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We consider the periodicity of recursive sequences defined by linear homoge-
neous recurrence relations of arbitrary order, when they are reduced modulo a
positive integer m. We show that the period of such a sequence with characteris-
tic polynomial f can be expressed in terms of the order of ω= x+〈 f 〉 as a unit
in the quotient ring Zm[ω]=Zm[x]/〈 f 〉. When m= p is prime, this order can be
described in terms of the factorization of f in the polynomial ring Zp[x]. We use
this connection to develop efficient algorithms for determining the factorization
types of monic polynomials of degree k ≤ 5 in Zp[x].

1. Introduction

This article grew out of an undergraduate research project, performed by the second
author under the direction of the first, to determine if results about the periodicity
of second-order linear homogeneous recurrence relations modulo positive integers
could be extended to higher orders. We arrived, somewhat unexpectedly, at algo-
rithms to determine the degrees of the irreducible factors of quintic and smaller
degree polynomials modulo prime numbers. The algebraic properties of certain
finite rings, particularly automorphisms of those rings, provided the connection
between these two topics.

To illustrate some of the ideas in this article, we begin with the famous example
of the Fibonacci sequence, defined by Fn = Fn−1+ Fn−2 with F0 = 0 and F1 = 1.
If, for some positive integer m, we replace each Fn by its remainder on division
by m, we obtain a new sequence of integers. For example, the Fibonacci sequence
modulo m = 10 begins

0, 1, 1, 2, 3, 5, 8, 3, 1, 4, 5, 9, 4, 3, 7, 0, 7, 7, 4, 1, 5, 6, 1, 7, 8, 5, . . . ,

with the n-th term simply the last digit of Fn . We can also view such a sequence as
having terms in Zm=Z/〈m〉, the ring of integers modulo m. This has the advantage
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that, rather than computing each Fn and dividing that term by m, we can merely
begin with 0 and 1 and calculate successive terms of the sequence by adding the
two preceding terms in Zm . This viewpoint makes it obvious that if there is a
positive integer ` for which F` = 0 and F`+1 = 1 (in Zm), the sequence will then
repeat the pattern of F0, F1, . . . , F`−1 indefinitely. For the Fibonacci sequence, it
is known that such a value of ` exists for every positive integer m. (For m = 10, it
can be verified that `= 60.)

Upper limits on the period length of the Fibonacci sequence modulo prime num-
bers are implicit in Theorem 180 of [Hardy and Wright 1979], one proof of which
employs properties of the powers of a root of f (x)= x2

− x−1, the characteristic
polynomial of the Fibonacci sequence. Expanding on this approach, when consid-
ering recursive sequences of arbitrary order in this article, we work in rings, Zm[ω],
of integers modulo m with a purely formal root ω of the characteristic polynomial
f of the sequence adjoined. Our first main result (Corollary 5) is that under minor
restrictions on m and the initial terms of the sequence, the period of the recursive
sequence modulo m is equal to the order of ω in the group of units in Zm[ω].

Possible orders of ω in the group of units Zp[ω]
×, where p is prime, are deter-

mined by the factorization of f in the polynomial ring Zp[x]. In particular, using
properties of ring automorphisms of Zp[ω], we find in Theorem 9 that if f has no
repeated factors in Zp[x], and t is the least common multiple of the degrees of the
irreducible factors of f in Zp[x], then t is the smallest positive integer for which
the order of ω divides pt

− 1. For the Fibonacci sequence, and for other second-
order recursive sequences, the important details of the factorization are obtained
from standard results about quadratic congruences (particularly calculation of Le-
gendre symbols via the quadratic reciprocity theorem). For sequences of higher
order, with characteristic polynomials of higher degree, methods of determining
this factorization are less apparent. Finally though, reversing the approach taken
with second-order sequences, we show, in Theorem 11 and its corollaries, that in-
formation about powers of ω in the rings Zp[ω] lead to highly efficient algorithms
for determining the factorization types of monic polynomials f with deg f ≤ 5
modulo most primes p.

To outline this article: In Section 2, we define recursive sequences of order
k, we consider the simple but instructive case in which k = 1, and we establish
a criterion for periodicity of recursive sequences modulo arbitrary positive inte-
gers m. We introduce the characteristic polynomial f of a recursive sequence in
Section 3, which we use to define the rings Zm[ω] referred to above. We show
that the periodicity of recursive sequences modulo m can be easily described in
terms of powers of the element ω in the ring Zm[ω]. This leads us, in Section 4,
to consider algebraic properties of these rings. We find that, for a prime modulus
p, the relevant properties depend on the factorization of f (e.g., the degrees of
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irreducible factors, existence of repeated factors) in the ring of polynomials Zp[x].
In Section 5, we apply well known properties of quadratic congruences to obtain
general results about periodicity modulo primes when k = 2, with the Fibonacci
sequence as a special case. Finally, in Section 6, we obtain efficient algorithms for
finding the factorization type of cubic, quartic, and quintic polynomials f modulo
most primes p, using calculation of periods of recursive sequences modulo p, or
computation of powers of ω. (Adams [1984] and Sun [2003] have separately used
certain recursive sequences to develop algorithms for factorization of cubic and
quartic polynomials modulo primes. Our algorithm differs in details from both of
these.)

The authors are grateful to the referee for pointing out several sources of which
we were not aware during the preparation of this article. Engstrom [1931], Ward
[1933], and Fillmore and Marx [1968] have extensive details on linear recurrence
relations modulo positive integers. See in particular Chapter 8 of [Lidl and Nieder-
reiter 1983] for more results and notes about this aspect of the problem. Further-
more, Skolem [1952] has provided criteria for the factorization type of quartic
polynomials modulo primes, similar to our result in Corollary 13, and [Sun 2006]
notes a criterion for the factorization of a polynomial into linear factors modulo
a prime number, which is essentially the same as the statement of part (1) in our
Theorem 15.

2. Periodicity of recursive sequences modulo integers

Let m be a positive integer. We say that a sequence {an}
∞

n=0 of integers is periodic
modulo m or `-periodic modulo m if there is a positive integer ` such that a`+i ≡ ai

(mod m) for all i ≥ 0. We also say that {an}
∞

n=0 is periodic in Zm in this case, and
when it is clear that we are referring to equality in this ring, we write a`+i = ai

rather than a`+i ≡ ai (mod m). If ` is the smallest positive integer for which
{an}

∞

n=0 is `-periodic modulo m, we call ` the period of the sequence modulo m.

