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Lights Out is a one-player game played on a finite graph. In the standard game
the vertices can be either on or off; pressing a vertex toggles its state and that
of all adjacent vertices. The goal of the game is to turn off all of the lights. We
study an extension of the game in which the state of a vertex may be one of a
finite number of colors. We determine which graphs in certain families (spider
graphs and generalized theta graphs) are winnable for every initial coloring. We
also provide a construction that gives every always-winnable tree for any prime
power number of colors.

1. Introduction

The Lights Out game was popularized as a hand-held electronic puzzle produced by
Tiger Electronics in 1995. The puzzle consists of a 5�5 square grid of buttons, each
of which can be either on or off. A move consists of pressing one of the buttons,
which changes the state of that button and all vertical and horizontal neighbors.
Given an initial configuration in which some subset of the lights are on, the goal
of the solver is to turn off all the lights. An initial configuration of lights will be
called winnable if the puzzle can be solved when starting from that configuration.

The mathematical study of this puzzle and its generalizations has produced in-
teresting results in graph theory, some of which predate the electronic version of
the game. The puzzle on 5 � 5 grids was studied by Anderson and Feil [1998],
who used linear algebra over Z2 to classify winnable configurations. The analysis
on n�m grids was done using Fibonacci polynomials in [Goldwasser and Kloster-
meyer 1997; Goldwasser et al. 1997; 2002]. Earlier, Sutner [1989] had shown that
the winnability of configurations in Lights Out is also equivalent to a question on
finite cellular automata.
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The puzzle has a natural generalization to any finite graph, in which each vertex
of the graph starts as either on or off, and pressing a vertex toggles that vertex
and all adjacent vertices. Amin and Slater [1996] have studied this generalization
for some classes of finite graphs under the equivalent notion of parity domination
theory. In particular, they classify paths, ‘spider’ graphs (i.e., generalized stars),
and ‘caterpillar’ graphs for which every initial configuration is winnable — in their
language, all parity realizable graphs — and they give a construction which pro-
duces all trees that are winnable from every initial configuration.

Giffen and Parker [2009] have further generalized the puzzle to the setting in
which each vertex on the finite graph has k states, which are denoted by the el-
ements of Zk . The state 0 2 Zk is considered off. Pressing a vertex increments
that vertex and all adjacent vertices by 1 .mod k/. A graph G is always winnable
(AW) over Zk if every initial configuration is winnable with the above assumptions.
Giffen and Parker classify winnable configurations on paths and cycles, and also
determine which paths, cycles and caterpillar graphs are AW over Zk . Moreover,
they develop a notion of domination theory for finite graphs that is equivalent to
the multicolored Lights Out puzzle.

This paper generalizes both the results in [Amin and Slater 1996; Giffen and
Parker 2009] by studying the winnability of Lights Out over Zk for spider graphs,
(generalized) theta graphs, and trees. We establish our basic notation and prove
some helpful technical results in Section 2. In Section 3, we study the winnability
of spider graphs and determine which spider graphs are AW over Zk . We prove
similar results for generalized theta graphs in Section 4. In Section 5, we generalize
the construction of Amin and Slater to produce all AW trees over Zpe , where p is
prime and e is a positive integer.

2. Notation and basic results

The term graph will designate a finite multigraph (without loops). Given a graph
G, we denote the vertex set by V.G/ and the edge set by E.G/. An edge will
typically be denoted by the pair of incident vertices. Given an enumeration

V.G/D fv1; : : : ; vng

of the vertices of G, we define the neighborhood matrix of G to be

N.G/D adj.G/C In;

where adj.G/ is the usual adjacency matrix of G and In is the n�n identity matrix.
A coloring of the vertices will correspond to a column vector Eb 2 Zn

k
where bi is

the color of vi . The act of ‘pressing vertex vi ’ adds the i th column of N.G/ to Eb,
with addition taking place in Zn

k
.
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Remark 2.1. We have allowed a graph G to have multiple edges, even though
most of the graphs considered in this paper do not have multiple edges. This is due
to the fact that the reduction described in Proposition 2.7 may result in multiple
edges when used on generalized theta graphs in Section 4. If there are m edges
between vertices v and w, then pressing v will increment the color on v by 1 and
the color on w by m.

