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Markov partitions for hyperbolic sets
Todd Fisher and Himal Rathnakumara

(Communicated by Kenneth S. Berenhaut)

We show that if f is a diffeomorphism of a manifold to itself, 3 is a mixing
(or transitive) hyperbolic set, and V is a neighborhood of 3, then there exists a
mixing (or transitive) hyperbolic set 3̃ with a Markov partition such that 3 ⊂
3̃ ⊂ V . We also show that in the topologically mixing case the set 3̃ will have
a unique measure of maximal entropy.

1. Introduction

A dynamical system consists of a space and a rule to dictate the evolution of the
points in the space. In particular, a discrete dynamical system (X, f ) consists of
a topological space X and a map f : X → X . The nth iterate of f , denoted f n ,
is defined as the map f composed n times, where n ∈ N. If f is a bijection, then
its inverse f −1 exists and we can form the nth iterate of f −1 by composition,
f −n
: X→ X .

We assume in this paper that the maps associated with dynamical systems are
homeomorphisms so that f −1 exists and f −n is well-defined. In the study of dy-
namical systems it is important to look at the overall effect of the rule for individual
points in the space. In this analysis we look at orbits of points in the space where
the orbit of a point x ∈ X is defined as

O(x)= { f n(x) ∈ X : n ∈ Z}.

Throughout the paper we let M be a compact, smooth, boundaryless manifold
and denote the set of diffeomorphisms from M to itself by Diff(M). A set X is
invariant under f if f (X)= X . Invariant sets play an important role in dynamical
systems and often allow one to decompose a space into invariant “indecomposable”
sets. A compact set 3⊂ M that is invariant under f ∈Diff(M) is a hyperbolic set
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if there exists a splitting of the tangent space T3 f = Eu
⊕Es and positive constants

C ≥ 1 and λ < 1 such that for any point x ∈3 and any n ∈ N we have

‖D f n
x v‖ ≤ Cλn

‖v‖ for v ∈ E s
x ,

‖D f −n
x v‖ ≤ Cλn

‖v‖ for v ∈ Eu
x .

Hyperbolic sets were introduced by Smale and Anosov in the 1960s. The com-
pactness of the manifold together with the expansion and contraction in the tangent
bundle allows for complicated and interesting orbit structures. Additionally, hyper-
bolic sets are structurally stable, or in other words, the dynamics of a hyperbolic
set are preserved under perturbations.

One of the main tools in studying hyperbolic sets is the use of a Markov partition
introduced by Adler and Weiss for hyperbolic toral automorphisms of the 2-torus
[Adler and Weiss 1967]. Markov partitions are defined in Section 2. It was shown
in [Fisher 2006] that if f ∈Diff(M), 3 is a hyperbolic set for f , and V is a neigh-
borhood of f , then there exists a hyperbolic set 3̃ for f such that 3⊂ 3̃⊂ V and
3̃ has a Markov partition. For a Markov partition there is a canonically associated
symbolic space called a subshift of finite type. (For the definition of a subshift of
finite type see Section 2.)

Often one is interested in studying hyperbolic sets that satisfy additional prop-
erties. Two such properties are topological mixing and transitivity. A dynamical
system (X, f ) is topologically mixing if for any open sets U and V there exists
some N ∈N such that f n(U )∩V 6=∅ for all n ≥ N . A dynamical system (X, f )
is transitive if there exists a point x ∈ X such that the forward orbit of x ,

O+(x)= { f n(x) : n ∈ N},

is dense in X . A standard result about transitivity is the following: if X is a locally
compact Hausdorff space, then (X, f ) is topologically transitive if and only if for
any open sets U and V in X there exists some n ∈ N such that f n(U ) ∩ V 6= ∅
[Brin and Stuck 2002, page 31].

The main result of the present work is that we can strengthen the result on
Markov partitions in [Fisher 2006] with respect to topological mixing and transi-
tivity.

