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We show that the statement that the surface area is the derivative of the volume,
which is well known for a ball, can be generalized and stated in a proper way for
any set with finite volume and surface area. We also provide a specific statement
for star-shaped sets.

1. Introduction

The well known connection between the area of a disk A= πr2 and its circumfer-
ence C = 2πr is

dA
dr
= C.

The same type of formula,
dV
dr
= S, (1)

holds for a volume V of a ball and its surface area S. In fact, it holds for Euclidean
balls in any dimension. Indeed, as derived in [Kendall 1961], the n-dimensional
volume of an n-dimensional ball of radius r is

Vn(r)=
rnπn/2

0
( n

2 + 1
) , (2)

where 0(z)=
∫
∞

0 t z−1e−t dt is the gamma function [Abramowitz and Stegun 1972,
Chapter 6], while the (n−1)-dimensional volume of a surface of the ball is [Coxeter
1963, p. 125]

S =
2rn−1πn/2

0
(n

2

) =
nrn−1πn/2

0
( n

2 + 1
) = dVn(r)

dr
.
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Emert and Nelson [1997] generalized Equation (1) for regular n-dimensional
polytopes. First they showed that

d
dr
λn(Pr )= λn−1(∂Pr ), (3)

where r is the inner radius of the polytope, that is, the minimal distance from a
center to the boundary ∂Pr . Theorem 2 of their paper is a generalization of the
formula in (3) to any polytope Pr that circumscribes a ball of radius r .

The main aim of this paper is to generalize (3) to a larger family of sets. We
show that when formulated properly, (3) holds for any set with finite volume and
surface area.

2. Definitions and preliminaries

Let n ≥ 2 be a fixed natural number. All sets considered will be subsets of Rn .
The n-dimensional Lebesgue measure on Rn will be denoted by λn .

We recall the notion of similarity between sets in Rn , which is an equivalence
relation. Two subsets S1 and S2 of Rn are similar, and we write S1 ∼ S2, if there
exist c ∈ Rn and α > 0 such that the image of S1 under the map defined by

fc,α(x)= c+α(x − c), x ∈ Rn, (4)

is congruent to S2 — that is, there is an isometry of Rn taking fc,α(S1) to S2. The
map fc,α is the homothety or scaling of center c and ratio α. It preserves the point
c and dilates or contracts distances between any two points by a factor of α.

An equivalence class of ∼ will be called a shape. A ball is an example of a
shape. One can shift, rotate, or resize it, and always get a ball.

Let d > 0 be any positive real number. The d-dimensional Hausdorff measure
[Federer 1969; Morgan 2000] of a set E is defined by

H d(E)= lim sup
δ→0+

H d
δ (E) ,

where H d
δ (E) is the infimum, over all countable covers of E by sets Ai of diameter

at most δ, of a measure of volume associated with the cover:

H d
δ (E)= inf

{ ∞∑
i=1

Vd

(diam Ai

2

)
: E ⊂

∞⋃
i=1

Ai , diam Ai < δ

}
.

Here the summand is the Lebesgue measure of a ball of radius 1
2 diam Ai ; see (2).

On Borel sets of Rn , H n
= λn [Morgan 2000, Corollary 2.8]. For any set S and

any point c,
H d( fc,α(S)

)
= αd H d(S) . (5)
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Figure 1. Horizons of c visibility (in bold) for different sets (in
gray) and different positions of point c.

The Hausdorff dimension [Morgan 2000] of a nonempty set E is defined by

dimH E = inf { d ≥ 0 : H d(E) <∞}.

For c ∈Rn we will call a map ∂c the generalized boundary if it maps subsets of Rn

to subsets of Rn , assigns measurable sets to measurable sets, and satisfies

∂c( fc,α(S))= fc,α(∂c(S)), (6)

for all α > 0 and all S ⊂ Rn . It means that the boundary grows and shrinks
together with the set S, but it is not necessarily invariant under translations or
other isometries, nor connected to S in any sense. For example, the topological
boundary is a generalized boundary.

If S is a set and c ∈ Rn any point, we define the horizon of c-visibility ∂∗c S by

∂∗c S = (µS,c)
−1(1),

where µS,c : R
n
7→ [0,∞] is the Minkowski functional [Fabian et al. 2001, p. 42]

given by

µS,c(x)=
{

inf{r > 0, x ∈ fc,r (S)}, if x ∈ fc,r (S) for some r <∞,
∞, otherwise.