An initial coloring Eb 2Zn
k

is called winnable if there exists a sequence of presses
that transforms Eb to E0. As shown for two colors in Anderson and Feil [1998], Eb is
winnable if and only if the equation

N.G/Ex D�Eb

has a solution vector Ex 2Zn
k

. In this case, the solution vector Ex is called the winning
strategy for Eb and gives the vertices that should be pressed, and how many times,
in order to convert Eb to E0. Thus, an initial coloring Eb is winnable if and only if �Eb
(and hence Eb) is in the column space of N.G/ over Zk . A graph G will be called
always winnable (AW) over Zk if every initial coloring Eb 2 Zn

k
can be won (i.e., if

the column space of N.G/ is equal to Zn
k

).
We use d.G/ to denote det.N.G//, computed over Z, since this number occurs

often. We adopt the convention that the determinant of the ‘empty’ matrix is 1.
Thus, if G is the graph with no vertices and no edges, d.G/D 1 by convention. If
G1 and G2 are the connected components of G, then N.G/ is block-diagonal, and
d.G/D d.G1/d.G2/.

Proposition 2.2. For any graph G and integer k � 2, the following are equivalent.

(1) G is AW over Zk .

(2) The column space of N.G/ is Zn
k

.

(3) The null space of N.G/ is fE0g.

(4) d.G/ is relatively prime to k.

Proof. When k is prime, this is immediate from the basic theory of vector spaces
over fields. the general case involves the relationship between determinants and
free modules over a commutative ring; see [Bourbaki 1974, III.8.2, Theorem 1]. �

The following corollary is a consequence of the equivalence of (1) and (4) in
the preceding proposition.

Corollary 2.3. Let G be any graph.

(1) For any integer k � 2, G is AW over Zk if and only if G is AW over Zp for
every prime factor p of k.

(2) For any prime number p and any positive integer e, G is AW over Zpe if and
only if G is AW over Zp.
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Remark 2.4. It is also immediate that a graph is AW if and only if each of its
connected components is AW.

We now give some useful technical results that involve winnability of colorings
on related graphs. Given a graph G and a subset S � V.G/, we define G � S to
be the graph obtained by deleting the vertices in S from G, along with any edges
incident with vertices in S .

Proposition 2.5. Suppose a graph G has a set of distinct vertices

fvn�3; vn�2; vn�1; vng

with edges

fvn�3vn�2; vn�2vn�1; vn�1vng;

where deg vn�2 D deg vn�1 D 2 and deg vn D 1. (Note that vn�3 can have any
degree.) Let zG DG �fvn�2; vn�1; vng.

G

vn�3 vn�2 vn�1 vn vn�3

zG

(1) The following are equivalent:

(a) The initial coloring Eb D hb1; b2; : : : ; bn�3i
T 2 Zn�3

k
is winnable on zG.

(b) The initial coloring

Eb0 D hb1; b2; : : : ; bn�3C c1; c1C c2; c1C c2C c3; c2C c3i
T
2 Zn

k

is winnable on G for all choices of c1; c2; c3 2 Zk .

(c) The initial coloring Eb0Dhb1;b2; : : : ;bn�3;0;0;0iT 2Zn
k

is winnable on G.

(2) G is AW over Zk if and only if zG is AW over Zk .

Proof. Let J be the .n� 3/� 3 matrix such that j.n�3/;1 D 1 and all other entries
are 0. Then

N.G/D

0BBBBBBB@
N. zG/ J

1 1 0

J T 1 1 1

0 1 1

1CCCCCCCA
:
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(a)) (b) Suppose Ex D hx1; : : : ; xn�3i
T is a winning strategy for Eb 2 Zn�3

k
on

zG. For any c1; c2; c3 2 Zk , let

Ex0 D hx1; : : : ; xn�3;�c1;�c2� xn�3;�c3C xn�3i
T ;

Eb0 D hb1; b2; : : : ; bn�3C c1; c1C c2; c1C c2C c3; c2C c3i
T :

Then N.G/Ex0 D�Eb0, showing that Ex0 is a winning strategy for Eb0 on G.