Proposition 1. If a sequence {an}
∞

n=0 is periodic modulo m with period `, then for
a positive integer k, the sequence is k-periodic modulo m if and only if ` divides k.

Proof. Suppose that {an}
∞

n=0 is periodic in Zm with period `. Then a2`+i =

a`+(`+i) = a`+i = ai for all i , and inductively, a`q+i = ai for all positive integers
q . So if ` divides k > 0, then {an}

∞

n=0 is k-periodic in Zm . Conversely then,
suppose that {an}

∞

n=0 is k-periodic in Zm for some positive integer k. We can write
k = `q+r for some integers q and r with 0≤ r <`. Now for every i ≥ 0, we have
ai = ak+i = a`q+(r+i) = ar+i , since, as noted above, the sequence is `q-periodic.
If r > 0, this contradicts the definition of ` as the period of the sequence. So we
must conclude that r = 0 and so that ` divides k. �



132 J. LARRY LEHMAN AND CHRISTOPHER TRIOLA

In this article, we are primarily interested in the periodicity of sequences defined
recursively. We fix the following notation for the sequences of interest. Let k be a
positive integer, let r1, r2, . . . , rk be integers, and let (a0, a1, . . . , ak−1) be a k-tuple
of integers. Define a sequence of integers {an}

∞

n=0 by setting

an = r1an−1+ r2an−2+ · · ·+ rk−1an−k+1+ rkan−k =
k∑

i=1
ri an−i , (2-1)

when n ≥ k. A sequence of this form is called a linear homogeneous recurrence
relation of order k; we will refer to it as a recursive sequence of order k for short.
We call r1, r2, . . . , rk the coefficients, and a0, a1, . . . , ak−1 the initial terms of this
recursive sequence.

Remark. To establish that {an}
∞

n=0 as defined in (2-1) is `-periodic in Zm , it suf-
fices, as we noted in Section 1 for the Fibonacci sequence, to show that a`+i = ai

for 0≤ i ≤ k− 1.

We can describe the periodicity of recursive sequences of order k = 1 using
standard results about linear congruences from elementary number theory.

Example. Define an for n ≥ 0 by setting an = ran−1 when n > 0, with r and
a0 integers. Then an = a0rn for all n, and the sequence is periodic modulo m if
there is a positive integer ` such that a0r` ≡ a0 (mod m). If gcd(a0,m) = d , this
congruence is equivalent to r` ≡ 1 (mod m/d), and such a value of ` exists if and
only if r is relatively prime to m/d . In that case, the period of the sequence equals
ordm/d(r), the order of r in the group Z×m/d of units in Zm/d .

Remark. This example illustrates that we are unlikely to obtain a precise formula
for the period of a recursive sequence modulo every positive integer m. For ex-
ample, if a0 = 1 and an = 2an−1 for n > 0, then the sequence {an}

∞

n=0 is periodic
modulo every odd positive integer m, with period the order of 2 in Z×m . We know
that this order divides φ(m) = |Z×m |, but a more specific formula for this value is
difficult to obtain. Similarly, for larger values of k, we will generally be able to
provide only upper limits on the period of a recursive sequence modulo an arbitrary
integer m.

The following theorem provides a criterion for the periodicity of recursive se-
quences modulo positive integers m. Our proof follows that of a similar result in
[Wall 1960] for the Fibonacci sequence.

Theorem 2. Let {an}
∞

n=0 be a recursive sequence with coefficients r1, r2, . . . , rk ,
defined as in (2-1). Let m be a positive integer. If gcd(rk,m)= 1, then the sequence
is periodic modulo m.

Proof. There are mk distinct k-tuples of elements of Zm . By the pigeonhole princi-
ple, it follows that there are integers s and t with 0≤ s< t≤mk such that as+i =at+i
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in Zm for 0≤ i ≤ k−1. We may assume that s is the smallest nonnegative integer
for which this is true. But if s > 0, then as+k−1 = at+k−1 implies that

r1as+k−2+ r2as+k−3+ · · ·+ rk−1as + rkas−1

= r1at+k−2+ r2at+k−3+ · · ·+ rk−1at + rkat−1

in Zm , by the recursive definition of the sequence. It follows that rkas−1 = rkat−1,
and if gcd(rk,m) = 1, so that rk is a unit in Zm , then as−1 = at−1 in Zm . This
contradicts our assumption about s, so we must conclude that s = 0. By the note
above, it follows that {an}

∞

n=0 is periodic modulo m. �

Remark. If gcd(rk,m) > 1, then {an}
∞

n=0 defined by (2-1) may or may not be
periodic modulo m, depending on the initial terms of the sequence. For example,
if (a0, a1, . . . , ak−1) = (1, 0, . . . , 0), then it is easy to see that rk divides an for
all n > 0, and so a` ≡ a0 (mod m) is not possible for any ` > 0. On the other
hand, the sequence with initial terms (a0, a1, . . . , ak−1) = (0, 0, . . . , 0) is clearly
1-periodic modulo m. This trivial example is generally not exclusive. For instance,
if an=an−1+an−2+2an−3, with (a0, a1, a2)= (1, 0, 1), then the sequence {an}

∞

n=0
is 3-periodic modulo m= 2. In any event, the proof of Theorem 2 shows that every
recursive sequence defined as in (2-1) will exhibit an infinitely repeating pattern
of terms modulo m, possibly following some initial terms. In the remainder of
this article, given a recursive sequence of order k, we will restrict our attention to
moduli m that are relatively prime to the k-th order coefficient rk .

3. Polynomial extensions of Zm

If {an}
∞

n=0 is a recursive sequence given as in (2-1), then we define the characteristic
polynomial of that sequence to be

f (x)= xk
− r1xk−1

− r2xk−2
− · · ·− rk−1x − rk .

It is well known that each an can be expressed in terms of n-th powers of the
solutions of f (x) = 0, with the combination of those powers determined by the
initial terms of the sequence. In considering arithmetic properites of the sequence
{an}

∞

n=0 modulo m, we will find it useful to work in rings, Zm[ω], of the integers
modulo m with a purely formal solution, ω, of f (x)= 0 adjoined. We define these
rings as follows.