Theorem 1.1. If3 is a topologically mixing hyperbolic set for f ∈Diff(M) and V
is a neighborhood of3, then there exists a hyperbolic set 3̃ for f containing3 and
contained in V such that (3̃, f ) has a Markov partition coming from an associated
mixing subshift of finite type. Furthermore, if 3 is transitive, then (3̃, f ) has a
Markov partition coming from an associated transitive subshift of finite type.

We note that a standard result is that if the subshift of finite type is mixing
(or transitive) and associated to a Markov partition for a hyperbolic set, then the
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hyperbolic set is mixing (or transitive). Bowen [1974] provided a nice connection
between mixing hyperbolic sets and the entropy for the system. The topological
entropy of a dynamical system, denoted htop( f ), is a number that, in a certain
manner, measures the topological complexity of the system. Whereas, the measure
theoretic entropy, denoted hµ( f ), of a dynamical system is a number that, in some
manner, measures the complexity of the system as seen by the measure µ.

A measure µ is invariant for the dynamical system (X, f ) if

µ( f −1(A))= µ(A)

for all measurable sets A. We denote the set of invariant Borel probability measures
as M( f ). If X is a compact metrizable space and f is continuous, then we know
that M( f ) 6=∅ [Katok and Hasselblatt 1995, page 135]. The variational principle
says that if f is a homeomorphism of a compact metrizable space, then htop( f )=
supµ∈M( f ) hµ( f ) [Katok and Hasselblatt 1995, page 181]. A measure µ ∈ M( f )
such that htop( f ) = hµ( f ) is a measure of maximal entropy. If there is a unique
measure of maximal entropy, then f is called intrinsically ergodic. From Theorem
1.1 and Bowen’s results we are then able to show the following.

Corollary 1.2. If 3 is a topologically mixing hyperbolic set and V is a neighbor-
hood of 3, then there exists a hyperbolic set 3̃ containing 3 and contained in V
such that 3̃ is intrinsically ergodic with respect to f .

2. Background

As we will be looking at subshifts of finite type we first review some definitions
and facts about subshifts of finite type. Let A=[ai j ] be an n×n matrix with entries
of zeros and ones such that there is one or more one in each row and column. Such
a matrix is called an adjacency matrix. Let An = {1, ..., n} and call a transition
from i to j to be admissible for A if ai j = 1. Define

6A =
{
ω = (ωk)k∈Z |ωk ∈An and ωkωk+1 is admissible for all k ∈ Z

}
.

The map on 6A defined by σ(ω) = ω′ where ω′j = ω j+1 is called the shift map.
The subshift of finite type is the space (6A, σ ) together with the product metric on
6A. A matrix A is positive if each entry is positive. A matrix A is primitive if
there is some power N ∈ N such that AN is positive.

If a matrix A is primitive, then the subshift of finite type associated with A
is topologically mixing. Furthermore, a subshift of finite type associated with an
M×M matrix A is transitive if and only if for each i, j ( 1≤ i, j ≤M) there exists
some n ∈ N such that an

i j > 0 [Robinson 1999, page 80].



552 TODD FISHER AND HIMAL RATHNAKUMARA

A topological semiconjugacy between a pair of dynamical systems (X, f ) and
(Y, g) exists if there is a continuous surjective map h : X→ Y such that

h ◦ f = g ◦ h.

The space (Y, g) is called a factor of (X, f ), and (X, f ) is called an extension of
(Y, g).

A dynamical system (X, f ) where X is a compact metric space and f is a
homeomorphism is expansive if there exists a constant c > 0 such that for all
x, y ∈ X if d( f n(x), f n(y)) < c for all n ∈ Z, then x = y.

We now review some facts about expansive and finitely presented dynamical
systems. For ε > 0 and x ∈ X the ε-stable set is

W s
ε (x)=

{
y ∈ X | d( f n(x), f n(y)) < ε for all n ≥ 0

}
,

and the ε-unstable set is

W u
ε (x)=

{
y ∈ X | d( f −n(x), f −n(y)) < ε for all n ≥ 0

}
.

For x ∈ X and f : X→ X , an expansive homeomorphism, the stable set is

W s(x)=
{

y ∈ X | lim
n→∞

d( f n(x), f n(y))= 0
}

and the unstable set is

W u(x)=
{

y ∈ X | lim
n→∞

d( f −n(x), f −n(y))= 0
}
.