(b)) (c) Immediate.

(c)) (a) For a given vector Eb 2 Zn�3
k

, suppose that

Eb0 D hb1; b2; : : : ; bn�3; 0; 0; 0iT

can be won on G with winning strategy Ey D hy1; : : : ; yni
T . The last two entries

of N.G/ Ey D �Eb0 imply that yn�2 C yn�1 C yn D 0 .mod k/ and yn�1 C yn D

0 .mod k/. This implies that yn�2D 0 .mod k/. This, combined with the fact that
N.G/ Ey D�Eb0, implies that

N. zG/

0B@ y1

:::

yn�3

1CAD�
0B@ b1

:::

bn�3

1CA :

Thus, Eb is winnable on zG. �

Corollary 2.6. We retain the hypotheses and notation of Proposition 2.5. An initial
coloring Ea D ha1; a2; : : : ; ani

T 2 Zn
k

is winnable on G if and only if the initial
coloring

Ea0 D ha1; a2; : : : ; an�4; an�3� an�1C ani
T
2 Zn�3

k

is winnable on zG.

Proposition 2.7. Suppose a graph G has a set of distinct vertices

fvn�4; vn�3; vn�2; vn�1; vng

with edges fvn�3vn�2; vn�2vn�1; vn�1vn; vnvn�4g; where deg vn�2Ddeg vn�1D

deg vn D 2. (Note that vn�3 and vn�4 can have any degree.) Let yG be the union of
G �fvn�2; vn�1; vng with a new edge vn�3vn�4.

G zG

vn�3 vn�2 vn�1 vn vn�4 vn�3 vn�4
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(1) The following are equivalent:
(a) The initial coloring

Eb D hb1; b2; : : : ; bn�4; bn�3i
T
2 Zn�3

k

is winnable on yG.

(b) The initial coloring

Eb0 D hb1; b2; : : : ; bn�4C c3; bn�3C c1; c1C c2; c1C c2C c3; c2C c3i
T
2 Zn

k

is winnable on G for all choices of c1; c2; c3 2 Zk .

(c) The initial coloring

Eb0 D hb1; b2; : : : ; bn�4; bn�3; 0; 0; 0iT 2 Zn
k

is winnable on G.

(2) G is AW over Zk if and only if yG is AW over Zk .

Proof. We proceed as in the proof of Proposition 2.5.

(a)) (b): If Ex D hx1; : : : ; xn�3i
T is a winning strategy for Eb 2 Zn�3

k
on yG, then,

for any c1; c2; c3 2 Zk , the vector

Ex0 D hx1; : : : xn�4; xn�3;�c1C xn�4;�c2� xn�3� xn�4;�c3C xn�3i
T

is a winning strategy on G for

Eb0 D hb1; b2; : : : ; bn�4C c3; bn�3C c1; c1C c2; c1C c2C c3; c2C c3i
T :

(b)) (c): Immediate.

(c)) (a): Given a winning strategy Ey 2 Zn
k

for

Eb0 D hb1; b2; : : : ; bn�3; 0; 0; 0iT

on G, the fact that N.G/ Ey D �Eb0 shows that yn�4 D yn�2 .mod k/ and yn�3 D

yn .mod k/. This implies that

N. yG/

0B@ y1

:::

yn�3

1CAD �
0B@ b1

:::

bn�3

1CA :

Thus, Eb is winnable on yG. �

Corollary 2.8. We retain the hypotheses and notation of Proposition 2.7. An initial
coloring Ea D ha1; a2; : : : ; ani

T 2 Zn
k

is winnable on G if and only if the initial
coloring

Ea0 D ha1; a2; : : : ; an�5; an�4� an�1C an�2; an�3� an�1C ani
T
2 Zn�3

k
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is winnable on yG.

For any matrix A, let Aij represent the minor obtained by deleting the i th row
and j th column from A. Again, we assume that the determinant of an ‘empty’
matrix, formed by taking a minor of a matrix with only one row or column, is 1.