For a positive integer m, consider the quotient ring Zm[x]/〈 f 〉, where Zm[x] is
the ring of polynomials with coefficients in Zm and 〈 f 〉 is the principal ideal of
Zm[x] generated by f . Since f is a monic polynomial, that is, its leading coefficient
is 1, then for every polynomial g in Zm[x], there exist unique polynomials q and
r in Zm[x] such that g = f · q + r , with r of smaller degree than f , or r = 0. In
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that case, g+ 〈 f 〉 = r + 〈 f 〉. Writing the coset x + 〈 f 〉 as ω f , or as ω when f is
apparent from context, we can identify Zm[x]/〈 f 〉 with the ring Zm[ω] defined by

Zm[ω] ={
bk−1ω

k−1
+bk−2ω

k−2
+· · ·+b1ω+b0

∣∣bi ∈Zm and ωk
=

k∑
i=1

riω
k−i
}
. (3-1)

Here bk−1ω
k−1
+ · · · + b0 = ck−1ω

k−1
+ · · · + c0 if and only if bi = ci in Zm for

0 ≤ i ≤ k − 1, so in general, Zm[ω] has mk elements. We refer to Zm[ω] as the
extension of Zm by the polynomial f or more generally as a polynomial extension
of Zm . We write elements of Zm[ω] using Greek letters, or in the form g(ω) where
g is a polynomial in Zm[x].

We establish a connection between the ring Zm[x]/〈 f 〉 and recursive sequences
with characteristic polynomial f as follows. Let {an}

∞

n=0 be defined as in (2-1),
and for 1≤ j ≤ k and n ≥ k, let a( j, n)=

∑k
i= j ri an−i . Notice that, for all n ≥ k,

a(k, n)= rkan−k (3-2)
and

a( j + 1, n)+ r j an− j = a( j, n) if 1≤ j < k. (3-3)

Now define α to be the following element of Zm[ω], determined by the initial
terms and coefficients of the sequence:

α=ak−1ω
k−1
+a(2, k)ωk−2

+a(3, k+1)ωk−3
+· · ·+a(k−1, 2k−3)ω+a(k, 2k−2)

= ak−1ω
k−1
+

k∑
j=2

a( j, k+ j − 2) ·ωk− j , (3-4)

here viewing ak−1 and each a( j, k+ j − 2) as elements of Zm .

Theorem 3. Let {an}
∞

n=0 be defined recursively as in (2-1), and let α be defined by
(3-4). Then for every integer n ≥ 0,

αωn
= an+k−1ω

k−1
+

k∑
j=2

a( j, n+ k+ j − 2) ·ωk− j . (3-5)

Remark. If n ≥ 1, then an+k−1 =
∑k

i=1 ri an+k−1−i = a(1, n + k − 1) by the
recursive definition of the sequence. So for n ≥ 1, we can also express (3-5) as

αωn
=

k∑
j=1

a( j, n+ k+ j − 2) ·ωk− j . (3-6)

Proof. We use induction on n. Equation (3-5) is true for n= 0 by (3-4). So suppose
that (3-5) holds for some integer n ≥ 0. Then
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αωn+1
= (αωn)ω = an+k−1ω

k
+

k∑
j=2

a( j, n+ k+ j − 2) ·ωk− j+1

=

k∑
j=1

r j an+k−1 ·ω
k− j
+

k∑
j=2

a( j, n+ k+ j − 2) ·ωk− j+1,

using the equation for ωk in (3-1). Splitting off the last term in the first sum, and
replacing j by j + 1 in the second sum, we have that

αωn+1
= rkan+k−1+

k−1∑
j=1

r j an+k−1 ·ω
k− j
+

k−1∑
j=1

a( j + 1, n+ k+ j − 1) ·ωk− j

= rkan+k−1+

k−1∑
j=1

(r j an+k−1+ a( j + 1, n+ k+ j − 1)) ·ωk− j

= rkan+k−1+

k−1∑
j=1

a( j, n+ k+ j − 1) ·ωk− j ,

using (3-3). But rkan+k−1 = a(k, n+ 2k− 1) by (3-2), so that

αωn+1
=

k∑
j=1

a( j, n+ k+ j − 1) ·ωk− j .

This is (3-6) with n+1 in place of n. Since n+1≥ 1, (3-5) is then true with n+1
in place of n, and so (3-5) holds for all integers n ≥ 0 by induction. �

Theorem 4. Let k be a positive integer, and let {an}
∞

n=0 be a recursive sequence
with coefficients r1, . . . , rk and characteristic polynomial f , defined as in (2-1).
Let m be a positive integer such that gcd(rk,m)= 1, let Zm[ω] = Zm[x]/〈 f 〉, and
let α be given as in (3-4). Then {an}

∞

n=0 is `-periodic modulo m if and only if
αω` = α in Zm[ω].

Proof. If a`+i = ai for all i ≥ 0, then, in particular, a`+k−1 = ak−1, and it is easy to
see that a( j, `+k+ j−2)= a( j, k+ j−2) for 2≤ j ≤ k. Thus αω`= α by (3-5).

Conversely, suppose that αω` = α. Comparing the equations in (3-4) and (3-5),
we know that a`+k−1 = ak−1 and a( j, `+ k + j − 2) = a( j, k + j − 2) in Zm for
2 ≤ j ≤ k. But if gcd(rk,m) = 1, so that rk is a unit in Zm , we can use the latter
equations to show inductively that a`+ j−2=a j−2 for 2≤ j≤k, which is sufficient to
establish that the sequence is `-periodic. If j=k, then a(k, `+2k−2)=a(k, 2k−2)
implies that rka`+k−2 = rkak−2, so that a`+k−2 = ak−2. Now let j be an integer
with 2≤ j < k, and suppose that we have shown that a`+i−2 = ai−2 for j < i ≤ k.
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Then a( j, `+ k+ j − 2)= a( j, k+ j − 2) implies that

r j a`+k−2+ r j+1a`+k−3+ · · ·+ rk−1a`+ j−1+ rka`+ j−2

= r j ak−2+ r j+1ak−3+ · · ·+ rk−1a j−1+ rka j−2,

which, by the inductive hypothesis and the assumption that rk is a unit, implies
that a`+ j−2 = a j−2. The result follows by induction. �

Corollary 5. Let k be a positive integer, and let {an}
∞

n=0 be a recursive sequence
with coefficients r1, . . . , rk and characteristic polynomial f , defined as in (2-1).
Let m be a positive integer such that gcd(rk,m)= 1, let Zm[ω] = Zm[x]/〈 f 〉, and
let α be given as in (3-4). Then ω is a unit in Zm[ω], and {an}

∞

n=0 is periodic
modulo m, with period ` dividing ordm(ω), the order of ω in the group, Zm[ω]

×,
of units in Zm[ω]. If A = {β ∈ Zm[ω] | αβ = 0}, then ` is the order of ω+ A in the
group of units of the quotient ring Zm[ω]/A.

