemma in hand one may then apply the Cauchy–Schwarz inequality:

|A| |B|2 |C |2 = |A|−1
( ∑

t∈aB+C
a∈A

∑
ab+c=t

B(b)C(c)
)2

≤

(
|A|−1

∑
a∈A

|aB+C |
) ∑

t∈aB+C
a∈A

( ∑
ab+c=t

B(b)C(c)
)2

.
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Noting that∑
t∈aB+C

a∈A

( ∑
ab+c=t

B(b)C(c)
)2

=
∣∣{(a, b, c, d, e) ∈ A× B×C × B×C : ab+ c = ad + e

}∣∣
completes the proof of Theorem 6.

Proof of Lemma 7. We will apply the Szemerédi–Trotter incidence theorem. For
a fixed b ∈ B, consider the set of lines Lb = {y = (b− d)x + c : c ∈ C, d ∈ B}.
Also consider the set of points P = {(a, e) ∈ (A×C)}. Then |{(a, b, c, d, e) ∈
A×B×C×B×C :ab+c=ad+e}|≤ |B|maxb∈B IP,Lb .Noting that |Lb|= |B| |C |
and |P| = |A| |C | and applying the Szemerédi–Trotter theorem gives∣∣{(a, b, c, d, e) ∈ A× B×C × B×C : ab+ c = ad + e

}∣∣. |A|2/3 |B|5/3 |C |4/3,
as long as |B|1/2 |C |−1/2 . |A|. |B|2|C |. �

5. Remarks

The argument of Elekes [1997] actually gives a more general bound for finite sub-
sets A, B,C of positive real numbers:

max(|A+ B|, |A ·C |)& |A|3/4 |B|1/4 |C |1/4.

A direct application of Plünnecke’s inequality [Tao and Vu 2006, Corollary 6.26]
to (2-3) gives

max(|A+ B|, |A ·C |)≥ (4dlog |A|e)−1/6
|A|2/3 |B|1/3 |C |1/6.

This bound is preferable if |B| is much larger than |A| |C |. We do not currently
know of a way to use Solymosi’s argument to obtain an improved bound for the
case that the three sets are close together in size.
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Proof of the planar double bubble conjecture
using metacalibration methods

Rebecca Dorff, Gary Lawlor, Donald Sampson and Brandon Wilson

(Communicated by Frank Morgan)

We prove the double bubble conjecture in R2: that the standard double bubble
in R2 is boundary length-minimizing among all figures that separately enclose
the same areas. Our independent proof is given using the new method of meta-
calibration, a generalization of traditional calibration methods useful in mini-
mization problems with fixed volume constraints.

1. Introduction

Isoperimetric problems have had a long history. The earliest proofs that the circle
maximizes area for a figure of given perimeter can be traced to the ancient Greeks.
The first results are attributed to the second century mathematician Zenodorus.
After more than a millennium, Steiner was the first to realize that the ancient
Greek proofs were insufficient by modern standards and worked to complete them.
Weierstrass, however, was the first to give a rigorous proof of the isoperimetric
inequality, and furthered the development of analysis and calculus in order to do
so [Siegel 2003].

While many different proofs exist for the isoperimetric inequality in two di-
mensions, few of these methods can be applied to generalizations of the prob-
lem, including having multiple enclosed areas or higher dimensional analogs. The
traditional approach, and so far most successful, has been to use the calculus of
variations to isolate properties of the boundary-minimizing figure and compare all
possible figures of this type. Some advancements in “multiple bubble” problems
were made this way by Frederick Almgren [1976], Jean Taylor [1976], and Frank
Morgan [1994], who proved regularity results in Rn for n ≥ 4, n = 3, and n = 2,
respectively. Morgan realized that a careful analysis of minimizers in the plane was
absent from the literature, and providing this, showed that perimeter-minimizing
planar figures must consist of circular arcs meeting at vertices of degree three,

MSC2000: 49Q05, 49Q10, 53A10.
Keywords: calibration, metacalibration, double bubble, isoperimetric, optimization.
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forming 120-degree angles. This reduced the argument to listing all the combina-
torial types meeting these requirements, possibly subject to some bounds on the
number of components that each area may be broken up into. Using this result,
students of the 1990 SMALL group under Frank Morgan proved that the standard
double bubble was perimeter-minimizing among all figures separately enclosing
two fixed areas [Foisy et al. 1993]. This method was also employed by Wacharin
Wichiramala, whose doctoral dissertation proves the corresponding result for three
separated areas. Unfortunately, this approach is marked by an ever-increasing com-
binatorial complexity. For example, Wichiramala’s dissertation [2004] considered
some fifty-four possible configurations in order to prove minimization of the stan-
dard triple bubble. This complexity proves to be a significant barrier to further
results.