It follows directly from the definition that ∂∗c S is measurable when S is. Yet ∂∗c S
does not have to be closed (Figure 1a); it does not coincide with the topological
boundary ∂ even if it is closed (Figure 1a–c), and ∂∗c is not preserved by shifts
(Figure 1b–d). On the other hand, it satisfies (6). Thus ∂∗c is a generalized boundary.

A set S is called star-shaped if there is a point c ∈ S such that for every point
p ∈ S the line segment cp is contained in S. Such a point c is called a center of
S. A star-shaped set can have many centers; for example, every convex set C is
star-shaped and every point c ∈ C is its center. However, not all star-shaped sets
are convex; see, for instance, the drawing at the end of this section.

A set S is called flat if S is contained in an affine subspace p + RddimH Se for
some point p ∈ Rn , where d e denotes the ceiling function (least integer not less
than). If c is a point and S a flat set, we define d f (c, S) to be the distance from c
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to the affine space p+RddimH Se that witnesses the flatness of S. Here we see a flat
and a nonflat subset of R2 of dimension 1:

We say that a star-shaped set S circumscribes a ball of radius r in a generalized
sense if there is a center c of S and the decomposition of ∂∗c S into countably many
pairwise disjoint measurable sets Fi , i ≥ 0, such that

(a) dist( f, c)= r , for any f ∈ F0,

(b) the sets Fi , i ≥ 1, are flat, and

(c) d f (c, Fi )= r , for all i ≥ 1.

By the definition, the center of the circumscribed ball is a center of the set S. Here
is a nontrivial set S circumscribing a ball in a generalized sense:

3. Generalization of the volume-area relationship

We now state the key lemma that is in fact a direct consequence of (5).

Lemma 1. Let S and B be any measurable sets, fix c ∈ Rn and let d ≥ 1 be such
that H d(B) ∈ (0,∞) and H d−1(S) ∈ (0,∞). Set Sr = fc,r (S) and Br = fc,r (B).
Then

d
dh

H d(Br )= H d−1(Sr ),

where

h = d
H d(B)

H d−1(S)
r.

Also

H d(Br )=
H d(B)

H d−1(S)
H d−1(Sr )r. (7)

Proof.

d
dh

H d(Br )=
d
dr

H d(Br ) ·
dr
dh
=

d
dr

(
rd H d(B)

)
·

(
d

H d(B)
H d−1(S)

)−1

= rd−1 H d−1(S)= H d−1(Sr ).

Equation (7) follows directly from (5). �
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It follows from Lemma 1 that there is always a relationship in the spirit of (3)
between any pairs of families {Sr }, {Br } that are being “inflated” together (but
otherwise may have nothing in common). In particular, S does not have to be a
boundary of B in any sense, B does not have to be convex or of any particular
shape, and the center of inflation c can be anywhere. However, the price for such
general assumptions is the need to differentiate with respect to h, the multiple of
the inflation factor r , not with respect to r itself.

The parameter n(λn(C)/(λn−1)(∂C)) for convex polytopes in Rn was studied
by Fjelstad and Ginchev [2003]. They called h the harmonic parameter of C and
showed that it is a weighted average of distances from a central point to the faces
(the weight being proportional to the size of the face), and for some objects like
boxes, it is the harmonic mean of distances from a central point to the faces of the
object, thus providing certain geometrical intuition when Lemma 1 is applied to B
and S = ∂B.

The next theorem shows that, for reasonable shapes, there is always an appro-
priate representative of the shape that makes the parameter h to be exactly r , that
is, (3) holds for that shape.

Theorem 2. Let S be a shape, fix d ≥ 1, c ∈ Rn , and let ∂c be a generalized
boundary such that, for some B ∈S,

(i) H d(B) ∈ (0,∞), and

(ii) H d−1(∂c B) ∈ (0,∞).

Then there is a B1 ∈S such that

d
dr

H d( fc,r (B1)
)
= H d−1( fc,r (∂c B1)

)
.

