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The notion of the roundness of a metric space was introduced by Per Enflo as
a tool to study geometric properties of Banach spaces. Recently, roundness and
generalized roundness have been used in the context of group theory to investi-
gate relationships between the geometry of a Cayley graph of a group and the
algebraic properties of the group. In this paper, we study roundness properties of
connected graphs in general. We explicitly calculate the roundness of members
of two classes of graphs and we give results of computer calculations of the
roundness of all connected graphs on 7, 8 and 9 vertices. We also show that no
connected graph can have roundness between log2 3 and 2.

1. Introduction

The notions of metric roundness and generalized metric roundness were introduced
by Per Enflo [1970a; 1970b] to investigate geometric questions in the theory of
Banach spaces. Generalized roundness has also been used in group theory in con-
nection with the coarse Baum–Connes and the Novikov conjectures [LaFont and
Passidis 2006]. In the group-theoretic setting, a finitely generated group is viewed
as a metric space by viewing elements of the group as vertices of the Cayley graph
of the group with respect to a fixed finite generating set and taking the distance
between two elements to be the number of edges in a shortest path between them
in the Cayley graph.

Recently, more work has been done on the roundness and generalized roundness
properties of finitely generated groups, for example in [Jaudon 2008; LaFont and
Passidis 2006], relating algebraic properties of a group to the possible values that
can be taken by the roundness or generalized roundness of its Cayley graphs with
respect to different finite generating sets. However, very little work has been done
regarding roundness properties of graphs in general, and a better understanding of
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the roundness of graphs may lead to deeper insight into the connection between
the roundness of a Cayley graph and the algebraic properties of the corresponding
group. In this paper, we begin to develop a theory of the roundness of general
graphs, focusing on the possible values of the roundness of a finite connected graph.
Since the roundness of an infinite connected graph is equal to the infimum of the
roundnesses of its finite connected metrically embedded subgraphs, this is a first
step in understanding roundness for infinite graphs.

This paper is organized as follows. In Section 2, we review the definition of
roundness, state and prove several lemmas about roundness in the context of graph
theory and work through two concrete examples. In Section 3, we investigate the
roundness of the cyclic graphs Cn , finding the roundness of all of these graphs
and proving that the roundness of Cn can be made arbitrarily close to 1 by taking
values of n sufficiently large. In Section 4, we continue to investigate roundness
by working through another class of graphs that we call triangulated cycles. We
determine the roundness of triangulated cycles in this section and again prove that
as the number of vertices in a triangulated cycle goes to infinity, its roundness
goes to 1. Finally in Section 5, we summarize some computer-generated data on
the distribution of roundness among all 7-, 8- and 9-vertex graphs and make some
conjectures on the distribution of roundness based on these data. In this section,
we also prove that no graph can have roundness between log2 3 and 2.

2. Definitions and preliminary lemmas

A quadrilateral in a metric space X is an ordered 4-tuple Q = (A, B,C, D) of
(not necessarily distinct) points A, B,C, D ∈ X . Informally, we envision Q as
the vertices of a quadrilateral embedded in X , and even though there may be
no paths in X between the vertices, we talk about the sides AB, BC,C D and
D A and the diagonals AC and B D, as shown in Figure 1. Given four points,
A, B,C, D ∈ X , we may form several different quadrilaterals depending on the
order in which we take the points. We denote by Q(A, B,C, D) the quadrilateral
with sides AB, BC,C D and D A and diagonals AC and B D. If a quadrilateral
has two or more of its vertices equal, we call it degenerate.

Definition 2.1 (Roundness). If Q = Q(A, B,C, D) is a quadrilateral in the metric
space (X, d), then the roundness of Q, ρ(Q), is the supremum of all values q such
that

d(A,C)q + d(B, D)q ≤ d(A, B)q + d(B,C)q + d(C, D)q + d(D, A)q . (1)

For a metric space X , the roundness of X is

ρ(X)= inf{ρ (Q(A, B,C, D)) | A, B,C, D ∈ X}. (2)
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Figure 1. The quadrilateral Q(A, B,C, D).

We remark that this definition of the roundness of a metric space is equivalent
to another common formulation of metric roundness below.

Definition 2.2 (Equivalent definition of roundness). The roundness of the met-
ric space (X, d) is the supremum of all values q such that for any four points
A, B,C, D ∈ X ,

d(A,C)q + d(B, D)q ≤ d(A, B)q + d(B,C)q + d(C, D)q + d(D, A)q . (3)

Note that by the triangle inequality, the roundness of any quadrilateral in a metric
space is at least 1. This proves:

Lemma 2.3. The roundness of any metric space X is greater than or equal to 1.

Observation 2.4. Suppose that A, B,C, D are four distinct points in a metric
space. By the symmetry of the inequalities in the definition of roundness, every
quadrilateral on A, B,C, D has the same roundness as one of the three quadri-
laterals, Q(A, B,C, D), Q(A, B, D,C) or Q(A,C, B, D). Geometrically, this
corresponds to the fact that rotating a quadrilateral or reflecting a quadrilateral
along a diagonal or middle line preserves its sides and diagonals. Furthermore, at
most one of these quadrilaterals can have finite roundness, because a quadrilateral
of finite roundness must have its largest distance between vertices as a diagonal.
This is true even in the case that the maximal distance between vertices is achieved
by two or more pairs of vertices of the quadrilateral.

Throughout this paper we will make generous use of the following lemma that
describes how the roundness of a quadrilateral changes if we change the lengths
of its diagonals or sides.

Lemma 2.5. Let Q1 and Q2 be quadrilaterals in the metric space X with the same
side and diagonal lengths except for exactly one side or diagonal. Further suppose
that if the quadrilaterals differ in a diagonal then the diagonal of Q2 is strictly
longer than the diagonal in Q1 and if they differ in a side then the side in Q2
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is strictly shorter than the side in Q1. If ρ(Q1) is finite then so is ρ(Q2), and
ρ(Q2) < ρ(Q1).

Proof. Suppose that Q1 has finite roundness q1≥ 1. Suppose that the lengths of the
sides of Q1 arew, x, y, z and the lengths of its diagonals are a, b. Then q1 satisfies
aq1 + bq1 =wq1 + xq1 +

q1 +zq1 , and if p > q1 then a p
+ bp >w p

+ x p
+ y p
+ z p.

Case 1. Q1 and Q2 differ on a diagonal. Let a2 > a be the length of the diagonal
in Q2 that differs from that of Q1. Let p be a real number greater than or equal to
q1. Then, a p

2 + bp > a p
+ bp

≥ w p
+ x p

+ y p
+ z p. Therefore, ρ(Q2), which is

the supremum of all values q such that aq
2 + bq

≤ wq
+ xq
+ yq
+ zq , is less than

q1 = ρ(Q1).