We present new proofs of the isoperimetric inequality in the plane, for one
and two areas, using metacalibration, a new method of proof developed by Gary
Lawlor. Metacalibration is an extension of previous work in the field of calibration
that has been modified to handle a new class of minimization problems. Section
2 discusses metacalibration in further detail. A reformulation of ideas by Gromov
[Milman and Schechtman 1986], Lawlor’s proof of the two-dimensional isoperi-
metric inequality is given in Section 3. Lawlor also showed using metacalibration
that the standard double bubble is perimeter-minimizing among all figures enclos-
ing two equal areas. Section 4 contains the authors’ generalization of this proof to
any two fixed areas. Metacalibration has a strong potential for other applications
in which the standard variational approach fails. Further work is currently being
made in extending our results to other multiple bubble problems, including the
as-yet-unproven triple bubble conjecture in R3.

2. Metacalibration

Each minimization problem1 can be expressed in the following terms. Let a set of
constraints C be given. Let S be the set of all competitors σ that satisfy C . For
each competitor σ ∈ S, we define the function P(σ )which expresses the quantity to
be minimized (perimeter, energy, etc.). The minimizing property of a conjectured
minimizer µ ∈ S is shown by proving P(µ)≤ P(σ ) for all σ ∈ S.

Metacalibration solves minimization problems by comparing P(σ ) to an in-
termediary function G(σ ) which simplifies the conditions for comparison. This
function is called a calibration function and is defined as follows.

1As the methods of metacalibration work identically for minimization as well as maximization
problems, we will present these methods in the context of a minimization problem. Maximization
problems are solved identically with the obvious inequalities reversed.
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Definition 2.1. A function G calibrates a conjectured minimizer, µ ∈ S, if for
every competitor σ ∈ S,

(1) P(µ)= G(µ),

(2) G(µ)≤ G(σ ), and

(3) G(σ )≤ P(σ ).

The following theorem encapsulates this idea.

Theorem 2.2. Calibration Theorem. If a function G calibrates a conjectured
minimizer µ with respect to P , then µ minimizes the function P.

Proof. Take any competitor σ ∈ S. By the definition of a calibration, P(µ) =
G(µ)≤ G(σ )≤ P(σ ). Thus for any σ ∈ S, P(µ)≤ P(σ ) and µ minimizes P . �

One can see from the above arguments that this method yields simple and elegant
results if we are able to identify a suitable calibration function G(σ ). Finding such
a function is one of the difficulties of this method. Following is a short description
of some characteristics of calibration functions.

In order to establish the necessary identities, calibration functions typically have
the form of an integral. For example, if we parametrize σ by some variable t , the
necessary relations may be established by comparing the rate of change of G(σ )
and P(σ ) with respect to t . Suppose we find a function d fσ/dt = f ′σ such that
f ′σ (t) ≤ P ′σ (t), with equality on the minimizer. Letting σ be parametrized by
t ∈ [t0, t1], we define the function G(σ ) =

∫ t1
to

f ′σdt . We find that G(σ ) will be
a calibration function if fσ (t1)− fσ (t0) is constant for all competitors, or at least
minimal on µ. If this is the case, f ′σ is called a calibration. In many cases these
conditions allow us to explicitly determine the function f ′σ . In any case however,
solving these conditions will often give insight into the form or character of the
necessary function f ′σ .

In the past, calibrations have been functions of spacial variables, such as position
or tangent vectors. In metacalibration, we also allow the calibration function G(σ )
to depend on characteristics of σ itself. These may include variables such as arc
length or enclosed area. Another useful tool of metacalibration is that it allows
other variables to be defined abstractly, such as characteristics of the competitor
under mapping or projection. These additional allowances of metacalibration al-
low calibration functions to consider a wider range of competitors, enabling meta-
calibration to take on various problems beyond the reach of standard methods.

In the following sections we show how two classical geometric optimization
problems may be solved using the methods of metacalibration. While each is a
previously solved problem, they demonstrate the usefulness of this method and its
future extension into yet unsolved problems.
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3. The circle is perimeter-minimizing in R2

We begin our application of metacalibration with the classic example of the isoperi-
metric inequality in R2. Of all figures that enclose the same area in the plane, we
wish to show that the circle of that area minimizes total perimeter. The minimizing
property of the circle is shown using the calibration theorem of the previous section.
To do this, we first define the function G(σ ), and subsequently prove that it satisfies
each of the conditions for calibration.

Take an arbitrary competing figure σ in S, the set of competitor figures (C1

manifolds) that enclose a fixed area A0. We assume that the boundary of the figure
is equal to the boundary of its interior. This ensures that σ will have no obviously
unnecessary perimeter elements that do not enclose area. Let an arbitrary axis
for the parameter t be given. We will parametrize σ by a set of slicing lines
perpendicular to the t-axis, whose position is determined by the variable t . In
our depictions, this is an upward sweeping line with a vertical t-axis. We let t0 be
the bottom of the figure and t1 the top, so that σ is fully contained in the sweeping
interval [t0, t1]. Let Rσ be the projection of σ in the t-axis. Note that Rσ ⊆ [t0, t1].