Let (Y, f ) be expansive and fix ε < c/2, where c is an expansive constant of
(Y, f ). Following [Fried 1987] we define

Dε =
{
(x, y) ∈ Y × Y |W s

ε (x) meets W u
ε (y)

}
and [·, ·] : Dε→ Y so that [x, y] =W s

ε (x)∩W u
ε (y). It follows that [·, ·] is contin-

uous.

Definition 2.1. A rectangle is a closed set R ⊂ Y such that R× R ⊂ Dε.

For R a rectangle and x ∈ R, denote the stable and unstable sets of x in R,
respectively, as

W s(x, R)= R ∩W s
ε (x), W u(x, R)= R ∩W u

ε (x).

A rectangle R is proper if R = R̊, where R̊ denotes the interior of R.

Definition 2.2. Let (Y, f ) be expansive with constant c > 0 and 0 < ε < c/2. A
finite cover R of Y by proper rectangles with diameter(R) < ε for any R ∈R is a
Markov partition if Ri , R j ∈R, x ∈ R̊i , and f (x) ∈ R̊ j , then

f (W s(x, Ri ))⊂ R j , f −1(W u( f (x), R j )
)
⊂ Ri , and R̊i ∩ R̊ j =∅ if i 6= j.
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For a Markov partition R of a system (X, f ) we define the adjacency matrix A
such that ai j = 1 if f (R̊i ) ∩ R̊ j 6= ∅. The subshift of finite type (6A, σ ) is said
to be associated with R and there is a canonical semiconjugacy h from (6A, σ ) to
(X, f ).

Fried [1987] defined finitely presented systems as expansive homeomorphisms
of a compact space that are factors of a subshift of finite type. In the same paper
he shows that any finitely presented dynamical system has a Markov partition.

Remark 2.3. For f ∈Diff(M) and 3 a hyperbolic set for f , the system (3, f |3)
is expansive. Furthermore, any subshift of finite type is expansive. Also, for a
hyperbolic set 3 for a diffeomorphism and x ∈3, the sets W s(x) and W u(x) are
injectively immersed submanifolds of Euclidean spaces.

3. Results

Proof of Theorem 1.1. Before proceeding to the proof of Theorem 1.1 we first
review some facts about shadowing for hyperbolic sets. A sequence {xk}

b
a is an ε-

chain if d( f (xk), xk+1)<ε for all k where−∞≤a<b≤∞. A point y δ-shadows
an ε-chain {xk} if d( f k(y), xk)< δ for all k. We next state the Shadowing Theorem
[Brin and Stuck 2002, page 113].

Theorem 3.1 (Shadowing Theorem). Let M be a Riemannian manifold, d the nat-
ural distance function, f a diffeomorphism of M to itself , and 3 a hyperbolic set
for f . Then for every δ > 0 there exists an ε > 0 such that if {xn} is an ε-chain of
f and d(xk,3) < ε for all k, then there is some y ∈

⋃
x∈3 Bε(x) that δ-shadows

the ε-chain {xk}.

Proof of Theorem 1.1. We first assume that 3 is topologically mixing. To prove
the theorem it will be sufficient to show that the subshift of finite type constructed
in [Fisher 2006] giving the hyperbolic set 3̃ will be topologically mixing.

Let U be a neighborhood of 3. A standard result for hyperbolic sets states
that there is a neighborhood V of 3 such that V ⊂ U and 3V =

⋂
n∈Z f n(V ) is

hyperbolic [Katok and Hasselblatt 1995, page 271]. Let d(·, ·) be an adapted metric
on 3V . Note that this can be extended continuously to a neighborhood V ′ ⊂U of
3V .