Lemma 2.9. Let M be an m�m matrix and N an n�n matrix. Let J be the m�n

matrix such that jm;1 D 1 and all other entries of J are 0. Then

det
�

M J

J T N

�
D det.M/ det.N /� det Mmm det N11:

Proof. This follows from a standard proof by induction. �

Proposition 2.10. Let G1 and G2 be graphs, let v be a vertex of G1, and let w be
a vertex of G2. Let H DH.G1; G2; v; w/ be the graph formed by connecting G1

and G2 with an edge vw. Then

d.H/D d.G1/d.G2/� d.G1�fvg/d.G2�fwg/:

Proof. Assume G1 has m vertices, of which v is the last, and G2 has n vertices, of
which w is the first. The result follows immediately from Lemma 2.9, since

N.H/D

�
N.G1/ J

J T N.G2/

�
where J is as in the previous result, N.G1�fvg/DN.G1/mm and N.G2�fwg/D

N.G2/11. �

Corollary 2.11. Suppose k D pe for some prime p and positive integer e. Let G1

and G2 be graphs that are AW over Zk . Let v2V.G1/ and w2V.G2/, and suppose
that G1 � fvg is not AW over Zk . Then the graph H.G1; G2; v; w/ constructed in
the previous result is AW over Zk .

Proof. Since G1 and G2 are AW over Zk , we have p 6 j d.G1/ and p 6 j d.G2/.
Since G1�fvg is not AW over Zk , we have pjd.G1�fv1g/. Therefore,

p 6 j Œd.G1/d.G2/� d.G1�fvg/d.G2�fwg/�: �

Proposition 2.12. Let Gi be any graphs for 1 � i � m, and let vi 2 V.Gi /. Let
W D W.G1; : : : ; Gm; v1; : : : ; vm/ be the graph formed by all vertices and edges
of the graphs Gi together with a new vertex w and edges viw for 1� i �m. Then

d.W /D

mY
jD1

d.Gj /�

mX
iD1

�
d.Gi �fvig/

Y
j¤i

d.Gj /

�
:

Proof. This follows from Proposition 2.10 and induction. For the base case, attach
the single vertex w to a graph G1 by an edge wv1. �
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Corollary 2.13. Let k D pe for some prime number p and positive integer e, and
suppose each Gi is AW over Zk . Then W.G1; : : : ; Gm; v1; : : : ; vm/ is AW over
Zk if and only if

mX
iD1

d.Gi /
�1d.Gi �fvig/¤ 1 .mod p/:

Here, the inverse is taken mod p.

Proof. The graph W is AW over Zk if and only if d.W / ¤ 0 .mod p/. The
result follows by applying Proposition 2.12 to expand d.W / ¤ 0 .mod p/, then
multiplying both sides of the resulting equation by

Qm
jD1 d.Gj /�1. �

3. Spider graphs

In this section we study the winnability of spider graphs (also called generalized
stars). Specifically, we define reduced spider graph and determine which initial
colorings are winnable on reduced spiders. This is then used to determine which
spider graphs are AW over Zk .

First we provide a formal definition of a spider graph.

Definition 3.1. Let V.Pi / D fvi;1; vi;2; : : : ; vi;ni
g be the vertices of a path with

edges E.Pi / D fvi;j vi;jC1 W 1 � j � ni � 1g. A spider graph G is defined as
the union of paths P1; : : : ; Pl for some l > 2 along with a new vertex v0, with
edges consisting of the original edges from each Pi together with edges v0vi;1 for
1 � i � l . We call the paths Pi the legs of the spider and leg i has length ni . A
reduced spider graph is a spider graph that has legs of lengths 1 and 2 only.

Notation 3.2. Throughout this section, we assume that a spider graph G has

� m legs of length 1 .mod 3/, labeled P1, . . . , Pm,

� t legs of length 2 .mod 3/, labeled PmC1; : : : ; PmCt , and

� l � .mC t / legs of length 0 .mod 3/, labeled PmCtC1; : : : ; Pl .