For any slicing line, given by the parameter t , we define the following functions
for use in the calibration function. Let a(t) be the area enclosed by the figure and
contained in the sweeping interval [t0, t] (that is, below the slicing line t). Thus
a(t0) = 0 and a(t1) = A0 for any competitor. Let l(t) be the total length of the
intersection of the slicing line t with the interior of σ :

l̂l

a
a

h
r

µσ

To complete our definition of the calibration function we define a map F from
a slicing line on the competitor to a slicing line on the conjectured minimizer, the
circle enclosing area A0. Let r denote the radius of this circle. We also parametrize
the circle with a set of parallel slicing lines. The position of these lines will be
defined by the variable h, the y-coordinate of the lines, where h= 0 passes through
the center of the circle. Let F(t)= h match the slicing line of the circle such that
the area enclosed by the circle under the line h is equal to a(t). Let l̂ be the length of
the intersection of the slicing line h with the interior of the circle. These functions
are taken as C1, since any competitor for which they are not may be shown to be
nonminimal by a standard variational argument. While the functions defined above
are all functions of the parameter t , we typically suppress the notation.
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Using the above functions we are now able to define the calibration function
G(σ ).

Theorem 3.1. The function G(σ )=
∫

Rσ
f ′σdt calibrates the circle, where fσ (t)=(

2a(t)− h(t)l(t)
)
/r .

Proof of each condition for calibration will be given separately in Lemmas 3.2,
3.3, 3.4.

Lemma 3.2. For µ, the circle enclosing area A0, P(µ)= G(µ).

Proof. Note that G(µ) =
∫

Rµ
f ′dt = g(t1)− g(t0) = 2A0/r + 0. Noting that in a

circle A0 = πr2, we find 2A0/r = 2πr2/r = 2πr , which is the perimeter of the
circle. Thus P(µ)= G(µ). �

Lemma 3.3. For any competitor σ ∈ S and the circle µ, G(µ)= G(σ ).

Proof. Note that since σ may be disconnected with several components, Rσ =⋃m
1 [xi , yi ] where x1 = t0, ym = t1, and yi < xi+1. Thus

G(σ )=
∫

Rσ

f ′dt =
m∑
1

∫ yi

xi

f ′dt =
m∑
1

f (yi )− f (xi ).

Note that l(xi )= l(yi )= 0 and a(yi )= a(xi+1) for all i . Thus

G(σ )=
m∑
1

f (yi )− f (xi )=

m∑
1

2a(yi )

r
−

2a(xi )

r
=

2a(ym)

r
−

2a(x1)

r
.

But a(ym)= a(t1)= A0 and a(x1)= a(t0)= 0. This implies that G(σ )= 2A0/r ,
which is constant among all competitors in S, including µ. Thus G(µ) = G(σ )
for all σ ∈ S. �

Lemma 3.4. For any competitor σ , G(σ )≤ P(σ ).

Proof. Differentiating f by t we find f ′ = (2A′ − h′l − hl ′)/r . Now from the
definition of A and of h we can see that A′ = l in the competitor σ and A′ = h′l̂ in
the conjectured minimizer µ. Substitution reveals

f ′ =
(2− h′)l − hl ′

r
=
(2− h′)h′l̂ − hl ′

r
.

Noting that (2− h′)h′ has a maximum at 1 for h′ = 1, we find

f ′ ≤
l̂ − hl ′

r
=

1
r
(

l̂
2
,−h) · (2, l ′).

Now 1
r (

l̂
2 ,−h) is a unit vector in the circle µ, so by the Cauchy–Schwartz inequal-

ity,

f ′ ≤ ‖(2, l ′)‖ = 2
√

1+ (l ′/2)2.
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Since the slicing line at height t will intersect the figure at least twice if l 6= 0,
2
√

1+ (l ′/2)2 realizes the minimum of P ′ via a symmetrization argument. Thus
f ′ ≤ P ′(σ ), and since fσ (0) = Pσ (0) = 0, this implies G(σ ) =

∫
Rσ

g′dt ≤∫
Rσ

P ′(σ ) dt = P(σ ). �

Lemmas 3.2, 3.3, and 3.4 show that the function G(σ ) defined in Theorem 3.1
calibrates the circle. Thus by the calibration theorem, the circle minimizes perime-
ter of all C1 manifolds enclosing a fixed area. Similar proofs that the sphere and
n-sphere are boundary-minimizing in their respective dimensions have been found
by the authors. In this paper, however, we investigate generalizations to multiple
bubbles in two dimensions. The next section uses the methods of metacalibration
to prove perimeter minimization of the standard double bubble in R2.