Remark. It is easy to see that the set A defined in the corollary is an ideal of
Zm[ω]. This ideal, called the annihilator of α in Zm[ω], is trivial if α is a unit in
Zm[ω], so in that case, `= ordm(ω).

Proof. If gcd(rk,m) = 1, then rk is a unit in Zm , say with inverse r−1
k . Then it

is easy to verify that r−1
k (ωk−1

− r1ω
k−2
− · · · − rk−2ω − rk−1) · ω = 1, so that

ω is a unit in Zm[ω]. Since Zm[ω]
× is finite, there is an integer t = ordm(ω) for

which ωt
= 1. But then αωt

= α, and Theorem 4 implies that {an}
∞

n=0 is t-periodic
modulo m. If ` is the period of this sequence modulo m, we know that ` divides t
by Proposition 1. Furthermore, ` is the smallest positive integer such that αω`=α,
which is true if and only if ω`− 1 is in the annihilator of α. But then ` is the the
order of ω+ A as a unit in the quotient ring Zm[ω]/A. �

Example. Consider the recursive sequence of order k = 1 defined by an = ran−1

for n > 0, with a0 and r fixed integers, as in a previous example. Let m be a
positive integer that is relatively prime to r , in which case the sequence is periodic
modulo m. The characteristic polynomial of {an}

∞

n=0 is f (x) = x − r , so that
ω= x+〈 f 〉= r+〈 f 〉 in Zm[x]/〈 f 〉. It is easy to see that Zm[x]/〈 f 〉 is isomorphic
to Zm , so that we can identify ω with r . By (3-4), we have that α = a0, and if
gcd(a0,m) = d, then we find that the annihilator A of α in Zm[ω] is generated
by m/d . Corollary 5 implies that the period of {an}

∞

n=0 is the order of r + A in
(Zm[ω]/A)×, which we can view as the order of r in Z×m/d . Thus we see that
Corollary 5 generalizes our results for recursive sequences of order k = 1 to higher
orders.

Example. It can be verified that the period of the Fibonacci sequence modulo
m=5 is 20. On the other hand, the Lucas sequence, defined for n≥0 by (L0, L1)=

(2, 1), and Ln = Ln−1 + Ln−2 if n > 1, has period four modulo m = 5. This is
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possible because, for the Fibonacci sequence, α = ω is a unit in Z5[ω], where
ω2
= ω+ 1, while for the Lucas sequence, α = ω+ 2 has a nontrivial annihilator

in Z5[ω].

Remark. If the initial terms of a recursive sequence are (a0, . . . , ak−2, ak−1) =

(0, . . . , 0, 1), then α = ωk−1 is a unit, when ω is a unit in Zm[ω]. In this case,
Corollary 5 implies that the period of the sequence modulo m is the same as the
order of ω in Zm[ω]

×. We will restrict our attention to this special case for the
initial terms in what follows.

In the remainder of this article, we will further restrict our attention to the case
in which the modulus m of interest is prime, using the following observations. First
suppose that {an}

∞

n=0 is periodic modulo s with period k, and periodic modulo t
with period `. If gcd(s, t) = 1, it is straightforward to show, using Proposition 1,
that {an}

∞

n=0 is periodic modulo st with period lcm(k, `). (This does not require
the assumption that the sequence is defined recursively.) For powers of primes, we
can invoke the following result.

Theorem 6. Let p be a prime number and j a positive integer. Let f be a poly-
nomial with integer coefficients, and suppose that p does not divide the constant
coefficient of f , so that ω is a unit in Zp j [ω] = Zp j [x]/〈 f 〉. Let s = ordp j (ω) and
t = ordp j+1(ω). Then either t = s or t = ps.

Remark. If d divides m, then it is easy to see that the function φ :Zm[ω]→Zd [ω]

defined by φ(g(ω))= g(ω) is a well-defined ring homomorphism, with kernel 〈d〉.
So if g(ω) = h(ω) in Zm[ω], then g(ω) = h(ω) in Zd [ω]. On the other hand,
if g(ω) = h(ω) in Zd [ω], then the strongest statement that we can make is that
g(ω)= h(ω)+ d · δ for some element δ in Zm[ω].

Proof. Let s be the order of ω in Zp j [ω] and let t be the order of ω in Zp j+1[ω].
Since ωt

= 1 in Zp j+1[ω], then ωt
= 1 in Zp j [ω] by the remark above, so that s

divides t . By the same remark, since ωs
= 1 in Zp j [ω], then ωs

= 1+ p j
· δ for

some δ in Zp j+1[ω]. But now

ωps
= (ωs)p

= (1+ p j
· δ)p
= 1+

( p
1

)
p j
· δ+

( p
2

)
p2 j
· δ2
+ · · ·+ p pj

· δ p
= 1

in Zp j+1[ω], since all terms in the sum aside from the first are divisible by p j+1.
Thus t divides ps. Since s | t and t | ps, with p prime, we conclude that t = s or
t = ps. �

So if ` is the period of a recursive sequence modulo p, then the period of the
same sequence modulo p j must divide p j−1

·`. Interesting questions about periods
of recursive sequences modulo prime powers remain open. For example, Sun and
Sun [1992] showed that if a prime exponent p were a counterexample to the first
case of Fermat’s Last Theorem, then the period of the Fibonacci sequence modulo
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p and modulo p2 would have to be the same. It is not known whether any such
primes exist for the Fibonacci sequence. (Of course, it is now known that no such
counterexamples to Fermat’s Last Theorem can exist.) For our purposes, we will
simply note that the upper limit given above is not always obtained as the exact
period of a recursive sequence modulo p j , as the following example shows.

Example. Define an for n ≥ 0 by (a0, a1, a2)= (0, 0, 1) and

an = an−1+ an−2+ 2an−3

for n > 2. We find that {an}
∞

n=0 has period ` = 6 both modulo p = 3 and modulo
p2
= 9.

4. Algebraic properties of Z p[ω]

With these restrictions in place, our main task, given the characteristic polynomial
f of a recursive sequence, is to describe the order of ω = ω f = x + 〈 f 〉 as a unit
in the quotient ring Zp[ω] = Zp[x]/〈 f 〉, for all primes p not dividing the constant
coefficient of f . We will see that our description of ordp(ω) depends largely on
how f factors in the polynomial ring Zp[x]. We begin by compiling some useful
general statements about these polynomial extensions.