Case 2. Q1 and Q2 differ on a side. Let w2 < w be the length of the side in Q2

that differs from that of Q1. Let p be a real number greater than or equal to q1.
Then, a p

+ bp
≥ w p

+ x p
+ y p

+ z p > w
p
2 + x p

+ y p
+ z p. Therefore, ρ(Q2),

which is the supremum of all values q such that aq
+ bq
≤ w

q
2 + xq

+ yq
+ zq , is

less than q1 = ρ(Q1). �

Roundness at it relates to graphs. In this paper, we are concerned with the round-
ness properties of metric spaces arising from connected graphs. Throughout, we let
G denote a finite connected graph with vertex set V and edge set E . We view V as
a metric space with the distance, d(A, B), between vertices A and B given by the
number of edges in a shortest edge path in G between A and B. We usually abuse
notation by referring to G itself as a metric space, but when we do so we are always
considering only the vertex set of G. Thus, ρ(G) always denotes the roundness of
the metric space consisting of only the vertex set of G. This is important, because
if we were to view all of G as a metric space in the usual way by metrically
identifying each edge with the unit interval, then any nonsimply connected graph
would have roundness equal to 1, which follows from Lemma 2.6 from [LaFont
and Passidis 2006]. Another reason this is important is that in the case G is a finite
graph, there are only finitely many quadrilaterals in G. Therefore, the infimum of
(1) in the definition of roundness is actually a minimum and the roundness of G is
actually achieved by some minimum roundness quadrilateral in G.

Lemma 2.6. Let X be a metric space. If X contains a metrically embedded circle,
then ρ(X)= 1.

Before proceeding with more preliminary lemmas related to graph roundness,
we calculate roundness in two examples, the cyclic graph on 5 vertices, C5, and
a graph we call Graph 1, shown in Figure 2. In the case of a finite graph G
since there are only finitely many different quadrilaterals in G, the infimum in (2)
is actually a minimum, and we may search for a specific quadrilateral that has
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Figure 2. Graphs C5 (left) and 1 (right).

minimal roundness among all quadrilaterals in G. The roundness of G is then the
roundness of this minimal roundness quadrilateral.

Since C5 and 1 are so small, we can find a minimal roundness quadrilateral by
simply determining by hand the roundness of every possible quadrilateral in the
graphs. Quadrilaterals Q1 = Q(A, B,C, D) in C5 and Q2 = Q(F,G, H, I ) in 1
turn out to be minimal roundness quadrilaterals in C5 and 1 respectively. In Q1

and Q2, we have the distances shown in Figure 3. So, ρ(Q1) is the supremum over
all p values such that

2p
+ 2p
≤ 1p
+ 1p
+ 1p
+ 2p.

In this case, the supremum is found by solving the equation

2p
+ 2p
= 1p
+ 1p
+ 1p
+ 2p

for p = log2(3) ≈ 1.58. The roundness of Q2 is the supremum over all p values
such that

1p
+ 2p
≤ 1p
+ 1p
+ 1p
+ 1p.

Again, the supremum is found by solving the equation

1p
+ 2p
= 1p
+ 1p
+ 1p
+ 1p

A B
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Figure 3. Quadrilaterals Q1 and Q2 with diagonal and side
lengths indicated.
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for p = log2(3) ≈ 1.58. These examples illustrate that two different graphs can
have the same roundness and that this roundness may even arise from “different”
inequalities.

When calculating roundness of a particular graph G, one often starts by seeking
an upper bound for ρ(G) by finding a subgraph of G whose roundness is known
or at least not too hard to determine. However, since the distance between vertices
through a subgraph may be different than the distance through the whole graph,
one must be careful to restrict attention to metrically embedded subgraphs, defined
below and illustrated in Figure 4.

Definition 2.7. Let G0 be a subgraph of the graph G. For vertices A, B ∈ G,
denote by dG(A, B) the distance between A and B in G. If A and B happen to
belong to G0, denote by dG0(A, B) the distance between A and B when viewed as
vertices of the graph G0. The subgraph G0 is said to be metrically embedded in G
if dG0(A, B)= dG(A, B) for every pair of vertices A, B ∈ G0. In this case, G0 is
also said to be a metric subgraph of G.

The following lemma is easily verified, and it is useful in working through spe-
cific examples.

Lemma 2.8. If G0 is a metrically embedded subgraph of G, then ρ(G)≤ ρ(G0).

G1

G

G2

Figure 4. A metrically embedded subgraph, G1, and a nonmetri-
cally embedded subgraph, G2 of the graph G.
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An immediate application of Lemma 2.8 is that a graph containing a metrically
embedded subgraph isomorphic with a cyclic graph with an even number of ver-
tices, C2k , has roundness equal to 1. This follows immediately from Lemma 2.8
and the fact that ρ(C2k)= 1. We record this as,

Lemma 2.9. If G contains a metrically embedded subgraph isomorphic with the
cyclic graph C2k for k ≥ 2 then ρ(G)= 1.

We end this subsection with two lemmas for which we provide short proofs. To-
gether with Lemma 2.3, Lemma 2.10 implies that if a graph G has finite roundness,
then 1≤ ρ(G)≤ 2. Additionally, Lemmas 2.10 and 2.11 imply that if a graph has
finite roundness then its roundness is never given by a degenerate quadrilateral.

Lemma 2.10. Let G be a finite connected graph. Then ρ(G)=∞ or ρ(G)≤ 2.

Proof. Let G be a finite connected graph such that ρ(G) 6= ∞. Since a complete
graph has infinite roundness, G is not complete. Choose three vertices A, B,C ∈G
such that d(A, B) = d(B,C) = 1 and d(A,C) = 2, which exist because G is not
complete. We have ρ(G)≤ ρ(Q(A, B,C, B))= 2. �

Lemma 2.11. If Q is a quadrilateral in which two or more of the vertices are
equal, then ρ(Q)≥ 2.

Proof. If Q is comprised of one or two vertices, it follows immediately after writing
down the inequalities that the roundness of Q satisfies that ρ(Q) = ∞, so we
assume that Q is comprised of three distinct vertices, A, B,C as shown in Figure 5
with distances between vertices indicated. Since A, B and C are distinct, w, x and
y are all nonzero. Again, it follows immediately after writing down the equation
for roundness and taking into account the symmetries in Observation 2.4 that after
possibly renaming the vertices of Q, the only quadrilateral that can possibly have
finite roundness has the form Q(A, B,C, B).

Case 1. y ≥ x+w. In this case ρ(Q) is the supremum of all values of q for which
(x +w)q ≤ 2wq

+ 2xq . Since (x +w)2 ≤ 2x2
+ 2w2, ρ(Q)≥ 2.