Proof. By Lemma 1 we need to find B1 ∈S such that h = r , that is,

H d−1(∂c B1)

H d(B1)
= d. (8)

For that, by (7), it is enough to take

B1 = fc,α(B), where α =
H d−1(∂c B)

d H d(B)
. �

The statements of Theorem 2 may seem too abstract. However, in general, we
cannot do any better, since a shape is a purely geometrical object. For example,
without our measuring the distance, all balls in R3 are alike. If we can measure
a distance, we can pick a ball and say this is the ball with radius 1. If we pick
the wrong ball, say with radius % 6= 1, its r -inflation would have volume 4

3π(%r)3

and surface area 4π(%r)2 — losing the relationship (3). Hence choosing the right
representative for balls is equivalent to choosing the length unit.
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We can pick the proper representative for cubes as well. Picking the cube with
side length 1 is not good, since its r -inflation has volume V = r3 and surface area
S = 6r2, that is, dV/dr 6= S. For cubes the right representative is a cube with side
length 2, because then its r inflation has volume V =8r3 and surface area S=24r2,
thus recovering (3). It was observed by Emert and Nelson [1997] that this right
cube circumscribes the ball of radius 1 (which we already know is a special ball).

As another example, consider a torus — which is not a star-shaped set — with
radii R and r (where r is a radius of the tube and R is a distance from a center
of the tube to the center of the torus). Note that the shape is determined by the
fraction R/r . The volume of such a torus is V = 2π2 Rr2 and the surface area is
A = 4π2 Rr . The right representative for a torus shape is a torus T1 that satisfies
A/V = 3, that is, the one that is inflated to have r = 2/3. Observe that there
is apparently nothing significant about that particular torus. However, in order to
know which representative to pick, we had to know how to calculate the volume
and surface area of a torus in general. In the next section, we will show how to
avoid this problem for certain star-shaped sets.

4. Star-shaped sets

The following lemma is an easy consequence of the definition of a star-shaped set.

Lemma 3. A closed set S is star-shaped if and only if there is a point c ∈ S such
that

S =
⋃

α∈[0,1]

fc,α(∂
∗

c S). (9)

The next theorem shows how to pick a representative S1, whose existence is
guaranteed by Theorem 2, from among certain star-shaped sets.

Theorem 4. Let d ≥ 1 and S1 be a closed star-shaped set that circumscribes a ball
of radius 1 centered at c in a generalized sense. Then

H d(S1)=
1
d

H d−1(∂∗c S1).

In particular, if H d(S1) ∈ (0,∞), then

d
dr

H d( fc,r (S1)
)
= H d−1( fc,r (∂

∗

c S1)
)
.

Proof. Let Fi , i ≥ 0, be the decomposition of ∂∗c S that witnesses that S circum-
scribes a ball of radius 1 centered at c in a generalized sense. Set

Ci =
⋃

α∈[0,1]

fc,α(Fi ), i ≥ 0.
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Namely, Ci is the cone corresponding to the face Fi . By definition of Fi and ∂∗c ,
Ci ∩C j =∅ for all i 6= j , and by (9),

S1 =

∞⋃
i=0

Ci . (10)

Note that Ci for i≥0 is a star-shaped set and c is its center. Moreover, ∂∗c Ci = Fi .
Thus

H d(Ci )= (λ1× H d−1)(Ci )=

∫ 1

0
H d−1( fc,%(∂

∗

c Ci )
)

d%

= H d−1(∂∗c Ci )

∫ 1

0
%d−1 d% =

1
d

H d−1(∂∗c Ci ).

The first part of the theorem then follows from (10). The second part is a conse-
quence of Lemma 1. �

Corollary 5 [Emert and Nelson 1997, Theorem 1 and 2]. If Pr is any regular n-
dimensional polytope with the inner radius r or more generally a polytope that
circumscribes a ball of radius r , then

d
dr
λn(Pr )= λn−1(∂Pr ).

Corollary 6. If Sr is any closed star-shaped n-dimensional polytope that circum-
scribes a ball of radius r in a generalized sense, then

d
dr
λn(Sr )= λn−1(∂Sr ).

5. Discussion

Equation (3) is in principle an integral relationship

λn(Pr )=

∫ r

0
λn−1(∂P%) d%,

which implicitly assumes

Pr =

r⋃
%=0

∂P%. (11)

By Lemma 3, this implies that Pr is star-shaped.
Moreover, if a star-shaped set P does not circumscribe any ball in the general-

ized sense, then for any center c of P , the faces of ∂∗c P have different distances
from c. In other words, as the set P is inflated from a center c, the volume of
corresponding cones grows by a different rate (this was observed in [Emert and
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Nelson 1997, p. 368] and also in [Fjelstad and Ginchev 2003]). Consequently, one
needs the faces to be equidistant to the center.

Therefore, we argue that Theorem 4 generalizes Equation (3) as much as possi-
ble while still keeping the geometrical intuition that provides a natural interpreta-
tion of the parameter r . Theorem 2 is much more general, but without any specific
intuition behind it.
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