(1) If g divides f , then the function φ :Zp[ω f ]→Zp[ωg] defined by φ(h(ω f ))=

h(ωg) is a well-defined ring homomorphism with kernel 〈g(ω f )〉. It follows
that if r(ω f ) = s(ω f ) in Zp[ω f ], then r(ωg) = s(ωg) in Zp[ωg], while if
r(ωg) = s(ωg) in Zp[ωg], then r(ω f ) = s(ω f ) + g(ω f ) · δ for some δ in
Zp[ω f ].

(2) The set of all (ring) automorphisms of Zp[ω] forms a group under composi-
tion. If h is a polynomial in Zp[x] and σ :Zp[ω]→Zp[ω] is an automorphism,
then σ(h(ω)) = h(σ (ω)). In particular, 0 = σ(0) = σ( f (ω)) = f (σ (ω)), so
that σ(ω) is a root of f .

(3) For an automorphism σ of Zp[ω], if σ(ω) = ω, then σ(h(ω)) = h(σ (ω)) =
h(ω) for all h ∈ Zp[x]. That is, σ(ω) = ω if and only if σ is the identity
automorphism.

(4) The function σp : Zp[ω] → Zp[ω] defined by σp(β) = β
p is a ring homo-

morhism, since Zp[ω] has characteristic p. Furthermore, σp is an automor-
phism if and only if the polynomial f has no repeated irreducible factors in
Zp[x]. (If f = g2h for some irreducible polynomial g, then g(ω)h(ω) is a
nonzero element in the kernel of σp. On the other hand, if f has no repeated
irreducible factors, then the uniqueness of irreducible factorization in Zp[x]
shows that f divides h p if and only if f divides h. In that case, the kernel of
σp is trivial, and since Zp[ω] is finite, σp is a bijection.)
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(5) If f is irreducible in Zp[x], with deg f = k, then Zp[ω]=Zp[x]/〈 f 〉 is a field
with pk elements. In this case, the group Aut(Zp[ω]) of automorphisms of
Zp[ω] is cyclic of order k, generated by σp [Dummit and Foote 2004, p. 556].

(6) If f = f1 · f2 · · · f j is a product of pairwise relatively prime polynomials in
Zp[x], then the quotient ring Zp[ω] = Zp[x]/〈 f 〉 is isomorphic to the direct
product of quotient rings Zp[x]/〈 f1〉×Zp[x]/〈 f2〉×· · ·×Zp[x]/〈 f j 〉 [Dummit
and Foote 2004, p. 313].

We can draw some conclusions about the order of ω in Zp[ω]
× from these state-

ments. We begin with the case in which f is irreducible in Zp[x].

Theorem 7. Let f (x)= xk
− r1xk−1

−· · ·− rk . Let p be a prime for which p - rk ,
and suppose that f is irreducible in Zp[x]. Let t be the order of (−1)k+1rk as
an element of Z×p . Then ordp(ω), the order of ω as a unit in Zp[ω] = Zp[x]/〈 f 〉,
divides pk

−1
p−1 t , but ordp(ω) divides neither pi

− 1 for 0 < i < k nor pk
−1

p−1 s for
0< s < t .

Proof. By statement (5), we know that Aut(Zp[ω]) is cyclic of order k, generated by
σp. The composition of i copies of σp is the same as σpi , defined by σpi (β)= β pi

.
Statement (3) implies that ωpi

6= ω, and so ωpi
−1
6= 1, for 0< i < k.

Statement (2) now implies that f has k distinct roots in Zp[ω], each of the form
σpi (ω)= ωpi

for 0≤ i < k, and therefore

f (x)= (x −ω)(x −ωp)(x −ωp2
) · · · (x −ωpk−1

).

Comparing constant coefficients of these polynomials, we find that−rk = (−1)kω ·
ωp
·ωp2
· · ·ωpk−1

, and so

(−1)k+1rk = ω
1+p+p2

+···+pk−1
= ω

pk
−1

p−1 .

If t is the order of (−1)k+1rk in Z×p , then ω
pk
−1

p−1 t
= 1, but ω

pk
−1

p−1 s
6= 1 for 0< s< t .

�

Secondly, we consider the case in which f is a power of an irreducible polyno-
mial.

Theorem 8. Let f be a monic polynomial of degree k with integer coefficients.
Suppose that f = gt , where g is an irreducible polynomial of degree s in Zp[x] (so
that st= k). Let p be a prime number not dividing the constant coefficient of g (and
so not dividing the constant coefficient of f ). Let j be the smallest nonnegative
integer for which p j

≥ t . Let Zp[ω f ] = Zp[x]/〈 f 〉 and Zp[ωg] = Zp[x]/〈g〉, and
suppose that ωg has order ` as a unit in Zp[ωg]. Then the order of ω f as a unit in
Zp[ω f ] equals pi` for some i with 0≤ i ≤ j .
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Proof. Let m be the order of ω f in the group Zp[ω f ]
×. Since (ω f )

m
=1 in Zp[ω f ],

then (ωg)
m
= 1 in Zp[ωg] by statement (1), so that ` divides m. Since (ωg)

`
= 1 in

Zp[ωg], statement (1) also implies that (ω f )
`
= 1+g(ω f )·δ for some δ in Zp[ω f ].

Now note that

(ω f )
p j`
= ((ω f )

`)p j
= (1+ g(ω f ) · δ)

p j
= 1+ g(ω f )

p j
· δ p j
= 1,

in Zp[ω f ], using the facts that Zp[ω f ] has characteristic p and that f = gt divides
g p j

, by the definition of j . So m divides p j`, and the conclusion of Theorem 8
follows immediately. �

Finally, if f factors as a product of pairwise relatively prime polynomials, say
f = f1 · f2 · · · f j with each fi a power of a distinct irreducible polynomial in Zp[x],
then Zp[ω f ] is isomorphic to

Zp[ω f1]×Zp[ω f2]× · · · ×Zp[ω f j ]

by statement (6). If a prime number p does not divide the constant coefficient of f ,
then it is easy to see that the order of ω f in Zp[ω f ]

× is the least common multiple
of the orders of each ω fi in the appropriate group of units. We can place a further
restriction on the order of ω f when no irreducible factor of f is repeated.

Theorem 9. Let f be a monic polynomial of degree k with integer coefficients, and
let p be a prime number not dividing the constant coefficient of f . Suppose that
f = f1 · f2 · · · f j for distinct irreducible polynomials fi of degree ki in Zp[x] (so
that k = k1+k2+· · ·+k j ). Let t = lcm(k1, k2, . . . , k j ). Then in the group Zp[ω]

×

of units in the ring Zp[ω] = Zp[x]/〈 f 〉, the order of ω divides pt
−1, but does not

divide pi
− 1 for 0< i < t .