A

x

y w

BC

Figure 5. Degenerate quadrilateral of Lemma 2.11.
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Case 2. y < x +w. In this case, ρ(Q) is the supremum of all values q for which
yq
≤ 2wq

+ 2xq . Note that if y < w and y < x then this inequality holds for all
positive q , so ρ(Q) =∞. So we now assume that y ≥ w and y ≥ x . For q = 2,
we have y2 < (w+ x)2 = w2

+ 2wx + x2
≤ 2w2

+ 2x2. Therefore, ρ(Q) > 2. �

3. Roundness of cyclic graphs

As previously mentioned, in the cyclic graph with an even number of vertices
C2n it is not hard to find a quadrilateral whose roundness is equal to 1. Since 1
is the smallest possible value for the roundness of a metric space, this proves that
ρ(C2n)= 1. For odd cycles, C2n+1, the situation is not as easy because ρ(C2n+1) 6=

1 and proving that a candidate for a minimal roundness quadrilateral actually has
minimal roundness among all quadrilaterals in C2n+1 is more involved. In this
section we determine ρ(C2n+1) by finding a minimal roundness quadrilateral in
C2n+1.

When we talk about the cyclic order of points in C2n+1, we are always referring
to the cyclic order given by C2n+1 or its reverse. We say that the quadrilateral
Q(A, B,C, D) in C2n+1 is in cyclic order if the vertices are encountered in the
order A, B,C, D along a nonrepeating path in C2n+1 starting at A. Otherwise,
Q(A, B,C, D) is out of cyclic order. Depending on the particular way in which
C2n+1 is represented geometrically by a drawing, the path may appear “clockwise”
or “counterclockwise”.

The natural guess for a minimal roundness quadrilateral in C2n+1 is one whose
vertices are in cyclic order and as evenly spaced as possible. The fact that a quadri-
lateral of this form has roundness less than 2 proves that ρ(C2n+1)< 2. We use this
fact during the proof that this guess is in fact a minimal roundness quadrilateral
in C2n+1. In this section, we prove that quadrilaterals of this form are of mini-
mal roundness in C2n+1. Calculating the roundness of such a minimal roundness
quadrilateral in C2n+1 gives the main theorem and corollary of this section.

Theorem 3.1. Let n be an integer greater than or equal to 2.

(1) If 2n + 1 has the form 4k + 1 for an integer k, then ρ(C2n+1) is the unique
solution to the equation, 2(2k)q = 3kq

+ (k+ 1)q .

(2) If 2n + 1 has the form 4k − 1 for an integer k, then ρ(C2n+1) is the unique
solution to the equation, 2(2k− 1)q = 3kq

+ (k− 1)q .

Corollary 3.2. Let Ck be the cyclic graph on k vertices. Then lim
k→∞

ρ(Ck)= 1.

The first step in the proof of Theorem 3.1 is to prove that a minimal roundness
quadrilateral in C2n+1 must have its vertices in the cyclic order given by C2n+1.
We do this by proving that for any quadrilateral Q′ whose vertices are out of order,
there is another (possibly out of order) quadrilateral Q′′ such that ρ(Q′′) < ρ(Q′).
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The second step in the proof is to show that the vertices used in a minimal roundness
quadrilateral must be such that the side lengths are as balanced as possible.

For the rest of the section, we consider a fixed cyclic graph C2n+1 and consider
four points A, B,C, D ∈C2n+1 in cyclic order as shown in Figure 6. In this figure,
w, x, y, z are the lengths of the paths clockwise around C2n+1 from A to B to C
to D and back to A. In referring to the figure, we will often refer to A, B,C and
D as points and the w, x, y, z as the lengths of sides, thinking of the quadrilateral
Q(A, B,C, D), even if there is another, out of order, quadrilateral Q(A, B, D,C)
or Q(A,C, B, D) under consideration.

Every minimal roundness quadrilateral must be in order.

Theorem 3.3. If Q is a minimal roundness quadrilateral in C2n+1 then Q is non-
degenerate and its vertices are in the cyclic order given by C2n+1.

We separate the proof into five cases in which we prove that a degenerate or
out of order quadrilateral in C2n+1 does not have minimal roundness among all
quadrilaterals in C2n+1. The cases are divided according to the lengths of the
“sides” w, x, y, z in Figure 6.

• In Lemma 3.4, we deal with the degenerate case.

• In Lemma 3.5, we prove that an out of order quadrilateral on A, B,C, D does
not have minimal roundness in the case that none of the side lengthsw, x, y, z
is greater than the sum of any other two consecutive side lengths.

• In Lemma 3.6, we prove that an out of order quadrilateral on A, B,C, D does
not have minimal roundness in the case that the longest side is longer than the
sum of any two other consecutive sides, but is shorter than the sum of lengths
of the three remaining sides.

• In Lemma 3.7, we prove that an out of order quadrilateral on A, B,C, D does
not have minimal roundness in the case that the longest side is longer than the

A B

CD

w

y

z x

Figure 6. C2n+1 with four distinguished points A, B,C, D.
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sum of two of the other adjacent sides, but shorter than the sum of the two
others.

• In Lemma 3.8, we prove that an out of order quadrilateral on A, B,C, D does
not have minimal roundness in the case that the longest side is longer than the
other three combined.

Lemma 3.4. A degenerate quadrilateral in C2n+1 is not a minimal roundness
quadrilateral for C2n+1.

Proof. Let Q be a degenerate quadrilateral in C2n+1. By Lemma 2.11, ρ(Q) ≥
2, but we have already observed that ρ(C2n+1) < 2, so Q cannot be a minimal
roundness quadrilateral in C2n+1. �

Lemma 3.5. Let Q′ be an out of order nondegenerate quadrilateral in C2n+1 com-
prised of the vertices A, B,C, D in Figure 6. If no side length w, x, y, z is greater
than the sum of the lengths of any remaining pair of adjacent sides, then Q′ is not
a minimal roundness quadrilateral in C2n+1.

Proof. Since Q′ is nondegenerate, w, x, y, z 6= 0. Additionally, by our assumption
on side lengths, we have:

w < x + y, x <w+ z, y <w+ x, z <w+ x,
w < y+ z, x < y+ z, y <w+ z, z < x + y.

Consider the in-order quadrilateral Q = Q(A, B,C, D). By Observation 2.4
and the symmetry of the above conditions on the lengths of the sides, we may
without loss of generality assume that our out of order quadrilateral is, Q′ =
Q(A, B, D,C). By our length conditions, these two quadrilaterals have side and
diagonal lengths shown in Figure 7. Note that there are two possibilities for the
lengths of some of the sides and diagonals, depending on how the two sums in
question compare. But, no matter which possibilities are the actual lengths, the
diagonals in Q are strictly longer than the diagonals in Q′ and the vertical edges
in Q are strictly shorter than the vertical edges in Q′. Therefore, by Lemma 2.5,
ρ(Q) < ρ(Q′), finishing the proof. �

Lemma 3.6. Let Q′ be an out of order nondegenerate quadrilateral in C2n+1 com-
prised of the vertices A, B,C, D as in Figure 6. If the longest side in the in-order
quadrilateral Q = Q(A, B,C, D) is at least as long as any remaining pair of
adjacent sides but strictly shorter than the other three sides put together, then Q′

is not a minimal-roundness quadrilateral in C2n+1.