For a reduced spider, we will have no legs of length 0 .mod 3/, and in that case,
l D m C t . An initial coloring Eb on a spider graph G is a vector ZN

k
(where

N D 1C
Pl

iD1 ni ) such that bi;j is the initial color of vi;j and b0 is the initial
color of v0.

The next result shows which initial colorings are winnable on reduced spider
graphs. Corollary 2.6 can then be used inductively to determine whether any given
initial coloring of a general spider is winnable.

Theorem 3.3. Let G be a reduced spider graph labeled as in Notation 3.2. Let
Eb 2 ZN

k
be an initial coloring of G.
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(1) If t D 0 then Eb is winnable on G if and only if gcd.m� 1; k/ divides

�b0C

mX
iD1

bi;1:

(2) If t ¤ 0 then Eb is winnable on G if and only if bi;2 � bi;1 D bj;2 � bj;1 for all
i and j such that mC 1� i , j �mC t D l .

Proof. Let G and Eb be as in the hypotheses of the theorem. In order to win, we
must press each vertex some number of times. Suppose v0 is pressed d0 times and
vi;j is pressed di;j times. The effects of pressing these vertices are:

� the color of v0 is changed by d0C
PmCt

iD1 di;1;

� for 1� i �m, the color of vi;1 is changed by d0C di;1;

� for mC 1� i �mC t , the color of vi;1 is changed by d0C di;1C di;2;

� for mC 1� i �mC t , the color of vi;2 is changed by di;1C di;2.

To win, we must change the color of every vertex to 0, which yields the following
system of equations mod k. These equations are equivalent to the matrix equation
N.G/ Ed D�Eb.

b0C d0C

mCtP
iD1

di;1 D 0 (3-1)

bi;1C di;1C d0 D 0 for 1� i �m (3-2)

bi;1C di;1C di;2C d0 D 0 for mC 1� i �mC t (3-3)

bi;2C di;1C di;2 D 0 for mC 1� i �mC t (3-4)

Equation (3-4) allows us to reduce (3-3) to:

d0 D bi;2� bi;1 for i DmC 1; : : : ; mC t: (3-5)

(1) Suppose t D 0. The initial coloring Eb is winnable on G if and only if Equations
(3-1) and (3-2) are consistent. Rewriting (3-2) as di;1D�d0�bi;1 and substituting
into (3-1) shows that Eb is winnable if and only if

d0.1�m/D�b0C

mX
iD1

bi;1

has a solution for d0 mod k. This is true if and only if gcd.m � 1; k/ divides
�b0C

Pm
iD1 bi;1.

(2) Suppose t ¤ 0. If an initial coloring Eb is winnable on G, Equation (3-5) gives
bi;2� bi;1 D bj;2� bj;1 for all mC 1� i; j �mC t .



26 EDWARDS, ELANDT, JAMES, JOHNSON, MITCHELL AND STEPHENSON

Conversely, if bi;2�bi;1D bj;2�bj;1 for all mC1� i; j �mCt , the value of d0

is determined by (3-5). The values of di;1 for 1� i �m are then determined by (3-
2). Now, we may choose any integers di;1 for mC1� i �mCt so that (3-1) holds,
and this is possible since t > 0. Finally, the values of di;2 for mC1� i �mC t are
determined (consistently) by (3-3) and (3-4). Therefore, the system has a solution
vector Ed . �

Theorem 3.4 (Characterization of AW spider graphs). Let G be a spider graph
(see 3.2 for notation). Then G is AW over Zk if and only if either

(1) t D 0 and gcd.m� 1; k/D 1, or

(2) t D 1.

Proof. Consider a spider graph G. By Proposition 2.5, G is AW over Zk if and
only if zG is AW over Zk , where zG is the reduced spider graph with m legs of
length 1 and t legs of length 2. We assume that zG is also labeled as in 3.2.

