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Consider the modular circle Ca,n={(x, y) : x2
+y2
≡a (mod n), 0≤ x, y≤n−1}

and the modular hyperbola Hn = {(x, y) : xy ≡ 1 (mod n), 0 ≤ x, y ≤ n − 1}.
We provide explicit formulas for the cardinality of the sets

{a mod n : Ca,n ∩Hn 6=∅} and {a mod n : Ca,n 6=∅}.

Introduction

Let Hn denote the modular hyperbola

{(x, y) : xy = 1 (mod n), 0≤ x, y ≤ n− 1}.

This simply defined discrete set of points has connections to a variety of other
mathematical topics including Kloosterman sums, consecutive Farey fractions, and
quasirandomness. These connections have inspired a closer look at the distribution
of the points of Hn , and many questions remain open. For a discussion of recent
results and open problems on modular hyperbolas, see [Shparlinski 2007].

The propensity of the points on Hn to collect on lines of slope ±1 was inves-
tigated in [Eichhorn et al. 2009]. In the course of that investigation, formulas for
the cardinalities of the sets

{(x − y) mod n : (x, y) ∈Hn} and {(x + y) mod n : (x, y) ∈Hn},

were derived. The techniques used to determine these formulas are elementary —
within the grasp of an undergraduate mathematics major who has had a course in
number theory or abstract algebra.

In this article we investigate the intersection of Hn with the modular circles

Ca,n = {(x, y) : x2
+ y2
≡ a (mod n), 0≤ x, y ≤ n− 1},
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and in particular we determine the cardinality of the set

{a mod n : Ca,n ∩Hn 6=∅} = {(x2
+ y2) mod n : (x, y) ∈Hn}.

Figure 1 contrasts the modular circle C1,997 with the modular hyperbola H997.
Figure 2 shows the two superimposed, and the intersection C1,997 ∩H997.

This short note is a concise version of SH’s honors thesis. It is also a natural
addendum to [Eichhorn et al. 2009], as we used the formulas found there to prove
our results.

Figure 1. Left: The modular hyperbola H997. Right: The modular
circle C1,997.

Figure 2. Left: Superposition of the preceding two sets. Points of
the modular circle are represented by crosses; those of the modular
hyperbola by solid circles. Right: The intersection C1,997∩H997=

{(91, 252), (252, 91), (745, 906), (906, 745)}.
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1. Preliminary results

Let f ∈ Z[x1, . . . , xk] and let S ⊆ Zk
n (where Zn = Z/nZ is the set of integers

modulo n). Then I ( f, S) will denote the set

I ( f, S)= { f (x1, . . . , xk) mod n : (x1, . . . , xk) ∈ S}.

We also define two subsets of I ( f, S):

I ′( f, S)= {a : a ∈ I ( f, S), gcd(a, n)= 1},
I ′′( f, S)= {a : a ∈ I ( f, S), gcd(a, n) 6= 1}.

Our first result is that the quantity #I ( f,Hn) is a multiplicative function of n.
Furthermore, by replacing each occurrence of Hn with Z2

n in the statement and
proof of the theorem, we get that #I ( f,Z2

n) is also a multiplicative function of n.

Proposition 1. Let f ∈ Z[x, y] and define fn :Hn→ Zn by

fn((x, y))= f (x, y) mod n.

If n = a · b with gcd(a, b)= 1, then

#I ( f,Hn)= #I ( f,Ha) · #I ( f,Hb).

It follows that if n =
∏m

i=1 pei
i is the canonical factorization of n, then

#I ( f,Hn)=

m∏
i=1

#I ( f,Hpei
i
). (1)

Proof. The Chinese remainder theorem says that the map r :Zn→Za×Zb given by

r(x)= (x mod a, x mod b)

is an isomorphism of rings. Hence the map R :Hn→Ha ×Hb defined by

R((x, y))= ((x mod a, y mod a), (x mod b, y mod b))

is a bijection. The result now follows from the observation that the diagram

Hn
R

−−−→ Ha ×Hb

fn

y y fa× fb

Zn
r

−−−→ Za ×Zb.

commutes. �

Thus we have reduced the problem of determining formulas for #I (x2
+ y2,Hn)

(or #I (x2
+ y2,Z2

n)) to determining them for prime powers. From this point, we
shall refer to the set I (x2

+ y2,Hn) as I (x2
+ x−2,Zn). All of our formulas were
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discovered through extensive numerical experimentation with Maple. Maple was
the most valuable research tool at our disposal — only in discovering the formu-
las, but also in the proving stage. In the remainder of this section, we list the
mathematical results we need to prove these formulas.