Proof. Since Q′ is nondegenerate, w, x, y, z 6= 0. Without loss of generality,
assume that w is the longest length of a side in Q. By our assumptions on lengths
of sides, we have

w ≥ x + y, w ≥ y+ z, w < x + y+ z, w ≥ x, y, z.
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Q Q′

A

z x

z

x

z+ y or
w+ x

x + y or
w+ z

AB B

C C DD

x + y or
w+ x

x + y
or w+ x

w

y

w

y

Figure 7. Quadrilaterals in Lemma 3.5. Lengths displayed inside
the quadrilateral are lengths of the diagonals. Top ones for the
upper-left to lower-right, bottom ones for bottom-left to upper-
right.

By Observation 2.4, without loss of generality we may assume that Q′ is either
Q(A, B, D,C) or Q(A,C, B, D).

Case 1. Q′ = Q(A, B, D,C). In this case, we see that the diagonals of Q are
longer than the diagonals of Q′ and the vertical edges of Q are shorter than the
vertical edges of Q′ so by Lemma 2.5, ρ(Q)<ρ(Q′) so Q′ is not a minimal length
quadrilateral in C2n+1.

Case 2. Q′ = Q(A,C, B, D). Let B ′ be the vertex of C2n+1 reached by moving
one edge from B in the direction of C , as shown in Figure 8. Note that we could
have B ′ = C . Let Q′′ = Q(A,C, B ′, D) We prove that if ρ(Q′) is finite then
ρ(Q′′) < ρ(Q′), which proves that Q′ is not a minimal-roundness quadrilateral in
C2n+1.

There are two possibilities for the side and diagonal lengths of Q′′. These are
shown in Figure 9. The lengths in the right hand quadrilateral occur only when
w = x + y+ z− 1. In both possibilities, moving from Q′ to Q′′ increases or does

D

z

A

w
B

1
B ′

x − 1

C
y

Figure 8. Forming Q′′ in case 2 of Lemma 3.6.
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D

z

A z+y C

x−1

B ′x+y−1
y

w+1

D

z

A z+y C

x−1

Bx+y−1

y

w

Figure 9. Possible sides and diagonals in Q′′.

not change the lengths of diagonals and strictly decreased the lengths of some sides,
so if ρ(Q′) is finite then by Lemma 2.5 ρ(Q′′)<ρ(Q′). Since an infinite roundness
quadrilateral is not of minimal roundness in C2n+1, which has finite roundness, this
proves that Q′ is not a minimal-roundness quadrilateral in C2n+1. �

Lemma 3.7. Let Q′ be an out of order nondegenerate quadrilateral in C2n+1 com-
prised of the vertices A, B,C, D as in Figure 6. If the longest side of the in-
order quadrilateral Q = Q(A, B,C, D) is at least as long as one of the pairs of
remaining adjacent sides but no longer than the other pair of remaining adjacent
sides, then Q′ is not a minimal-roundness quadrilateral in C2n+1.

Proof. Without loss of generality, assume that w is the longest length of a side in
Q and that w > x + y. By our assumptions on lengths of sides, we have

w ≥ x + y, w ≤ y+ z, w < x + y+ z, w ≥ x, y, z.

Again by Observation 2.4, without loss of generality we may assume that Q′ is
either Q(A,C, B, D) or Q(A, B, D,C).

We see the quadrilaterals Q(A, B,C, D), Q(A,C, B, D) and Q(A, B, D,C)
in Figure 10 with the lengths of their sides and diagonals. Note that d(A,C) may
be either z+y orw+x , depending on which is smaller. In either case, moving from
Q(A,C, B, D) or Q(A, B, D,C) to Q(A, B,C, D) increases length of diagonals
and decreases length of sides, so ρ(Q) < ρ(Q′) if ρ(Q′) is finite. This proves that
Q′ is not a minimal-roundness quadrilateral in C2n+1. �

In the proof of the next lemma, we encounter a linear graph, lm , which is a
connected graph with exactly two vertices of degree one and the remaining vertices
of degree two. Geometrically, a linear graph looks like a line between its two degree
one vertices. By case analysis, it is not hard to show that if Q is a quadrilateral in
a linear graph, then ρ(Q)≥ 2.
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C
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x
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Figure 10. Quadrilaterals in Lemma 3.7.

Lemma 3.8. Let Q′ be an out of order nondegenerate quadrilateral in C2n+1 com-
prised of the vertices A, B,C, D as in Figure 6. If the longest side in the in-order
quadrilateral Q = Q(A, B,C, D) is at least as long as the remaining three sides
put together, then Q′ is not a minimal-roundness quadrilateral in C2n+1.

Proof. Since w ≥ x + y + z, Q′ actually lies in a metrically embedded linear
subgraph lm of C2n+1. Therefore, ρ(Q′) ≥ 2. Since ρ(C2n+1) < 2, Q′ is not a
minimal roundness quadrilateral in C2n+1. �

Proof of Theorem 3.3. Let Q be a minimal roundness quadrilateral in C2n+1 formed
from the vertices A, B,C, D as in Figure 6. By Lemma 3.4, Q is nondegenerate.
Assume towards a contradiction that Q is out of order. The edge lengths w, x, y, z
of Figure 6 satisfy at least one of the conditions of Lemmas 3.5 through 3.8 because
these lemmas cover all the possibilities for how long the longest side is in relation
to the other sides from being shorter than any pair of adjacent sides to being longer
than the three other sides put together. Therefore, by these lemmas, Q is not a
minimal roundness quadrilateral, contradicting the fact that it is of minimal round-
ness. Therefore, the assumption that Q is out of order must be false, proving that
Q is in order. �

Balancing sides.

Theorem 3.9. Let Q be a quadrilateral in C2n+1. Then Q is a minimal roundness
quadrilateral in C2n+1 if and only if Q is an in-order quadrilateral and the lengths
of the longest and shortest sides of Q differ by at most 1.
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We begin with the a lemma that describes the effect of evening out the side
lengths of a quadrilateral in the case that the longest side is not too long.

Lemma 3.10. Let Q = Q(A, B,C, D) be the in-order order quadrilateral in
C2n+1 comprised of the vertices A, B,C, D as in Figure 6 and suppose that the
length longest side of Q is at least two greater than the length of its shortest side.
Suppose also that the longest side of Q is shorter than the remaining three sides
put together. Then Q has a pair of adjacent sides whose lengths differ by at least
two, and the quadrilateral Q′ formed by moving the vertex separating these sides
into the longer side a distance of one has roundness less than ρ(Q).