Proof. By statement (4), the function σp : Zp[ω]→ Zp[ω] defined by σp(β)= β
p

is an automorphism of Zp[ω]. With Zp[ω f ] isomorphic to Zp[ω f1] × Zp[ω f2] ×

· · ·×Zp[ω f j ] and each Zp[ω fi ] a field, it is straightforward to show that the order
of σp in Aut(Zp[ω]) is t = lcm(k1, k2, . . . , k j ). By statement (3), it follows that
ωpt
= ω, but ωpi

6= ω if 0 < i < t . Since ω is a unit in Zp[ω], the conclusion of
Theorem 9 follows. �

5. Recursive sequences of order two

We illustrate our results so far with some general statements about recursive se-
quences of order two. Define an for n ≥ 0 by (a0, a1)= (0, 1), and an = r1an−1+

r2an−2 for n > 1, where r1 and r2 are integers. Let p be a prime number, let
f (x)= x2

−r1x−r2, and let Zp[ω] =Zp[x]/〈 f 〉. If p - r2, then {an}
∞

n=0 is periodic
modulo p, with period ` equal to the order of ω in Zp[ω]

×. The factorization of f
in Zp[x] is determined by its discriminant, D = D( f )= r2

1 +4r2, and we can use
that factorization to describe `.
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Case 1: f is irreducible in Zp[x]. For odd p, this is the case if and only if the
Legendre symbol

( D
p

)
equals −1, while for p = 2 this occurs precisely when

D ≡ 5 (mod 8). Theorem 7 implies that ` divides (p+ 1)t , where t is the order
of −r2 in Z×p , but that ` divides neither p− 1 nor (p+ 1)s for 0< s < t .

Case 2: f factors as a product of distinct linear polynomials in Zp[x]. For odd p,
this is the case if and only if

( D
p

)
= 1, while for p= 2, this occurs in general when

D≡ 1 (mod 8). (Of course, it is impossible for a quadratic polynomial f to factor
into distinct linear terms in Z2[x] unless 2 divdes its constant coefficient, which
we assume is not the case here.) Theorem 9 implies that ` divides p − 1. More
precisely, if f (x) = (x − b)(x − c) in Zp[x], then ` is the least common multiple
of the orders of b and c in Z×p . (If f1(x) = x − b, then ω f1 = x + 〈 f1〉 = b+ 〈 f1〉

in Zp[x]/〈 f1〉, which is isomorphic to Zp.)

Case 3: f factors as the square of a linear polynomial in Zp[x]. This is the case if
and only if p divides D. Since p ≥ 2 for every prime p, Theorem 8 implies that `
divides p(p− 1). In this case, we can make the following precise statement as a
corollary of Theorem 8.

Corollary 10. Let f (x)= x2
− r1x − r2 with r1 and r2 integers. Let p be a prime

number dividing D= r2
1 +4r2 but not dividing r2, so that f (x)= (x−c)2 in Zp[x]

for some c 6= 0 in Zp. If t is the order of c in Z×p , then the order of ω = x +〈 f 〉 as
a unit in Zp[ω] = Zp[x]/〈 f 〉 is pt .

Proof. Let g(x) = x − c, and let t be the order of c in Z×p . Since ωg = x + 〈g〉 =
c+ 〈g〉, then t is the order of ωg as a unit in Zp[ωg]. Theorem 8 implies that the
order ofω f in Zp[ω f ]

× is either t or pt . But (ω f )
t
=1 if and only if f (x)= (x−c)2

divides h(x)= x t
−1 in Zp[x]. If so, then h(c) and h′(c) are both zero in Zp. This

is impossible since h′(c) = tct−1, but p - t (a divisor of p− 1) and p - c. So the
order of ω f in Zp[ω f ]

× must be pt . �

Example. For the Fibonacci sequence, r1 = 1, r2 = 1, and D = 5. Since p - r2

for all primes p, the Fibonacci sequence is periodic modulo p, say with period
`p. The polynomial x2

− x − 1 is irreducible in Z2[x], since D ≡ 5 (mod 8). The
order of −r2 = −1 in Z×2 is 1, and so for p = 2, we have that `p is a divisor of
p+1= 3, but not p−1= 1. The only possibility is `2= 3, which is easy to verify
directly. Since x2

− x − 1 = (x − 3)2 in Z5[x], and c = 3 has order four in Z×5 ,
Corollary 10 implies that `5 = 20. (Note that these two results, together with the
remark preceding Theorem 6, verify the claim made in the introduction that the
Fibonacci sequence has period `= 60 modulo m = 10.)

If p 6= 2, 5, then since 5≡ 1 (mod 4), quadratic reciprocity implies that
( 5

p

)
=( p

5

)
, so that factorization of x2

− x − 1 is determined by the value of p modulo 5.
If p ≡ 1 or 4 (mod 5), then

( 5
p

)
= 1 and x2

− x − 1 factors as a product of linear
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factors in Zp[x]. Theorem 9 implies that `p divides p− 1. If p ≡ 2 or 3 (mod 5)
for an odd prime p, then

( 5
p

)
=−1 and x2

− x − 1 is irreducible in Zp[x]. In this
case, the order of −r2 = −1 in Z×p is 2, and so `p divides 2(p + 1), but divides
neither p+ 1 nor p− 1. The period of the Fibonacci sequence modulo p can be
smaller than the upper limits noted here for p 6= 2, 5. For example, `29 = 14, a
proper divisor of 29− 1, and `47 = 32, a proper divisor of 2(47+ 1) = 96 that
divides neither 48 nor 46.

As we see here, unless the discriminant D of a quadratic polynomial f is identi-
cally zero, there are only finitely many primes p for which f has repeated factors in
Zp[x]. The following generalization of the discriminant for higher degree polyno-
mials similarly allows us (in theory) to determine all values of p for which a given
polynomial f factors into distinct irreducible terms in Zp[x]. Let f be a monic
polynomial of degree k with integer coefficients, which we can view as elements
of Z or of Zp for a prime p. Then f has k roots (not necessarily distinct) in some
extension field of Q or Zp, and we can write

f (x)= xk
− r1xk−1

− · · ·− rk−1x − rk = (x −α1)(x −α2) · · · (x −αk).

By definition, the discriminant of f is the product of the squares of all differences
between the roots of f :

D = D( f )=
∏

1≤i< j≤k

(α j −αi )
2.