It is more convenient to work with the value set I ((x + x−1)2,Zn) than with
I (x2
+ x−2,Zn). The following lemma justifies the change.

Lemma 2. For any positive integer n,

#I (x2
+ x−2,Zn)= #I ((x + x−1)2,Zn). (2)

Proof. The map z 7→ (z + 2) mod n defines a bijection between I (x2
+ x−2,Zn)

and I ((x + x−1)2,Zn). �

We next state a basic criterion on the solvability of quadratic congruences mod-
ulo prime powers: x2

≡ a (mod pt).

Proposition 3 [Ireland and Rosen 1982, Propositions 4.2.3, 4.2.4, p. 46]. Let p be
prime and let a be an integer such that gcd(a, p)= 1.

(1) Suppose p > 2. If the congruence x2
≡ a (mod p) is solvable, then for every

t ≥ 2 the congruence x2
≡ a (mod pt) is solvable with precisely 2 distinct

solutions.

(2) Suppose p = 2. If the congruence x2
≡ a (mod 23) is solvable, then for every

t ≥ 3 the congruence x2
≡ a (mod 2t) is solvable with precisely 4 distinct

solutions.

Proposition 4 [Stangl 1996]. Let p be an odd prime. Then

#I (x2,Zpt )=
pt+1

2(p+ 1)
+ (−1)t−1 p− 1

4(p+ 1)
+

3
4
. (3)

For the special case p = 2 we have

#I (x2,Z2t )=
2t−1

3
+
(−1)t−1

6
+

3
2
, t ≥ 2. (4)

Proposition 5 [Eichhorn et al. 2009].

#I (x + x−1,Zpt )=
(p− 3)pt−1

2
+

2pt−1
+ (−1)t−1(p− 1)

2(p+ 1)
+

3
2
. (5)

2. The formulas for #I ((x+ x−1)2, Zpt )

The central result of this paper is as follows.
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Theorem 6. For p = 2 and t ≥ 7,

#I ((x + x−1)2,Z2t )=
2t−7

3
+
(−1)t−1

6
+

3
2
. (6)

If p ≡ 1 (mod 4) then

#I ((x + x−1)2,Zpt )=
(p− 5)pt−1

4
+

2pt−1
+ (−1)t−1(p− 1)

2(p+ 1)
+

3
2
. (7)

If p ≡ 3 (mod 4) then

#I ((x + x−1)2,Zpt )=
(p− 3)pt−1

4
+

2pt−1
+ (−1)t−1(p− 1)

4(p+ 1)
+

3
4
. (8)

The proof occupies most of this section.

Proof of Theorem 6, case p > 2. We will use the squaring map modulo pt :

Q : I (x + x−1,Zpt )→ I ((x + x−1)2,Zpt ), Q(z)= z2 mod pt .

We note that it preserves coprimeness with p:

Q(I ′(x + x−1,Zpt ))= I ′((x + x−1)2,Zpt ),

Q(I ′′(x + x−1,Zpt ))= I ′′((x + x−1)2,Zpt ).

Proposition 7. Let p be an odd prime. For any a ∈ I ′((x + x−1)2,Zpt ), we have
#Q−1({a})= 2, and consequently

#I ′((x + x−1)2,Zpt )= #I ′(x + x−1,Zpt )/2. (9)

Proof. Let a be an arbitrary element of I ′((x + x−1)2,Zpt ). There exists a point
(x1, y1) ∈Hpt such that

(x1+ y1)
2
≡ a (mod pt).

Since gcd(x1+ y1, p)= 1,

x1+ y1 6≡ −(x1+ y1) (mod pt);

hence the two distinct elements of I ′((x + x−1)2,Zpt ) that Q maps to a are

(x1+ y1) (mod pt) and −(x1+ y1) (mod pt).

By Proposition 3, the congruence x2
≡ a (mod pt) has at most two solutions and

we conclude that #Q−1({a})= 2. �

Proposition 8.