Proof. Without loss of generality, suppose that AB is a longest side, so w≥ x, y, z.
First we prove that Q must contain a pair of adjacent sides whose lengths differ
by at least two. Suppose not and let m be the length of the shortest side. Since no
two adjacent side lengths differ by two or more, we must have:

y = m, x = w, or x = w− 1,
z = w, or z = w− 1.

Since m ≤w−2, and since w≥ x ≥w−1 and w≥ z ≥w−1, we actually have
y=m=w−2 and x = z=w−1 because no two adjacent side lengths differ by two
or more. This means that C2n+1 actually has 4w− 4 edges, and 2n+ 1= 4w− 4,
which is impossible. Therefore, Q must have two adjacent sides whose lengths
differ by at least two.

To prove that evening out the lengths of two adjacent sides whose lengths differ
by at least two reduces roundness, we consider two cases.

Case 1. The longest side, AB, is not adjacent to any side of length shorter than
itself by at least two. Without loss of generality, suppose that side BC is the longer
of the two sides adjacent to AB. Dealing with the four possible combinations
for the values of x and z separately, we see that in each case the quadrilateral
Q′ = Q(A, B,C ′, D) made from the points A, B,C ′, D shown in Figure 11 has
roundness less than ρ(Q).

Case 2. The longest side AB is adjacent to a side of length shorter than itself by
at least two. By our assumptions on lengths, without loss of generality we have

w > x + 1, w ≥ y, w ≥ z, z ≥ x, w ≤ x + y+ z.

Consider the quadrilateral Q′= Q(A, B ′,C, D) constructed from the points A, B ′,
C, D as shown in Figure 11. The possible side and diagonal lengths of Q and Q′

are shown in Figure 12. Assume for the moment that the length of the diagonal
AC is w+ x . Let ρ(Q)= q > 1. Then, (w+ x)q + (y+ x)q =wq

+ xq
+ yq
+ zq

and (w + x)p
+ (y + x)p > w p

+ x p
+ y p

+ z p if p > q . Additionally, for any
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Figure 11. Case 1 (left) and case 2 (right) of Lemma 3.10.

p > 1, the function f (t)= t p
− (t − 1)p is increasing for t ≥ 1, which shows that

w p
+ x p > (w− 1)p

+ (x + 1)p since w > x + 1. Therefore, if p ≥ q , we have

(w+ x)p
+(y+ x)p

≥ w p
+ x p
+ y p
+ z p > (w−1)p

+(x+1)p
+ y p
+ z p,

(w+ x)p
+(y+ x+1)p

≥ w p
+ x p
+ y p
+ z p > (w−1)p

+(x+1)p
+ y p
+ z p.

Since ρ(Q′) is the supremum of the values p for which the sum of the pth powers
of the diagonals is less than or equal to the sum of the pth power of the sides, we
have ρ(Q′) < q = ρ(Q) in the case that the length of AC is equal to w+ x . The
proof that ρ(Q′) < ρ(Q) in the case that the length of AB is y+ z is similar. This
finishes the proof of the lemma in case 2. �

Proof of Theorem 3.9. Let Q be a minimal roundness quadrilateral in C2n+1. By
Theorem 3.3, we know that Q is in cyclic order. We further know that ρ(C2n+1)<2
and that any quadrilateral in C2n+1 whose longest side is at least as long as its other
three sides together has roundness greater than 2, so the longest side of Q is shorter
than the other three sides together. Therefore, by Lemma 3.10, we know that the
lengths of the longest and shortest sides of Q differ by a most 1, for otherwise Q

A B

CD y
y+x

z

w+x or z+y
w

x

A B ′

CD

z

w+x or z+y
w−1

x+1

y

y+x
or y+x+1

Figure 12. Sides and diagonals in case 2 of Lemma 3.10.
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would not have minimal roundness. Therefore, Q is an in-order quadrilateral and
the lengths of the longest and shortest sides of Q differ by at most 1.

Conversely, let Q′ be an in order quadrilateral with lengths of the longest and
shortest sides differing by at most 1. These conditions on Q′ uniquely determine
the side and diagonal lengths of Q′. Therefore, Q′ has the same roundness as the
minimal roundness quadrilateral Q from the first half of the proof. Therefore, Q′

is itself a minimal-roundness quadrilateral in C2n+1. �

Calculation of ρ(C2n+1). Here we prove Theorem 3.1 and Corollary 3.2.

Proof of Theorem 3.1. If 2n+1 has the form 4k+1 for integer k then by Theorem
3.9 the diagonals of a minimal roundness quadrilateral Q in C2n+1 have length 2k,
one side has length k + 1 and three sides have length k. Therefore, in this case,
ρ(C4k+1) is the supremum over all values p such that 2(2k)p

≤ 3k p
+ (k + 1)p.

Define the function fk(p) by fk(p) = 2(2k)p
− (k + 1)p

− 3k p. Then fk(1) < 0
and fk(p) > 0 for sufficiently large p. Therefore fk(p) has a zero greater than 1.
Also, when arranged in decreasing order of the sizes of their bases, the exponential
terms in fk(p) exhibit one “sign change”, so fk(p) has at most one positive zero,
(see for example [Langer 1931, p. 128]). Since fk(p) > 0 for sufficiently large p
values, fk(p) is positive for all p values greater than its positive zero. Therefore,
2(2k)p > 3k p

+ (k + 1)p for all p values greater than the solution to 2(2k)p
=

3k p
+ (k+1)p, which proves that ρ(C2n+1) is the positive solution of the equation

2(2k)p
= 3k p

+ (k + 1)p in the case that 2n + 1 has the form 4k + 1. A similar
argument shows that ρ(C2n+1) is the positive solution of the equation 2(2k−1)p

=

3k p
+ (k− 1)p if 2n+ 1 has the form 4k− 1. �

Since ρ(C2n) = 1, to prove Corollary 3.2 it suffices to show that the solutions
to the equations (1) and (2) of Theorem 3.1 approach 1 as k goes to infinity. As
in the proof of Theorem 3.1, the proofs in each case are similar, so we provide a
rigorous proof of only (1), the case that 2n+ 1 has the form 4k+ 1.