Suppose that t D 0 and gcd.m � 1; k/ D 1. Then by Theorem 3.3(1), every
initial coloring on zG is winnable over Zk . Conversely, suppose that t D 0 and
that gcd.m�1; k/¤ 1. Then gcd.m�1; k/ does not divide �b0C

Pm
iD1 bi;1 when

b1;1D 1, b0D 0, and bi;1D 0 for i D 2; : : : m. This gives an example of an initial
coloring Eb which is not winnable on zG.

Suppose t D 1. The condition in Theorem 3.3(2) is automatically satisfied for
every initial coloring Eb, and therefore zG is AW over Zk .

Finally, suppose that t > 1. In this case, there are clearly initial colorings on zG
that do not satisfy the condition in Theorem 3.3(2), showing that zG is not AW. �

4. Generalized theta graphs

In this section we study the winnability of (generalized) theta graphs. We define
a notion of reduced theta graph, and determine which initial colorings on reduced
theta graphs are winnable. This information is then used to determine which theta
graphs are AW over Zk .

Definition 4.1. Let V.Pi / D fvi;1; vi;2; : : : ; vi;ni
g be the vertices of a path with

edge set E.Pi / D fvi;j vi;jC1 W 1 � j � ni � 1g. A (generalized) theta graph G

is defined as the union of disjoint paths P1; : : : ; Pl for some l > 2 along with two
new vertices v0 and vn, with edges given by

� the original edges from each Pi ,

� edges v0vi;1 and vi;ni
vn for 1� i � l , and

� possibly one or more edges of the form v0vn (i.e., there may or may not be
edges of the form v0vn).
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We call the paths Pi , where 1 � i � l , paths of the theta graph and path i has
length ni . We will refer to each of the edges v0vn as a path of length 0 in the theta
graph. A reduced theta graph is a theta graph which only has paths of lengths 0,
1, and 2.

The winnability of generalized theta graphs modulo 2 has been studied in the
literature. In [Amin and Slater 1992], the graphs we have called generalized theta
graphs occur as a particular case of series parallel graphs, and a linear time algo-
rithm is given for determining their winnability modulo 2.

Notation 4.2. Throughout this section, we assume that a theta graph G has

� m paths of length 1 .mod 3/, labeled P1, . . . , Pm,

� t paths of length 2 .mod 3/, labeled PmC1; : : : ; PmCt , and

� l � .mC t / paths of length 0 .mod 3/, labeled PmCtC1; : : : ; Pl .

(Note: some of PmCtC1; : : : ; Pl could be ‘empty paths’ corresponding to edges
v0vn.) An initial coloring Eb on a theta graph G is a vector ZN

k
(where N D

2C
Pl

iD1 ni ) such that bi;j is the initial color of vi;j , b0 is the initial color of v0,
and bn is the color of vn.

The next result shows which initial colorings are winnable on reduced theta
graphs. Corollary 2.8 can then be used inductively to determine whether any given
initial coloring of a general theta graph is winnable.

Theorem 4.3. Let G be a reduced theta graph labeled as in Notation 4.2.

(1) If t D 0 then an initial coloring Eb 2 ZN
k

is winnable over Zk if and only if the
linear system(

.1�m/d0C .l � 2m/dn D�b0C
Pm

iD1 bi;1;

.l � 2m/d0C .1�m/dn D�bnC
Pm

iD1 bi;1;

has a solution for .d0; dn/ mod k.

(2) If t ¤ 0 then an initial coloring Eb 2 ZN
k

is winnable over Zk if and only if
bi;2�bi;1Dbj;2�bj;1 for all mC1� i; j �mCt and gcd.2�6m�3tC2l; k/

divides

�b0� bn� .l � 3m� t C 1/.bmC1;1� bmC1;2/C

mX
iD1

bi;1C

mCtX
iD1

bi;1:

Proof. Let G and Eb be as in the hypotheses of the theorem. In order to win, we
must press each vertex some number of times. Suppose v0 is pressed d0 times, vn

is pressed dn times, and vi;j is pressed di;j times. The effects of pressing these
vertices are:
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� the color of v0 is changed by d0C
PmCt

iD1 di;1C .l �m� t /dn;

� for 1� i �m, the color of vi;1 is changed by d0C di;1C dn;