4. The standard double bubble is perimeter-minimizing in R2

The double bubble conjecture in R2 was first proved by students of Frank Morgan
in an NSF funded REU in 1990 [Foisy et al. 1993]. They showed that the way to
separately enclose two given areas with the least perimeter is the “standard double
bubble,” a figure with three circular arcs meeting two vertices at 120 angles. Here
we present a new independent proof of the double bubble conjecture using the
method of metacalibration.

Theorem 4.1. The standard double bubble in R2 minimizes total perimeter of fig-
ures (unions of C1 manifolds) enclosing two separate fixed areas.

This will result from the calibration theorem using the calibration function de-
fined below.

As with the calibration for the circle, we use a map from slices of the competitor
to slices of our conjectured minimizer, the standard double bubble.

Each competitor double bubble σ ∈ S will consist of two enclosed regions B1

and B2, with fixed areas A1 and A2. For a given competitor σ , parametrize parallel
lines traversing the figure with the variable t . We let ai (t) be the area of Bi below
the line t , and let li (t) be the length of the intersection of the line t with Bi .

There is a unique standard double bubble that separately encloses areas A1 and
A2 [Foisy et al. 1993]. Let B̂1 and B̂2 be the regions of this standard double
bubble (of areas A1 and A2, respectively), and let r1 and r2 be the radii of the outer
arcs bordering B̂1 and B̂2. Without loss of generality we assume that r1 ≥ r2, or
equivalently A1 ≥ A2. We denote the radius of the arc separating B̂1 and B̂2 by r3.
We also denote the centers of each of these three arcs as o1, o2, and o3 respectively.
It is known that 1/r3= 1/r2−1/r1 for all standard double bubbles [Isenberg 1978,
pp. 88–95]. We also use the parameter h to define slices of the standard double
bubble. However, in order to map slicing lines t in the competitor to slicing lines
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in the standard bubble, matching both areas as before, slicing lines in the standard
bubble must be allowed to tilt. Thus we parametrize slicing lines in the standard
double bubble with two variables: h1 and h2, the signed distance from the slicing
line to o1 and o2, respectively (hi < 0 if the line passes below oi ). As with the
competitor, we let âi (t) be the area of B̂i below the line (h1, h2), and let l̂i (t) be
the length of the intersection of the line (h1, h2) with B̂i :

â1

â2

h1
h2

B̂1

l̂1

l̂2

B̂2

o1 o2

o3

r1

r2

r3

Each slice of a competitor defines a point (a1, a2) ∈ [0, A1] × [0, A2]. In this
sense, each competitor σ , when parametrized by t , describes a path σ : [0, 1] →
[0, A1]×[0, A2] such that σ(0)= (0, 0), σ(1)= (A1, A2) and σ(t)= (a1(t), a2(t)).

We will define a map F : [0, A1] × [0, A2] → [−r1, r1] × [−r2, r2] between
slices of the competitor and slices of the standard double bubble where F(a1, a2)=

(h1, h2). We will also define F such that for all (a1, a2) ∈ [0, A1]× [0, A2],

ai = âi (F(a1, a2)).

There are, however, some points in [0, A1] × [0, A2] that do not have such a map
into the double bubble. For example, if A1 6= A2, no slice (h1, h2) of the standard
double bubble gives rise to (â1, â2) = (A1, 0). Thus we will need to restrict F to
some K ⊆ [0, A1]× [0, A2] such that F |K exists and is one-to-one.

To define K , we first define H ⊂ [−r1, r1] × [−r2, r2] which will be the image
of K under F . Let

H= {(h1, h2) ∈ [−r1, r1]× [−r2, r2] such that |h1− h2| ≤ |o1− o2|},

where |o1−o2| is the distance between the centers o1 and o2. This limits, by stan-
dard geometric properties, the parametrization (h1, h2) to slices that are realizable
on the standard double bubble. Let E : [−r1, r1] × [−r2, r2] → [0, A1] × [0, A2]

be the function that takes a slicing line in the standard double bubble and returns
the area in each bubble under the slice. Thus we let K = E(H).
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Lemma 4.2. The map F = E−1
: K→H exists, is one-to-one, and is continuously

differentiable.

Proof. Proof follows by application of the inverse function theorem on F−1.
Consider E : int(H)→ int(K ) where E(h1, h2) = (â1, â2). Note that the map

E is continuously differentiable. Note also that

DE =


∂a1
∂h1

∂a1
∂h2

∂a2
∂h1

∂a2
∂h2

 .
To show that DE is invertible, we merely need to show that det(DE) 6= 0, or that

∂a1

∂h1

∂a2

∂h2
6=
∂a2

∂h1

∂a1

∂h2
.

It is easy to see from the figure below that, as hi increases, so must ai ; therefore
∂ai/∂hi > 0.

o1 o2

h′1
+

+

Claim. When h2 increases, ∂a1/∂h2 ≤ 0 and |∂a1/∂h2|< |∂a1/∂h1|.