Proof of Corollary 3.2. Restricting our attention to the case 2n + 1 = 4k + 1, we
have ρ(C4k+1) equal to the zero of the function fk(p) from the proof of Theorem
3.1. We show that this solution can be made arbitrarily close to 1 by choosing k
sufficiently large. Since 1 ≤ ρ(C4k+1) < log2 3 for k-values greater than 2, we
may restrict our attention to p values less than log2 3. Fix a real number α with
1<α< log2 3. Consider the function g(k)= fk(α)= 2(2k)α−(k+1)α−3kα. For
all sufficiently large k, g(k) > 0. Therefore, for all sufficiently large k, fk(α) > 0.
Since fk(1) < 0 for all k, this proves that for all sufficiently large k, the zero
of fk(p) is between 1 and α. It follows that limk→∞ ρ(C4k+1)= 1. A similar
argument shows that limk→∞ ρ(C4k−1)= 1. Since ρ(C2k) = 1 for all k > 2, this
finishes the proof that limk→∞ ρ(Ck)= 1. �
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4. Triangulated cycles

We now continue our investigation of roundness of finite graphs by investigating
the effect of “triangulating” a cycle by connecting various of the vertices in the
cycle with edges in a particular way until there are no metrically embedded cycles
of length greater than 3. We focus on a particular triangulation of Ck , described
below, which we simply denote by Tk .

Definition 4.1. Let Ck be the cyclic graph with vertices v1, v2, . . . , vk in cyclic
order. The triangulated cycle Tk is formed by connecting with edges the following
pairs of vertices

(v2, vk), (vk, v3), (v3, vk−1), (vk−1, v4), . . .

as shown in Figure 13.

Since the roundness of a circle is equal to 1 and the roundness of R2 is equal to
2, it seems reasonable that the roundness of the triangulated cycle Tn should be at
least a little closer to 2 than the roundness of the nontriangulated cycle of the same
length, Cn . We prove this to be true in the main theorem of this section.

Theorem 4.2. Let T be the triangulated cycle T2n or T2n+1. For n ≥ 2, ρ(T ) is the
solution of the equation

nq
= (n− 1)q + 2. (4)

Since each Tk for k ≥ 4 contains an metrically embedded copy of graph 1,
ρ(Tn) ≤ log2 3 < 2, so no minimal roundness quadrilateral in Tn has roundness 2
or greater. This is a fact that we will frequently use without explicitly mentioning it
in this section. Another fact we will use throughout is the following lemma whose
proof we omit.

vk−2

vk−1

vk

v1

v2

v3

v4

Figure 13. The triangulated cycle Tk .
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Lemma 4.3. If r ∈ (0, 1] and x, y > 0 then (x + y)r < xr
+ yr .

We now prove our main theorem of this section.

Proof of Theorem 4.2. Let rn denote the solution of Equation (4). We proceed by
induction on n to prove that ρ(T2n) = ρ(T2n+1) = rn . For the base case, n = 2,
T4 and T5 are small enough that one can verify by hand that they have roundness
equal to r2.

Now assume by induction that for all k < n, ρ(T2k)= ρ(T2k+1)= rk . We focus
first on T2n and prove that ρ(T2n)= rn . Note that ρ(Q(v1, v2, vn+1, vn+2))= rn , so
ρ(T2n)≤ rn . Denote by Q′ the quadrilateral Q′ = Q(v1, v2, vn+1, vn+2). Suppose
now that Q is a quadrilateral in T2n that does not contain both v1 and vn+1. In this
case, Q is a quadrilateral in a metrically embedded subgraph of T2n isomorphic to
T2k or T2k+1 for k < n. By our induction hypothesis, this subgraph has roundness
rk>rn . So, ρ(Q)≥rk>rn=ρ(Q′), and Q is not a minimal roundness quadrilateral
in T2n . Therefore, every minimal roundness quadrilateral in T2n contains both v1

and vn+1. Furthermore, the greatest distance between vertices in T2n is n, and this
occurs only between vertices v1 and vn+1, so any minimal roundness quadrilateral
in T2n must be of the form Q(v1, u, vn+1, w), containing the path from v1 to vn+1

as a diagonal.
Now, let Q(v1, u, vn+1, w) be a quadrilateral in T2n with the path from v1 to

vn+1 on a diagonal. If both u and v occur on the same side of T2n (i.e., either both
have subscripts greater than n+1 or both have subscripts less than n+1), then Q
lies in a metrically embedded line in T2n and therefore has roundness at least 2 and
is not a minimal roundness quadrilateral in T2n . Therefore, assume that u = vb+2

and w=wn+2+a for some a, b with 0≤ a≤ n−2 and 4≤ b≤ n−2. We prove that
Q is not a minimal roundness quadrilateral in T2n unless a= b= 0 or a= b= n−2.
If a+ b ≤ n, then ρ(Q) is the positive solution of

n p
+ (n− a− b− 1)p

= (n− 1− a)p
+ (a+ 1)p

+ (n− 1− b)p
+ (b+ 1)p, (5)

and if a+ b > n then ρ(Q) is the positive solution of

n p
+ (a+ b+ 3− n)p

= (n− 1− a)p
+ (a+ 1)p

+ (n− 1− b)p
+ (b+ 1)p. (6)

We first deal with the case that a + b ≤ n and prove that the solution to (5) is
greater than rn when a+ b ≤ n and at least one of a and b is strictly greater than
0. Assume now that a, b ≥ 0, a+ b ≤ n and at least one of a and b is greater than
0. Since

n1
+ (n− a− b− 1)1 < (n− 1− a)1+ (a+ 1)1+ (n− 1− b)1+ (b+ 1)1,

it suffices to prove that

nrn + (n−a−b−1)rn < (n−1−a)rn + (a+1)rn + (n−1−b)rn + (b+1)rn . (7)
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Consider the function

f (a, b)= nrn+(n−a−b−1)rn−(n−1−a)rn−(a+1)rn−(n−1−b)rn−(b+1)rn .

We prove inequality (7) by proving that f (a, b) < 0 for all a, b ≥ 0 with at least
one of a and b greater than 0 and a + b ≤ n. By the symmetry between a and b,
without loss of generality, we may assume that a ≥ b. Since at least one of a and
b is at least 1, we have a ≥ 1. First consider the function g(a)= f (a, a). Since rn

is the solution to (4), we have g(0)= 0. Now,

g′(a)=−2rn(n− 2a− 1)rn−1
+ 2rn(n− 1− a)rn−1

− 2rn(a+ 1)rn−1.

By Lemma 4.3, we have

(n− 1− a)rn−1 < ((n− 2a− 1)+ (a+ 1))rn−1 < (n− 2a− 1)rn−1
+ (a+ 1)rn−1.

Therefore, g′(a) < 0 for a> 0 so f (a, a)= g(a) < 0 for all a> 0 and in particular
for all a ≥ 1.