� for mC 1� i �mC t , the color of vi;1 is changed by d0C di;1C di;2;

� for mC 1� i �mC t , the color of vi;2 is changed by di;1C di;2C dn;

� the color of vn is changed by dnC
Pm

iD1 di;1C
PmCt

iDmC1 di;2C.l�m�t /d0.
To win, we must change the color of every vertex to 0, which yields the following

system of equations mod k. As before, these equations are equivalent to the matrix
equation N.G/ Ed D�Eb.

b0C d0C

mCtP
iD1

di;1C .l �m� t /dn D 0; (4-1)

bi;1C d0C di;1C dn D 0 for 1� i �m; (4-2)

bi;1C d0C di;1C di;2 D 0 for mC 1� i �mC t; (4-3)

bi;2C di;1C di;2C dn D 0 for mC 1� i �mC t; (4-4)

bnC dnC

mP
iD1

di;1C

mCtP
iDmC1

di;2C .l �m� t /d0 D 0: (4-5)

(1) Suppose t D 0. The system in the statement of part (1) arises from a straight-
forward substitution using (4-2) to eliminate di;1 from (4-1) and (4-5).

(2) Suppose t ¤ 0 and the system given by (4-1) through (4-5) has a solution. Then
(4-3) and (4-4) combine to show that dn�d0 D bi;1�bi;2 for mC1� i �mC t ,
which in turn shows that bi;1�bi;2D bj;1�bj;2 for mC1� i; j �mCt . Equations
(4-2) and (4-3) can then be solved for di;1 for 1� i �mC t . Using the expressions
for di;1 to eliminate all occurrences of di;1 from (4-1) and (4-5) and simplifying
gives

b0C.1�3m�2tCl/d0C.l�2m�t /.bmC1;1�bmC1;2/

�

mCtX
iD1

bi;1�

mCtX
iDmC1

di;2 D 0; (4-6)

bnC.1�3m�tCl/d0C.1�m/.bmC1;1�bmC1;2/�

mX
iD1

bi;1C

mCtX
iDmC1

di;2D0; (4-7)

Adding (4-6) and (4-7), we find that

.2�6m�3tC2l/d0 D�b0�bn�.l�3m�tC1/.bmC1;1�bmC1;2/

C

mX
iD1

bi;1C

mCtX
iD1

bi;1: (4-8)
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This implies that gcd.2�6m�3tC2l; k/ divides the right-hand side of (4-8), as
required.

Conversely, if gcd.2�6m�3tC2l; k/ divides the right-hand side of (4-8) and
bi;1�bi;2 D bj;1�bj;2 for mC1� i; j �mC t , there exists d0 such that (4-8) is
satisfied. Since t > 0, values of dmC1;2; : : : ; dmCt;2 can be chosen freely so that
(4-6) is satisfied, and it follows that (4-7) is satisfied as well. Finally, values of di;1

can be determined for 1� i �mC t from (4-2), (4-3), and (4-4), with the last two
equations being consistent since bi;1�bi;2Dbj;1�bj;2 for mC1� i; j �mCt . �

Theorem 4.4 (Characterization of AW theta graphs). Let G be a theta graph la-
beled as in Notation 4.2. Then G is AW over Zk if and only if either

(1) t D 0 and gcd..l � 2m/2� .m� 1/2; k/D 1, or

(2) t D 1 and gcd.�1� 6mC 2l; k/D 1.

Proof. Let G be a theta graph labeled as in Notation 4.2. By Proposition 2.7, G is
AW over Zk if and only if yG is AW over Zk , where yG is the reduced theta graph
with m paths of length 1, t paths of length 2, and l �m� t paths of length 0. We
assume that yG is also labeled as in Notation 4.2.

If t D 0, then by Theorem 4.3, yG is AW over Zk if and only if

A

�
d0

dn

�
D Ey

has a solution mod k for all Ey 2 Z2
k

, where

AD

�
1�m l�2m

l�2m 1�m

�
:

This is true if and only if det A is a unit in Zk [Bourbaki 1974, III.8.7, Proposition
13]. Finally, det A is a unit in Zk if and only if gcd..l � 2m/2� .m� 1/2; k/D 1.