Proof. Let B1 be a single bubble, as in the figure:

−

h′1
+

C

Note that h1 is constant here. Since the slicing line must be tangent to the circle
centered at o1 with a radius of h1, both slicing lines must intersect at a point,
losing area on the left and gaining area on the right. By basic trigonometry, these
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two areas will be additive inverses. Now if we add B2, some of the area on the
right is lost to B2, like this:

−

h′1
O ′1

a′1

So as h2 increases, a1 will lose more area than it gains, making ∂a1/∂h2≤ 0. Note
also that |∂a1/∂h2|, the area lost by adding B2, represents a subset of the area
gained by a2 as h2 increases (|∂a2/∂h2|). So |∂a1/∂h2|< |∂a1/∂h1|. �

We claim by the same method that ∂a2/∂h1 ≤ 0 and |∂a2/∂h1|< |∂a2/∂h2|.
It follows that (∂a1/∂h1)(∂a2/∂h2) and (∂a1/∂h2)(∂a2/∂h1) are always non-

negative,

(∂a1/∂h2)(∂a2/∂h2) < (∂a1/∂h1)(∂a2/∂h2),

and det(DE) 6= 0. Hence DE is invertible everywhere on int(H).
Thus the inverse function theorem implies that E is locally a bijection (F = E−1

exists) and that F is continuously differentiable. The map F is also one-to-one
since F(a1, a2)= F(b1, b2)= (h1, h2) implies (a1, a2)= (b1, b2)= E(h1, h2).

We complete the proof of Lemma 4.2 by showing that F = E−1
: ∂K → ∂H

exists and is one-to-one. We do this by describing a smooth bijection from ∂K
onto ∂H.

For the slicing line to be on the boundary of K , it must be tangent to the boundary
of at least one of the bubbles (save on the extremes where |h1− h2| = |o1− o2|).
Imagine the line tangent to both bubbles on the bottom, marked a in the figure:

a

b c

d

fe
a

b
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We’ll move the line upward in bubble 1, keeping the line tangent to the bottom
of bubble 2, until we reach line b, where it is vertical, touching the left side of
bubble 2. It then slides horizontally to the right to touch the vertices of the bubbles
(line c). The line will rotate upwards in bubble 2 while touching the boundary of
bubble 1 until it is tangent to the top of both bubbles (line d). Then the line will
stay touching the boundary of bubble 2 and rotate down through bubble 1 until
it is once again vertical touching the boundary (line e). It will shift right until it
touches the intersections (line f ). Finally, the line will touch bubble 1’s boundary
and move down through bubble 2 until reaching the bottom of both bubbles and
the starting point (line a). In this way, we’ve smoothly and bijectively traversed
all of the slicing lines that are on the boundary of K . (Note that slicing lines are
of necessity oriented, as each slicing line has a defined region below the line.) �

This implies that if σ(t)∈ K for all t ∈ [0, 1], F(σ (t)) describes a continuously
differentiable path in H where (â1, â2)|F(σ (t))= σ(t). To ensure that σ(t) is always
in the domain of F , we place the following restriction on the parametrizations of
a competitor σ . Let t0 denote the line that passes through the centroids of B1 and
B2. (If these coincide, any line passing through them is sufficient.) Parametrize the
competitor σ such that all slicing lines are parallel to t0. Since t0 passes through the
centroids of B1 and B2, it cuts their areas exactly in half, and σ(t0)= (A1/2, A2/2)
for all competitors σ . Now σ(t) is nondecreasing in both a1 and a2, so σ(t) ∈
[0, A1/2] × [0, A2/2] ∪ [A1/2, A1] × [A2/2, A2] ⊂ K for all t . confining it to the
white part of the figure. Hence the mapping F may be applied to any competitor
σ given this orientation of slicing lines.

a1

a2

1
2

1
2

This map allows the following definition of G(σ ).

Theorem 4.3. Let fσ =
∑
(2Ai − hi li )/ri for i = 1, 2. The function G(σ ) =∫ t1

t0
f ′σdt calibrates the standard double bubble.

We prove the three conditions for a calibration function separately in Lemmas
4.4, 4.5, and 4.10.

Lemma 4.4. G(µ)= P(µ) for µ a standard double bubble.
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Proof. Consider the vector fields V = (x, y)/r1 and W = (x−m, y)/r2, where
(0, 0) = o1 and (m, 0) = o2. We claim the total perimeter of a standard double
bubble, P(µ), is equal to ∫

∂ B̂1

V · Nds+
∫
∂ B̂2

W · Nds, (1)

where N is the unit normal to the surface at that point. To see this, note that on
the outer arcs of radius r1 and r2, V = N and W = N , and the integral over these
arcs reduces to

∫
1ds. The integral over the center arc reduces to

∫
(W−V ) ·Nds,

with the appropriate normal vector. However,

W − V = 1
r2
(x −m, y)− 1

r1
(x, y)=

( 1
r2
−

1
r1

)
(x, y)− 1

r2
(m, 0)

=
1
r3
(x, y)− 1

r2
(m, 0)= 1

r3

(
x − r3

r2
m, y

)
.