It immediately follows that D( f )= 0 if and only if f has a repeated root, that is,
αi =α j for some i 6= j . Note that D is a symmetric polynomial in {α1, α2, . . . , αk},
meaning that it is unchanged by any permutation of the elements of that set. It is
known that any such symmetric polynomial can be expressed in terms of elemen-
tary symmetric polynomials, which are, up to sign, the same as the coefficients of
f . In general, if the coefficients of f are integers, then D( f ) is an integer which
can be expressed in terms of those coefficients. (See [Edwards 1984] or [Swan
1962] for more details on computation of D.)

6. Criteria for factorization of polynomials modulo primes

Let f be a monic polynomial with integer coefficients, having degree k and dis-
criminant D. In this section, we restrict our attention to primes p for which p - D, so
that f has no repeated irreducible factors in Zp[x]. We say that f has factorization
type [k1, k2, . . . , k j ] modulo p if f can be written in Zp[x] as a product of distinct
irreducible polynomials having degrees k1≥ k2≥ · · ·≥ k j . The number of possible
factorization types of a polynomial of degree k is the number of partitions of k,
that is, the number of ways of writing k as a sum of positive integers.
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Theorem 9 implies that if we know the factorization type of a polynomial f
modulo a prime p that divides neither D( f ) nor the constant coefficient of f , then
we can use the order of the automorphism σp of Zp[x]/〈 f 〉 to obtain information
about the period length of a corresponding recursive sequence modulo p. We show
in this section that we can reverse this implication for polynomials f of degree
k ≤ 5, using Theorem 9 together with the following application of the discriminant
due to Stickelberger, adapted from [Driver et al. 2005] and [Swan 1962].

Stickelberger’s parity theorem. Let f be a monic polynomial of degree k in Z[x]
and let p be a prime number not dividing the discriminant D of f . Suppose that
f factors as a product of j distinct irreducible polynomials in Zp[x]. If p is odd,
then

( D
p

)
= (−1)k− j , while if p = 2, then D ≡ 5k− j (mod 8).

Before stating our main theorem for this section, we illustrate, with an example,
how knowledge of the period of a recursive sequence modulo p can help determine
the factorization type of its characteristic polynomial modulo p.

Example. Define an for n≥0 by (a0, a1, a2, a3)= (0, 0, 0, 1) and an=an−3+an−4

for n ≥ 4. The characteristic polynomial for {an}
∞

n=0 is

f (x)= x4
− x − 1,

which can be shown to have discriminant D =−283. So f is a product of distinct
irreducible polynomials in Zp[x] for all primes p 6=283. Suppose that we calculate
that modulo p = 61, the sequence {an}

∞

n=0 has period ` = 75660, which must be
the same as the order of ω as a unit in Z61[ω] =Z61[x]/〈 f 〉. We find that ` divides
neither p− 1 nor p2

− 1, but does divide p3
− 1. Theorem 9 implies that t = 3 is

the least common multiple of the degrees of the irreducible factors of f in Z61[x],
and we conclude that f must have factorization type [3, 1]. Modulo p = 71, the
same sequence has period ` = 1008. This time we find that ` does not divide
p− 1, but does divide p2

− 1. Now f could have factorization type either [2, 2]
or [2, 1, 1]. But since

(
−283

71

)
= 1, Stickelberger’s theorem implies that the number

of irreducible factors of f in Z71[x] has the same parity as k = 4, and so f has
factorization type [2, 2].

Remark. For computational purposes in this application, we can bypass direct
calculation of the period of a recursive sequence. As noted in the example, this
period ` is the same as the order of ω as a unit in a corresponding ring Zp[ω], so
that ` divides an integer n precisely when ωn

= 1. Powers of ω can be computed
very efficiently by the process of successive squaring. If we write n in its binary
expansion as

n = c0+ c1 · 2+ c2 · 22
+ c3 · 23

+ · · · ,
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where ci = 0 or 1 for all i , with only finitely many nonzero values of ci , then

ωn
= ωc0 · (ω2)c1 · (ω4)c2 · (ω8)c3 · · · .

Each power of ω in parentheses is the square of the preceding power of ω, and
only those values for which ci = 1 contribute to the product. Squares and other
products in

Zp[ω] = Zp[x]/〈 f 〉

are easily calculated by multiplying polynomials, replacing products by their re-
mainders on division by f , when necessary.

Our next theorem states that we can determine the factorization type of a poly-
nomial f of degree k ≤ 5 modulo most primes p (assuming that neither the
discriminant nor the constant coefficient of f is identically zero) from knowl-
edge of the discriminant of f and calculation of certain powers of ω in the ring
Zp[ω] = Zp[x]/〈 f 〉.

Theorem 11. Let f be a monic polynomial with integer coefficients, having degree
k ≤ 5 and discriminant D. Let p be a prime number that divides neither D nor the
constant coefficient of f . Let Zp[ω] =Zp[x]/〈 f 〉, and let t be the smallest positive
integer such that ωpt

−1
= 1 in Zp[ω]. Then the following statements are true about

the factorization of f in the ring Zp[x].

(1) If t = 1, then f is a product of k distinct linear polynomials.

(2) If t = 2, and p is odd and
( D

p

)
= 1, then f is a product of two distinct

irreducible quadratic polynomials and k− 4 linear polynomials.

(3) If t = 2, and p is odd and
( D

p

)
= −1, or p = 2 and D ≡ 5 (mod 8), then f

is a product of an irreducible quadratic polynomial and k − 2 distinct linear
polynomials.

(4) If t = 3, then f is a product of an irreducible cubic polynomial and k − 3
distinct linear polynomials.

(5) If t = 4, then f is a product of an irreducible quartic polynomial and k − 4
linear polynomials.

(6) If t = 5, then f is an irreducible quintic polynomial.

(7) If t = 6, then f is a product of an irreducible cubic polynomial and an irre-
ducible quadratic polynomial.

Remark. As defined, the integer t is the same as the order of the automorphism
σp in Aut(Zp[ω]), so must exist. It is understood that not all of the cases listed
above can occur for every value of k ≤ 5, nor for every prime p. For example, case
(2) is impossible when p= 2, since there are not two distinct irreducible quadratic
polynomials in Z2[x].
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Proof. The table lists the seven partitions [k1, k2, . . . , k j ] of k = 5.