If t D 1, then by Theorem 4.3, yG is AW over Zk if and only if

gcd.�1� 6mC 2l; k/D 1:

Finally, if t > 1, yG cannot be AW over Zk , since the condition

bi;1� bi;2 D bj;1� bj;2

for mC 1� i; j �mC t will not be satisfied for all Eb. �

5. Always winnable trees

In this section, we give a construction describing all AW trees over Zp where p

is prime. By Corollary 2.3(2), this construction also gives all AW trees over Zpe

for positive integers e. We follow the outline of the process used in [Amin and
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Slater 1996], although the transition to p colors requires some changes to the main
argument. From this point on, ‘AW’ will mean ‘AW over Zp’.

Definition 5.1. Let G1 and G2 be AW graphs, and let vi 2 V.Gi / such that
G1 � fv1g is not AW. The process of forming the AW graph H defined in Propo-
sition 2.10 is called a type-1 operation.

Definition 5.2. Let G1; : : : ; Gm be AW graphs, and let vi 2 V.Gi / such that
Gi �fvig is AW for all i . If

mX
iD1

d.Gi /
�1d.Gi �fvig/¤ 1 .mod p/

then the process of forming the AW graph W as in Proposition 2.12 is called a
type-2 operation centered at w.

The main theorem in this section characterizes AW trees.

Theorem 5.3. A tree T is AW if and only if T can be formed by starting with copies
of K1 and using only type-1 and type-2 operations.

Proof. Corollaries 2.11 and 2.13 show that if one begins with copies of a single
vertex K1 and applies a series of type-1 and type-2 operations, an AW tree will
always result.

Conversely, let T be an AW tree. If T has diameter 0, then T D K1. It is not
possible for T to have diameter 1, since P2 is not AW for any value of k. If T has
diameter 2 (i.e., if T is an AW star with l leaves for some l � 2), then T can be
formed from copies of K1 using one type-2 operation. (The summation condition
on the type-2 operation is true because T is AW. This implies that l ¤ 1 .mod p/,
as in [Giffen and Parker 2009, Corollary 4.6].)

Therefore, we assume T has diameter at least 3. Let x 2V.T / such that deg xD

l C 1 and x is adjacent to l leaves, which we denote v1; v2; : : : ; vl . Let w be the
nonleaf vertex of T adjacent to x. Let Tx be the component of T �fwxg containing
x, and let Tw be the component of T �fwxg containing w.

TW TX

w x

v1

v2

vl
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Suppose first that Tw is not AW, so that pjd.Tw/. Proposition 2.10 implies that

d.T /D d.T �fv1g/� d.T �fx; v1g/D d.T �fv1g/� d.Tw/:

The fact that pjd.Tw/ and p − d.T / implies that p − d.T � fv1g/, showing that
T �fv1g is AW. This shows that T can be formed via a type-1 operation in which
edge xv1 is added to join T �fv1g to fv1g.

From now on, we will assume that Tw is AW. If Tw �fwg is also AW, we may
construct T via a type-2 operation centered at x. Thus, we may assume that Tw is
AW while Tw �fwg is not. Proposition 2.10 implies that

d.T /D d.Tx/d.Tw/� d.Tw �fwg/:

Since pjd.Tw�fwg/ and p − d.T /, we see that p − d.Tx/. Thus, T can be formed
by a type-1 operation in which edge wx is added to join Tx to Tw . �

Example 5.4. We show the necessity of the type-2 operation for forming trees.
Consider the following tree T over Z3.

w

x
v

One can check that d.T /D�20, showing that T is AW over Z3. For any leaf v,
the graph T �fvg is not AW over Z3, since d.T �fvg/D�12. The two graphs Tw

and Tx formed by deleting an edge wx incident with the center vertex w are both
AW modulo 3. However, Tw �fwg and Tx �fxg are also AW. Thus, T cannot be
formed from smaller trees using a type-1 operation. This tree can be formed via a
type-2 operation centered at w.
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