A similar argument proves that f (a, 0) < 0 for all a ≥ 1, so we are left with
proving that f (a, b) < 0 in the case that a > b and a, b ≥ 1 and a+ b ≤ n. Since
f (a, a)<0 it suffices to prove that fa(a, b)<0 for all a and b under consideration.
Now, fa(a, b) = −rn(n− a− b− 1)rn−1

+ rn(n− 1− a)rn−1
− rn(a+ 1)rn−1. By

Lemma 4.3 and the fact that b < a we have

(n−1−a)rn−1<((n−a−b−1)+(a+1))rn−1<(n−a−b−1)rn−1
+(a+1)rn−1.

Therefore, fa(a, b) < 0 for all a, b under consideration, finishing the proof that
Q is not a minimal roundness quadrilateral in T2n in the case that a+ b ≤ n. The
inequalities in case that a + b > n can be reduced to the inequalities in the case
a + b ≤ n by making the substitutions a′ = n − 2− a and b′ = n − 2− b, so the
above arguments prove that Q is not a minimal roundness quadrilateral in T2n in
this case, either unless a′ = b′ = 0, which is the same as a = b = n− 2.

We have now proved that a minimal roundness quadrilateral in T2n has the form
Q(v1, u, vn+1, w) with u = vb+2 and w = wn+2+a for some a, b ≥ 0. But, we
have also proved that such a quadrilateral is not a minimal roundness quadrilateral
whenever at least one of a and b is greater than 1. Therefore, the quadrilateral
given when a and b are equal to 0, Q(v1, v2, vn+1, vn+2), is a minimal roundness
quadrilateral in T2n . This finishes the proof that ρ(T2n)= rn .

To finish the inductive step the proof, must prove that ρ(T2n+1) = rn also. The
details in the argument for this case are very similar to those in the proof that
ρ(T2n) = rn , but the proof also uses the fact we just proved that ρ(T2n) = rn . We
therefore omit the proof that ρ(T2n+1)= rn . This finishes the proof of the induction
step and proves that ρ(T2n)= ρ(T2n+1)= rn for all n ≥ 2. �
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We note that it can be proved from our formulas for ρ(T2n) and ρ(T2n+1) that
ρ(T2n) > 1= ρ(C2n) and ρ(T2n+1) > ρ(C2n+1), as mentioned in the introduction
to this section. The formulas can also be used to prove the following corollary in
a way similar to the way that Corollary 3.2 was proved in the previous section.

Corollary 4.4. Let Tk the triangulated cycle described in Definition 4.1. Then

lim
k→∞

ρ(Tk)= 1.

5. The distribution of roundness for general graphs

As can be seen from the previous two sections, rigorously calculating the roundness
of a particular graph or class of graphs can be a daunting task because the number
of quadrilaterals in a graph with n vertices grows as n4. Certainly there is a lot of
duplication and some quadrilaterals can be ruled out immediately as not giving the
minimal roundness, but the task is still very large. Therefore, we wrote a computer
program to aid with example calculations. This program has two forms. In the
first form, available at an online calculator, the user enters the adjacency matrix
of a graph on 10 or fewer vertices. The program then by brute force enumerates
all quadrilaterals in the graph, estimates the roundness of each one and outputs a
minimal roundness quadrilateral along with its roundness. In its other form, this
program reads in a file containing the adjacency matrices, formatted in a certain
way, of a set of graphs on 10 or fewer vertices. The program calculates the round-
ness of each graph and outputs a list of all the roundness that occurred among the
graphs and the number of times each roundness occurred. We ran this program on
files containing the adjacency matrices of all nonisomorphic connected graphs on
7, 8 and 9 vertices that we obtained from Gordon Royle’s data at the web page
Small Graphs and found the roundness distributions among these graphs shown in
Tables 1–3.

Looking at these data, one notices a number of trends that would be interesting
to investigate formally. In particular, most graphs seem to have roundness equal to
1, which makes sense because any graph with a metrically embedded even cycle
has roundness equal to 1. Another observation is that, after eliminating the graphs
with roundness equal to 1, roundnesses tend to “bunch up” at the upper end around
1.58 and 1.39, with a tail trailing off to roundness equal to 1. It would be interesting
to explore and rigorously quantify this phenomenon. One last striking feature of
these distributions is that while the gap between the smallest two roundness values
gets smaller as the number of vertices gets larger (as it should according to Corol-
laries 3.2 and 4.4), the gap between the upper two roundness values, log2 3 and 2
does not seem to shrink. This leads to the question can any graph have roundness
strictly between log2 3 and 2? The answer is no:

http://faculty.uwstout.edu/horakm/RoundnessCalculator/calculator.html|
http://people.csse.uwa.edu.au/gordon/graphs/fixed.html
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Roundness Number Fraction of Total

1.00000 545 0.6389215
1.31091 2 0.0023447
1.39495 26 0.0304807
1.58497 221 0.2590856
2.00000 58 0.0679953
∞ 1 0.0011723

Total number of graphs: 853

Table 1. Roundness distribution: 7 vertices.

Roundness Number Fraction of Total

1.00000 9170 0.824862823
1.23336 1 8.99523E-05
1.31091 21 0.001888999
1.32766 4 0.000359809
1.39495 361 0.032472789
1.58497 1395 0.125483494
2.00000 164 0.014752181
∞ 1 8.99523E-05

Total number of graphs: 11117

Table 2. Roundness distribution: 8 vertices.

Roundness Number Fraction of Total

1.00000 245324 0.9396507
1.21258 2 7.66E-06
1.23336 16 6.128E-05
1.27156 3 1.149E-05
1.31091 375 0.0014363
1.32766 94 0.00036
1.39495 4844 0.0185537
1.58497 9926 0.038019
2.00000 495 0.001896
∞ 1 3.83E-06

Total number of graphs: 261080

Table 3. Roundness distribution: 9 vertices.
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Theorem 5.1. For any finite graph G, ρ(G) 6∈ (log2 3, 2).

We call the interval between log2 3 and 2 a gap in the roundness spectrum for finite
graphs. Theorem 5.1 and the fact that the data in Tables 1–2 seem to exhibit other
gaps suggests the following question:

Are there any other gaps in the roundness spectrum for finite graphs? In particular,
does any finite graph have roundness between 1.58497 and 1.39495?

We suspect that the answer is yes there are other gaps, including one between
1.58497 and 1.39495, but we do not have a proof at present. For now, we prove
Theorem 5.1, beginning with the following lemma. This lemma is the key that
allows us to severely restrict the kinds of quadrilaterals that could appear in a
graph with roundness between log2 3 and 2.

Lemma 5.2. If G is a graph with ρ(G) > log2 3, every closed nonrepeating path
in G is contained in a subgraph of G that is a complete graph.