Fix η > 0 and δ ≤ η such that for any two points x, y ∈3V , if d(x, y) < δ then

f −1(W s
η ( f (x))

)
∩ f

(
W u
η ( f −1(y))

)
=W s

η (x)∩W u
η (y)

consists of one point, and the set
⋃

x∈3 B2η(x) is contained in V ∩V ′; see [Fisher
2006] for an argument explaining the existence of η and δ. Fix 0 < ε ≤ δ/2 as in
the conclusion of the Shadowing Theorem so that every ε-orbit is δ/2-shadowed
and contained in V ∩ V ′.
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Let ν < ε/2 such that d( f (x), f (y))< ε/2 and d( f −1(x), f −1(y))< ε/2 when
d(x, y) < ν for any x, y ∈3V . Let {pi }

N
i=1 be a ν-dense set of points in 3 and let

the adjacency matrix A be defined by

ai j =

{
1 if d( f (pi ), p j ) < ε,

0 if d( f (pi ), p j )≥ ε.

Let (6A, σ ) be the subshift of finite type associated with A. Then we know there
exists a hyperbolic set 3̃ contained in V̄ [Fisher 2006] such that 3̃ ⊂ 3V , that
contains 3 and there exists a semiconjugacy β : 6A → 3̃. To see that 3̃ is
topologically mixing it is sufficient to see that 6A is topologically mixing.

We now show that 6A is topologically mixing by showing that A is primitive.
Given sets Bν(pi ) and Bν(p j ) there exists some Ni j such that for all n ≥ Ni j we
have

f n(Bν(pi ))∩ Bν(p j ) 6=∅,

since 3 is topologically mixing for f . We let M =max{Ni j }. Then

f n(Bν(pi ))∩ Bν(p j ) 6=∅

for all n ≥ M . We now show that this implies that an
i j > 0 for all n ≥ M . This

is equivalent to showing there is a sequence of (n+1)-symbols coming from AN

such that each transition is allowed and the sequence starts with i and ends with j
[Robinson 1999, page 76].

Indeed, let n ≥ M and x ∈ f n(Bν(pi ))∩ Bν(p j ). Since

N⋃
k=1

f (Bν(pk))=3,

we know that there exists some pi1 such that x ∈ f (Bν(pi1)). By the definition
of ν we know that d( f (pi1), p j ) < ε and i1 to j is an allowed transition in 6A.
Inductively, let 1≤ k ≤ n− 2 and assume that for each l such that 1≤ l ≤ k there
is some pil such that f −l(x) ∈ f (Bν(pil )) and

d( f (pil ), p j ) < ε if l = 1,
d( f (pil ), pil−1) < ε else.

Then ikik−1 · · · i1 j is a sequence of k+1 symbols in AN with allowed transitions
and f −l(x) ∈ Bν(pil ) for all 1 ≤ l ≤ k. We know that f −(k+1)(x) ∈ f (Bν(pik+1))

for some ik+1 ∈AN and
d( f (pik+1), pik ) < ε.

Hence, ik+1 to ik is an allowed transition in 6A and ik+1ik · · · i1 j is a sequence
of k+2 symbols in AN with allowed transitions. Therefore, there is a sequence
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in−1in−2 · · · i1 j of n-terms in AN with allowed transitions. Finally, we know that
f −n(x) ∈ Bν(pi ) and

f −(n−1)(x) ∈ f (Bν(pi ))∩ Bν(pin−1).

So i to in−1 is an allowed transition. Hence, i in−1 · · · i1 j is an allowed word in 6
and an

i j > 0. Therefore, A is primitive and 6A is topologically mixing.
The proof of the transitive case is similar. Indeed, given sets Bν(pi ) and Bν(p j )

there exists some Ni j such that

f Ni j (Bν(pi ))∩ Bν(p j ) 6=∅.

Hence, a similar argument as above shows that aNi j
i j > 0 and 6A is transitive. �

Intrinsic ergodicity for mixing hyperbolic sets. The proof of Corollary 1.2 will
use the property of specification. A specification, S = (τ, P), for a dynamical
system consists of

(1) a finite collection τ = {I1, . . . , In} of finite intervals Ii = [ai , bi ] ⊂ Z, and

(2) a map P :
⋃m

i=1 Ii −→ X such that f t2−t1(P(t1))= P(t2). for all t1, t2 ∈ Ii ∈ τ .