[k1, k2, . . . , k j ] (−1)k− j t = lcm(k1, k2, . . . , k j )

[1, 1, 1, 1, 1] 1 1
[2, 1, 1, 1] −1 2
[3, 1, 1] 1 3
[2, 2, 1] 1 2
[4, 1] −1 4
[3, 2] −1 6
[5] 1 5

In the second column of the table, we note the parity of k− j by listing (−1)k− j ,
and in the third column, we list the least common multiple of the summands of the
partition, which we label as t . Theorem 9 implies that if a polynomial f of degree
five has factorization type [k1, k2, . . . , k j ], then t is the smallest positive integer for
which ωpt

−1
= 1 in Zp[ω] = Zp[x]/〈 f 〉, as in the statement of Theorem 11. The

table shows that t ≤ 6, and that if t 6= 2, the factorization type of f is determined
by the value of t . If t = 2, the factorization type of f is determined by t together
with the value of

( D
p

)
= (−1)k− j or D ≡ 5k− j (mod 8).

Removal of a term of 1, from those partitions containing 1, affects neither
(−1)k− j nor t . (If a 1 is removed, both k and j are decreased by one, so that
the value of k− j is unchanged.) So the first five rows of the table lead to the same
conclusion about polynomials of degree four; the first three rows imply the same
about polynomials of degree three; and so forth. �

We now state three corollaries of Theorem 11, which can be viewed as algo-
rithms for determining the factorization types of cubic, quartic, and quintic poly-
nomials modulo prime values. Here we take better advantage of the Legendre
symbol

( D
p

)
, which is easy to calculate for a given D and odd prime p, as a first

test to distinguish between factorization types. We omit the proofs, which follow
the same arguments from the table exhibited in the proof of Theorem 11.

Corollary 12. Let f be a monic polynomial of degree three with discriminant D,
let p be a prime number that divides neither D nor the constant coefficient of f ,
and let Zp[ω] = Zp[x]/〈 f 〉.

• If p is odd and
( D

p

)
= 1 or p = 2 and p ≡ 1 (mod 8), then:

(1) If ωp−1
= 1, then f has factorization type [1, 1, 1].

(2) If ωp−1
6= 1, then f has factorization type [3].

• If p is odd and
( D

p

)
=−1 or p = 2 and p ≡ 5 (mod 8), then:

(3) f has factorization type [2, 1].
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Corollary 13. Let f be a monic polynomial of degree four with discriminant D,
let p be a prime number that divides neither D nor the constant coefficient of f ,
and let Zp[ω] = Zp[x]/〈 f 〉.

• If p is odd and
( D

p

)
= 1 or p = 2 and p ≡ 1 (mod 8), then:

(1) If ωp−1
= 1, then f has factorization type [1, 1, 1, 1].

(2) If ωp−1
6= 1, but ωp2

−1
= 1, then f has factorization type [2, 2].

(3) If ωp2
−1
6= 1, then f has factorization type [3, 1].

• If p is odd and
( D

p

)
=−1 or p = 2 and p ≡ 5 (mod 8), then:

(4) If ωp2
−1
= 1, then f has factorization type [2, 1, 1].

(5) If ωp2
−1
6= 1, then f has factorization type [4].

Corollary 14. Let f be a monic polynomial of degree five with discriminant D, let
p be a prime number that divides neither D nor the constant coefficient of f , and
let Zp[ω] = Zp[x]/〈 f 〉.

• If p is odd and
( D

p

)
= 1 or p = 2 and p ≡ 1 (mod 8), then:

(1) If ωp−1
= 1, then f has factorization type [1, 1, 1, 1, 1].

(2) If ωp−1
6= 1, but ωp2

−1
= 1, then f has factorization type [2, 2, 1].

(3) If ωp2
−1
6= 1, but ωp3

−1
= 1, then f has factorization type [3, 1, 1].

(4) If ωp2
−1
6= 1 and ωp3

−1
6= 1, then f has factorization type [5].

• If p is odd and
( D

p

)
=−1 or p = 2 and p ≡ 5 (mod 8), then:

(5) If ωp2
−1
= 1, then f has factorization type [2, 1, 1, 1].

(6) If ωp2
−1
6= 1, but ωp4

−1
= 1, then f has factorization type [4, 1].

(7) If ωp4
−1
6= 1, then f has factorization type [3, 2].

Remark. If t is the order of σp in the group of automorphisms of Zp[ω], then
ωps
−1
= 1 if and only if t divides s. For example, in case (7) of Corollary 14, if

ωp4
−1
6= 1, we are also claiming that ωp2

−1
6= 1.

Remark. As an example to illustrate the efficiency of these algorithms, a computer
program written by the first author, based on Corollary 13, found the factorization
type of f (x)= x4

−x−1 modulo all primes p<10000 (p 6=283) in approximately
two seconds. On the same computer, a program to factor f in Zp[x] for the same
primes p, using brute force calculations, required four hours and 42 minutes to run.
(The second program confirmed all of the results predicted by the first program.)
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Polynomials of degree k > 5 cannot be distinguished from each other, in every
case, by the same data. For example, if a polynomial f of degree six satisfies(D( f )

p

)
=−1 and (ω f )

p−1
6= 1 but (ω f )

p2
−1
= 1,

then f could have factorization type either [2, 2, 2] or [2, 1, 1, 1, 1]. We conclude,
however, with some results that hold for any value of k.

Theorem 15. Let f be a monic polynomial of degree k with discriminant D, let p
be a prime number that divides neither D nor the constant coefficient of f , and let
Zp[ω] = Zp[x]/〈 f 〉.

(1) If ωp−1
= 1, then f is a product of k linear factors in Zp[x].

(2) If ωp2
−1
= 1, then all irreducible factors of f in Zp[x] have degree one or

two. The number of irreducible quadratic factors of f is even if and only if p
is odd and

( D
p

)
= 1 or p = 2 and D ≡ 1 (mod 8).

(3) If ωpq
−1
= 1 for some odd prime q, then all irreducible factors of f in Zp[x]

have degree one or q. This case can occur only when p is odd and
( D

p

)
= 1

or p = 2 and D ≡ 1 (mod 8).

Proof. Let the factorization type of f modulo p be [k1, k2, . . . , k j ], and let t =
lcm(k1, k2, . . . , k j ). If ωp−1

= 1, then t = 1, which is possible only when ki = 1
for 1≤ i ≤ j , so that j = k. If ωpq

−1
= 1 for some prime q , then t divides q. This

is possible only when there is some 0 ≤ ` ≤ j so that ki = q for i ≤ ` and ki = 1
for ` < i ≤ j . (We allow the possibility that ` = 0, so that t = 1.) In this case,
notice that k = ` · q + ( j − `), so that k − j = `(q − 1). If q = 2, then k − j has
the same parity as `. If q is odd, then k− j is even in every case. �
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