Proof. First note that if Cn for n ≥ 4 or Graph 1 is metrically embedded in a
graph, then the graph’s roundness is less than or equal to log2 3. Therefore, G
has no metrically embedded subgraph isomorphic to Cn for n ≥ 4 or 1. Let γ
be a closed nonrepeating path in G of length k. We proceed by induction on k to
show that γ is contained in a complete subgraph. The base case k = 3 is trivial
because in this case, γ itself is a complete graph on 3 vertices. Now assume that
every closed nonrepeating path in G of length less at most n−1 is contained in a
complete subgraph. Consider a closed nonrepeating path γ with length k = n ≥ 4.
If γ is metrically embedded, then γ is a metrically embedded Cn for n ≥ 4, which
is impossible since ρ(G) < log2 3. Therefore two nonadjacent vertices v and w in
γ must be connected by a path in G shorter than the shortest path between them
within γ. Let τ be such a path between v and w in G and let γ1 and γ2 be the two
paths between v and w described by γ. We now have two closed paths, γ′= τ ∪γ1

and γ′′ = τ ∪γ2, both of which have length less than n and which together contain
all vertices of γ. The only repetition possible in these paths is in τ . Therefore,
by eliminating repetition in τ , or by replacing τ with a segment of τ between two
consecutive intersections of τ with γ and choosing new vertices v and w in γ, we
may assume that γ′ and γ′′ are also nonrepeating closed paths of length less that n.
By our induction hypothesis both of these paths lie in complete subgraphs of G.

To see that all of γ lies in a single complete subgraph, let G0 be the subgraph
of G consisting of all of the vertices in γ together with all edges between these
vertices. Choose vertices s and t in γ. If s and t both lie together in γ′ or in γ′′,
then by fact just proved that both γ′ and γ′′ lie in complete subgraphs, s and t span
an edge in G. If they do not lie together in γ′ or γ′′ and they do not span an edge in
G, then the vertices v, s, w, t span a metrically embedded subgraph isomorphic to
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Figure 14. Possible shapes for a quadrilateral in G.

graph1, which is impossible since ρ(G) > ρ(1). Therefore, s and t must span an
edge in G. This proves that the subgraph G0 that contains γ is a complete graph,
finishing the inductive step. Therefore every closed nonrepeating path in G lies in
a complete subgraph of G. �

Using Lemma 5.2, we show that the geodesics comprising any quadrilateral
Q(A, B,C, D) in G must fit together into one of the four “shapes” in Figure
14. In this figure, we are considering fixed shortest paths, geodesics, between
the points A, B,C, D in G. The lines in the figure represent parts of the fixed
geodesics, and the lower case letters a, b, c, d and e are the lengths of subpaths of
these paths. Paths of length 1 indicate edges connecting nonintersecting subpaths
of the geodesics. We note that there may be many geodesics in G between any
two points, but for the following arguments, we arbitrarily fix one distinguished
geodesic between each pair of vertices that we consider throughout all the proofs.

Lemma 5.3. If G is a graph with ρ(G) > log2 3 and if Q is a quadrilateral in G
with vertices A, B,C, D then, after possibly renaming A, B,C, D, the geodesics
forming Q take on one of the four shapes in Figure 14.

Proof. First consider the fixed geodesics, X1 from A to B, X2 from B to C , and
X3 from A to C . Let A1 be the vertex at which X1 and X3 last agree, A2 the last
vertex at which X1 and X2 last agree and let A3 be the last vertex at which X2

and X3 agree. If the Ai are all distinct then these vertices and geodesics must lie
as in Figure 15. Otherwise (for example if A2 were to lie closer along X1 to A
than A1 lies to A), by making replacements of subpaths, we could shorten at least
one of the geodesics X1, X2 or X3. The closed path formed by α followed by β
followed by γ in Figure 15 is nonrepeating path, for otherwise we could shorten
one of the geodesic paths α, β or γ. By Lemma 5.2 and the fact that each of these
is a geodesic, they all must have length 1. Therefore, for any three points in the
quadrilateral Q the geodesics between them must form a degenerate triangle as in
Figure 16, with length ε being equal to either 0 or 1. Combining the possibilities
for the triangle formed by A, B,C with the possibilities for the triangle formed
by A,C, D, and remembering that graph 1 cannot metrically embed in G leads
to only the four possible configurations in Figure 14, after possibly renaming the
vertices. �
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A

B

C
α

γ

βA2

A1

A3

Figure 15. Orientation of vertices in the proof of Lemma 5.3.

Proof of Theorem 5.1. Let G be a finite graph with roundness strictly greater
than log23, and let Q be a quadrilateral in G formed with vertices A,B,C,D
of G. Fix geodesics in G between each pair of these vertices. By Lemma 5.3,
after a possible renaming of the vertices, A,B,C and D and the corresponding
geodesics fall into one of the shapes in Figure 14. To prove that ρ(G) /∈ (log23,2) it
suffices to verify that q=2 satisfies the inequality in Definition 2.1 for quadrilateral
Q. By Observation 2.4, this amounts to verifying the inequality for quadrilaterals
Q(A,B,C,D),Q(A,B,D,C) and Q(A,C,B,D) in all four shapes of Figure 14.
All of the verifications are performed similarly, so we show the proof only for
Q(A,B,C,D) in the first shape. This amounts to proving that

(a+ c+ d + 2)2+ (b+ c+ e+ 2)2

≤ (a+ c+ e+ 2)2+ (a+ b+ 1)2+ (d + e+ 1)2+ (b+ c+ d + 2)2.

This can be verified through the following sequence of inequalities:

0≤ (a− e)2+ (b− d)2+ 2ab+ 2ad + 2be+ 2de+ a+ b+ d + e+ 2,

0≤ a2
+ b2
+ d2
+ e2
+ 2ab+ 2ad− 2ae− 2bd+ 2be+ 2de+a+ b+ d+ e+ 2,

A

B

Cε

ε

ε

Figure 16. Degenerate triangle in the proof of Lemma 5.3.
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a2
+b2
+2c2
+d2
+e2
+2ac+2ae+2bc+2bd+2cd+2ce+4a+4b+8c+4d+4e+8

≤ 2a2
+ 2b2

+ 2c2
+ 2d2

+ 2e2
+ 2ab+ 2ac+ 2ad + 2bc+ 2be

+ 2cd + 2ce+ 2de+ 5a+ 5b+ 8c+ 5d + 5e+ 10,

(a+ c+ d + 2)2+ (b+ c+ e+ 2)2

≤ (a+ c+ e+ 2)2+ (a+ b+ 1)2+ (d + e+ 1)2+ (b+ c+ d + 2)2. �

We finish this section by noting that the roundness of an infinite connected graph
is the infimum of the roundnesses of all of its metrically embedded finite connected
subgraphs. Since none of these finite subgraphs can have roundness between log2 3
and 2, it follows that no graph, finite or infinite, can have roundness between log2 3
and 2. We record this as our final corollary.

Corollary 5.4. If G is a connected graph then ρ(G) /∈ (log2 3, 2).
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