A specification S is said to be r-spaced, where r ∈ N, if ai+1 > bi + r for all
i ∈{1, . . . , n− 1} and the minimal such r is called the spacing of S. A specification
S = (τ, P) provides a way of parametrizing a collection of orbit segments τ of f .
We say that S is ε-shadowed by x ∈ X if d( f n(x), P(n)) < ε for all n ∈

⋃m
i=1 Ii .

Definition 3.2. Let X be a compact metric space and f : X → X a homeomor-
phism. The dynamical system (X, f ) is said to have the specification property if
for all ε > 0 there exists an Mε ∈ N such that any Mε-spaced specification S is
ε-shadowed by a point of X .

The next result is stated without proof in [Sigmund 1974]. We provide a proof
for completeness.

Lemma 3.3. If (X, f ) has the specification property and (Y, g) is a factor of
(X, f ), then (Y, g) has the specification property.

Proof. Fix ε > 0 and let dX and dY denote metrics for X and Y , respectively. Let
ε′ > 0 such that if dX (x1, x2) < ε

′, then

dY (h(x1), h(x2)) < ε,

where x1, x2 ∈ X . Such an ε′ > 0 can always be chosen since h is continuous. Fix
Mε′ ∈N such that any Mε′-spaced specification is ε′-shadowed by a point of X and
let Mε = Mε′ .
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Let S = (τ, P) be an Mε-spaced specification in (Y, g) where τ = {I1, . . . , Im}

is a collection of Mε-spaced intervals. Let

B = {y1, y2, . . . , ym} ⊂ Y,

where yi = P(ai ) for all 1≤ i ≤ m.
Fix A = {x1, . . . , xm} ⊂ X such that h restricted to A is a bijection onto B and

h(xi )= yi for 1≤ i ≤ m. The orbit segment for xi in Ii is given by{
f ai (xi ), . . . , f bi (xi )

}
for 1≤ i ≤ m.

Define PX :
⋃m

i=1 Ii → X such that P(ai )= xi for all i such that 1≤ i ≤ m.
Now, given that (X, f ) has the specification property, we know there exists an

ε′-shadowing point x for the specification (τ, PX ) and h(x) ∈ Y . Furthermore,

h( f ai (xi ))= gai (yi )

since h is a semiconjugacy. Hence, d
(
h(x), h(P(n))

)
< ε for all n ∈

⋃m
i=1 Ii and

h(x) is an ε-shadowing point for the specification S. �

Theorem 3.4 [Bowen 1974]. Let X be a compact metric space and f be an ex-
pansive homeomorphism with the specification property. Then f is intrinsically
ergodic.

Weiss [1973] showed that a mixing subshift of finite type has the specification
property. Since subshifts of finite type are expansive, we know from Theorem 3.4
that a topologically mixing subshift of finite type is intrinsically ergodic.

From Lemma 3.3 we know that a factor of a mixing subshift of finite type is
intrinsically ergodic.

Corollary 3.5. Any topologically mixing finitely presented system is intrinsically
ergodic.

Proof. Let (X, f ) be a topologically mixing finitely presented system. To prove
the corollary we show there is a topologically mixing subshift of finite type that
is an extension of (X, f ). Let R be a Markov partition for (X, f ) and A be the
adjacency matrix associated with R. Let Ri and R j be rectangles in R. Since
(X, f ) is topologically mixing and the rectangles are proper, we know there exists
some Ni j ∈N such that f n(R̊i )∩ R̊ j 6=∅ for all n≥ Ni j . Using arguments as in the
proof of Theorem 1.1, we know that an

i j > 0 for all n≥ Ni j . Define N =max(Ni j ).
Then An is positive for all n ≥ N and the subshift of finite type associated with the
Markov partition R is topologically mixing. �

Proof of Corollary 1.2. Let f ∈Diff(M) for some manifold M , let 3 be a topolog-
ically mixing hyperbolic set for f , and V be a neighborhood of 3. From Theorem
1.1 we know that there exists a topologically mixing hyperbolic set 3̃ contained
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in V and containing 3 with a Markov partition. Therefore, 3̃ is finitely presented
and from Corollary 3.5 we know that 3̃ is intrinsically ergodic. �
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