If we denote the intersection of the three arcs in a standard double bubble by p,
we see by the fact that these arcs meet at 120◦ angles that m 6 o1 po2 = 60◦ and
m 6 o1 po3 = 120◦. By application of the law of sines we find that

|o1− o2|

sin 60◦
=

r2

sin(m 6 o2o1 p)
and

|o1− o3|

sin 120◦
=

r3

sin(m 6 o2o1 p)
,

which reduces to

|o1− o2|

r2 sin 60◦
=
|o1− o3|

r3 sin 120◦
r3|o1− o2|

r2
= |o1− o3|

r3

r2
m = |o1− o3|.

Thus o3 = (
r3
r2

m, 0), and the vector W − V = 1
r3
(x − r3

r2
m, y) is equal to the unit

normal on the remaining arc. Thus the line integral on this arc also evaluates to∫
1ds. Since the line integrals over all three arcs evaluate to

∫
1ds, or the length

of each arc, the expression in (1) above is equal to P(µ). As a consequence of the
divergence theorem, however, we have

P(µ)=
∫
∂ B̂1

V · N ds+
∫
∂ B̂2

W · N ds =
∫

B̂1

div V d A+
∫

B̂2

div W d A

=

∫
B̂1

∂
∂x

( x
r1

)
+
∂
∂y

( y
r1

)
d A+

∫
B̂2

∂
∂x

( x−m
r2

)
+
∂
∂y

( y
r2

)
d A

=

∫
B̂1

1
r1
+

1
r1

d A+
∫

B̂2

1
r2
+

1
r2

d A =
∫

B̂1

2
r1

d A+
∫

B̂2

2
r2

d A = 2A1
r1
+

2A2
r2
.
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Now consider G(σ ):

G(σ )=
∫ 1

0
f ′σ dt = fσ (1)− fσ (0)=

∑ 2ai − hi li

ri
|t=1−

∑ 2ai − hi li

ri
|t=0

=

∑ 2Ai − 1 · 0
ri

−

∑ 2 · 0− 1 · 0
ri

=
2A1

r1
+

2A2

r2
.

This is true for all competitors σ , including the standard double bubble µ; thus
P(µ)= G(µ). �

Lemma 4.5. G(σ ) = G(µ) for all competitors σ , where µ is the standard double
bubble.

Proof. It was shown in Lemma 4.4 that G(σ )=2A1/r1+2A2/r2 for all competitors
σ , including µ. Thus G(σ )= G(µ) for all competitors σ . �

The final condition for calibration, that G(σ )≤ P(σ ) for all competitors σ , will
be proved in Lemma 4.10 as a result of the following propositions. For this section
we introduce the notation Gσ (t) =

∫ t
t0

f ′σdt and Pσ (t) = the total perimeter of σ
lying below the slicing line t . We will show that G ′σ (t)≤ P ′σ (t) for all t ∈ [t0, t1],
and G(σ )≤ P(σ ) will result by integration.

In the following propositions we will use the notation shown in these figures:

a1

a2

m1 m2
o1 o2

o3

r1
r2

r3

a1

a2

h1
h2

l11

l12
l21 l22

o1 o2

s1 s↗2

v

Let m1 = |o1 − o2| (the m of Lemma 4.4) and m2 = |o2 − o3|. Also let v be
the intersection of the slicing line (h1, h2) with the center arc between B̂1 and B̂2.
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Define s1, s2, as the distances between v and o1, o2 respectively. The lengths l11,
l12, l21, and l22 are defined as shown, where l11+ l12 = l̂1 and l21+ l22 = l̂2.

Proposition 4.6. For all slices (h1, h2) of the standard double bubble,

l2
11− l2

12

r1
=

l2
21− l2

22

r2
.

Proof. It was shown in Lemma 4.4 that o1o3 = m1+m2 = (r3/r2)m1. Given that
r3 = r1r2/(r1−r2), we find that m1/m2 = (r1−r2)/r2. Noting that cos(6 o1o2v)=

− cos(6 vo2o3), by application of the law of cosines we find

m2
1+ s2

2 − s2
1

2s2m1
=−

s2
2 +m2

2− r2
3

2s2m2
,

from which we obtain, successively,

−s2
2

(
1+

m1

m2

)
= m2

1+
m1

m2
(m2

2− r2
3 )− s2

1 ,

−s2
2

(
1+

r1− r2

r2

)
= r2

1 + r2
2 − r1r2+

r1− r2

r2
(r2

2 + r2
3 − r2r3− r2

3 )− s2
1 ,

−s2
2

r1

r2
= r2

1 + r2
2 − r1r2+

r1− r2

r2

(
r2

2 − r2
r1r2

r1− r2

)
− s2

1 ,

r1r2− s2
2

r1

r2
= r2

1 + r2
2 +

r1− r2

r2

−r3
2

r1− r2
− s2

1 = r2
1 − s2

1 ,

r2
2 − s2

2

r2
=

r2
1 − s2

1

r1
.

Now by the Pythagorean theorem we find l2
21− l2

22 = r2
2 −h2

2− (s
2
2 −h2

2)= r2
2 − s2

2
and l2

11−l2
12= r2

1−h2
1−(s

2
1−h2

1)= r2
1−s2

1 . Substitution shows that (l2
11−l2

12)/r1=

(l2
21− l2

22)/r2. �

Proposition 4.7.
∑
((2− h′i )a

′

i )/ri ≤
∑

l̂i/ri .

Proof. Let l11, l12, l21, l22, h1, and h2 be defined as above. Consider the diagram

a′1 a′1 a′2 a′2

l11

112

l21

l22h′1
h′2

v
↙
θ

x

which describes the instantaneous change in (h1, h2). Unlike the parametrizations
of slicing lines in the circle, in the standard double bubble slicing lines may rotate.
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This rotation is described by the relative angle θ ′ and the distance x between the
axis of rotation and the double bubble.

We can compute the total change in area in both B̂1 and B̂2 as follows:

A′1 =
1
2θ
′
(
(x + l̂2+ l̂1)

2
− (x + l̂2)

2)
=

1
2θ
′(2x + 2l̂2+ l̂1)(l̂1),

A′2 =
1
2θ
′
(
(x + l̂2)

2
− (x)2

)
=

1
2θ
′(2x + l̂2)(l̂2).

We also note that h′1 = θ
′(x + l̂2+ l12) and h′2 = θ

′(x + l22). Thus∑ (2−h′i )A
′

i

ri

=
(2−h′1)(θ

′/2)(2x+2l̂2+l̂1)(l̂1)

r1
+
(2−h′2)(θ

′/2)(2x+l̂2)(l̂2)

r2

=

(2−h′1)
h′1

2(x+l̂2+l12)
(2x+2l̂2+l̂1)(l̂1)

r1
+

(2−h′2)
h′2

2(x+l22)
(2x+l̂2)(l̂2)

r2
.

Both of these components are maximized when h′1 = h′2 = 1, so we have:∑ (2− h′i )A
′

i

ri
≤
(2x + 2l̂2+ l̂1)(l̂1)

2(x + l̂2+ l12)r1
+
(2x + l̂2)(l̂2)

2(x + l22)r2

=
l̂1

r1
+

l̂2

r2
+
(l11− l12)(l12+ l11)

2(x + l̂2+ l12)r1
+
(l21− l22)(l22+ l21)

2(x + l22)r2

=
l̂1

r1
+

l̂2

r2
+

l2
11− l2

12

2(x + l̂2+ l12)r1
+

l2
21− l2

22

2(x + l22)r2
.

By Proposition 4.6 we find l2
11−l2

12
r1
=

l2
21−l2

22
r2

. Using this substitution we find

l2
11− l2

12

2(x + l̂2+ l12)r1
+

l2
21− l2

22

2(x + l22)r2
=

l2
21− l2

22

2r2

(
−1

x + l̂2+ l12
+

1
x + l22

)

=
l2
21− l2

22

2r2

l12+ l21

(x + l̂2+ l12)(x + l22)
.

Now since x+l22> 0 and l22> l21, this term is always negative, and maximized
at zero as a→∞. Thus∑ (2− h′i )A

′

i

ri
≤

l̂1

r1
+

l̂2

r2
+

l2
21− l2

22

2r2

l12+ l21

(x + l̂2+ l12)(x + l22)

≤
l̂1

r1
+

l̂2

r2
=

∑ l̂i

ri
. �
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Proposition 4.8. For all slices of a standard double bubble, we have(
l12

r1
+

l21

r2

)2

+

(
h1

r1
−

h2

r2

)2

= 1.

Proof. We will show that

h1

r1
−

h2

r2
=− cos η and

l12

r1
+

l21

r2
=− sin η, (2)

where the angle η is defined in the figure:

o1 o2

↙
o3

r1

r2

r3

h1 h2

← h3

a1

a2

l̂1

l̂2
η

φ2

φ1

n↙
θ

The proposition results from the equalities in (2). To show them, we prove that

cosφ1− cosφ2+ cos η = 0.

for any slice of a standard double bubble. Note that cosφ1= h1/r1, cosφ2= h2/r2,
and cos η = h3/r3. (Here h3 is the signed distance from the slicing line to o3,
measured similarly to h1 and h2.) Let n be the signed distance from o3 to the
intersection of the slicing line and the line through the centers, and θ the angle
formed at the intersection, as in the figure above.

We find that h1 = (m1 +m2 + n) sin θ , h2 = (m2 + n) sin θ , and h3 = n sin θ .
Hence

cosφ1− cosφ2+ cos η

=
h1

r1
−

h2

r2
+

h3

r3
=
(m1+m2+ n) sin θ

r1
−
(m2+ n) sin θ

r2
+

n sin θ
r3

=
(
r2(m1+m2+n)− r1(m2+n)+ (r1−r2)n

)sin θ
r1r2

=

(
r2

(m1

m2
+ 1

)
− r1

)
m2 sin θ

r1r2
=

(
r2

(r1− r2

r2
+ 1

)
− r1

)
m2 sin θ

r1r2
= 0.

This implies immediately that h1/r1−h2/r2 =− cos η. Now consider a slicing
line perpendicular to the original at v, as in the figure on the top of the next page. In
this slicing, we see that l12/r1= cosφ1 and l21/r2=− cosφ2. By the property just
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o1

r1

h1

l̂12

φ1

η

φ2

r2

↑l̂21
↖h2

← o2

Towards the proof of Proposition 4.8.

proven, cosφ1−cosφ2=− cos(90◦+η), or equivalently l12/r1+ l21/r2=− sin η.
These two relations together finish the proof. �

Proposition 4.9. The following identity holds for all slices t of any competitor σ :√
1−

(h1
r1

)2
+

√
1−

(h1
r1
−

h2
r2

)2
+

√
1−

(h2
r2

)2
+

∑ −hi l ′i
ri
≤ P ′σ (t).

Proof. Suppose the slicing line t intersects σ in three locations. Consider P ′σ (t),
shown in the figure:

a1 a2 dt

C1 C2 C3

Note that ‖(c1, dt)‖ + ‖(c2, dt)‖ + ‖(c3, dt)‖ = P ′σ (t) dt. Now consider the unit
vectors (

−h1,
√

1− h2
1
)
,
(
−h1+ h2,

√
1− (h1− h2)2

)
, (−h2,

√
1− h2

2
)
.

By the Cauchy–Schwartz inequality,(
−h1,

√
1−h2

1
)
·(c1,dt)+

(
h2−h1,

√
1−(h1−h2)2

)
·(c2,dt)+

(
−h2,

√
1−h2

2
)
·(c3,dt)

≤ ‖(c1, dt)‖+‖(c2, dt)‖+‖(c3, dt)‖ = P ′σ (t) dt.

Noting that (c1+ c2)/dt = l ′1 and (c3− c2)/dt = l ′2, this reduces to√
1−

(h1
r1

)2
+

√
1−

(h1
r1
−

h2
r2

)2
+

√
1−

(h2
r2

)2
+

∑ −hi l ′i
ri
≤ P ′σ (t).
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Now this inequality still holds even if t intersects σ in more than three locations
by ignoring any additional intersections. There are however additional cases that
are not covered by the above proof (such as when there are only two intersections),
but for the sake of brevity we simply assert that proof of all other cases continues
in much the same fashion. �

Lemma 4.10. G(σ )≤ P(σ ) for all competitors σ .

Proof. We use the preceding propositions to show that G ′σ (t) ≤ P ′σ (t) for all
t ∈ [0, 1]:

G ′σ (t)=
∑ 2A′i − h′i li − hi l ′i

ri
=

∑ (2− h′i )A
′

i − hi l ′i
ri

≤

∑ l̂i − hi l ′i
ri

(by Proposition 4.7)

=
l11

r1
+

l12

r1
+

l21

r2
+

l22

r2
+

∑ −hi l ′i
ri

=

√
1−

(h1
r1

)2
+

√
1−

(h1
r1
−

h2
r2

)2
+

√
1−

(h2
r2

)2
+

∑ −hi l ′i
ri

(by the Pythagorean theorem and Proposition 4.8)

≤ P ′σ (t) (by Proposition 4.9).

Noting that Pσ (0)= 0, we complete the proof by integration: G ′σ (t)≤ P ′σ (t), so∫ 1

0
G ′σ (t) dt ≤

∫ 1

0
P ′σ (t) dt,

and therefore G(σ )≤ Pσ (1)− Pσ (0) and G(σ )≤ P(σ ). �

This completes the proof of Theorem 4.3, namely that the standard double bub-
ble minimizes perimeter among all figures (unions of C1 manifolds) that separately
enclose two fixed areas.

5. Further research

Extending the work that we have here presented seems well within the grasp of
many undergraduate researchers. We are currently working on extending it to in-
clude many other such problems including soap films on wire frames, both with
and without trapped bubbles. These problems are uniquely suited to metacalibra-
tions because they include both fixed volume and fixed boundary constraints. The
planar problem for three or more bubbles has proven somewhat more difficult to
tackle, in large part because we no longer have the topological property of be-
ing able to match areas under a given slicing line, which was possible with two
areas. Alternative slicing methods are being investigated to attack this problem.
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Another interesting problem under investigation is that of generalizing the above
double bubble proof to n dimensions, hopefully providing a compelling alternative
to current proofs for the double bubble in Rn . It is hoped that metacalibrations will
become a useful tool to solve problems in geometric optimization.
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