#I ′′(x + x−1,Zpt )=

{
pt−1 if p ≡ 1 (mod 4),
0 if p ≡ 3 (mod 4).

(10)



176 SARA HANRAHAN AND MIZAN KHAN

Consequently, when p ≡ 1 (mod 4),

I ′′(x + x−1,Zpt )= {kp : k = 0, 1, . . . , pt−1
− 1}.

Proof. Define spt :Hpt → Zpt by spt ((x, y))= (x + y) mod pt and let

H′′pt = {(x, y) : (x, y) ∈Hpt with spt ((x, y)) ∈ I ′′(x + x−1,Zpt )}.

If (x, y)∈H′′pt , then x+ y= 0 (mod p) and consequently x2
=−1 (mod p). Since

−1 is a quadratic residue modulo p if and only if p ≡ 1 (mod 4), we obtain the
second part of (10).

We now restrict our attention to primes p that are congruent to 1 modulo 4.
Since spt (H′′pt ) = I ′′(x + x−1,Zpt ), we prove the first part of (10) by proving the
following two assertions:

(i) #s−1
pt ({a})= 2 for any a ∈ I ′′(x + x−1,Zpt ).

(ii) #H′′pt = 2pt−1.

The proof of (i) is as follows. Let (r, s) ∈ s−1
pt ({a}). Then (2r −a) and (2s−a)

are two distinct roots of the congruence

x2
≡ (a2

− 4) (mod pt).

Since p | a, we have gcd(a2
− 4, p)= 1. Hence by Proposition 3

x2
≡ (a2

− 4) (mod pt)

cannot have more than two roots. Consequently s−1
pt ({a})= {(r, s), (s, r)}.

We now prove (ii). Let (r, s) be an arbitrary element of H′′pt and let

r = d0+ d1 p+ d2 p2
+ · · ·+ dt−1 pt−1

be the expansion of r in base p. There are only two possible choices for d0,
specifically, the two roots of x2

≡−1 (mod p), and for each of the other di ’s there
are p possible choices: 0, 1, . . . , p−1. So there are 2pt−1 possible r ’s. Since s is
completely determined by the choice of r , we conclude that #H′′pt = 2pt−1. �

Proposition 9. If p ≡ 1 (mod 4) then

#I ′′((x + x−1)2,Zpt )=
2pt−1

+ (−1)t−1(p− 1)
4(p+ 1)

+
3
4
. (11)

Proof. By Proposition 8

I ′′(x + x−1,Zpt )= {kp : 0≤ k ≤ pt−1
− 1}.
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Consequently,

I ′′((x + x−1)2,Zpt )= Q(I ′′(x + x−1,Zpt ))

= Q({kp : 0≤ k ≤ pt−1
− 1})= { j2 mod pt

: p | j}.

Therefore,

#I ′′((x + x−1)2,Zpt )= #{k2 mod pt
}− #{k2 mod pt

: gcd(k, p)= 1}.

Combining Stangl’s formula (3) with the standard result that the number of qua-
dratic residues modulo pt is (pt

− pt−1)/2, we obtain

#I ′′((x + x−1)2,Zpt )=
2pt−1

+ (−1)t−1(p− 1)
4(p+ 1)

+
3
4
,

which proves Proposition 9. �

We are now ready to prove formulas (7) and (8). We have

#I ((x + x−1)2,Zpt )

= #I ′((x + x−1)2,Zpt )+ #I ′′((x + x−1)2,Zpt )

=
#I ′(x + x−1,Zpt )

2
+ #I ′′((x + x−1)2,Zpt )

=
#I (x + x−1,Zpt )

2
−

#I ′′(x + x−1,Zpt )

2
+ #I ′′((x + x−1)2,Zpt ).

Formula (5) is

#I (x + x−1,Zpt )=
(p− 3)pt−1

2
+

2pt−1
+ (−1)t−1(p− 1)

2(p+ 1)
+

3
2
.

If p ≡ 3 (mod 4), then #I ′′(x + x−1,Zpt ) = #I ′′((x + x−1)2,Zpt ) = 0 by (10). If
p ≡ 1 (mod 4), then

#I ′′(x + x−1,Zpt )= pt−1

and

#I ′′((x + x−1)2,Zpt )=
2pt−1

+ (−1)t−1(p− 1)
4(p+ 1)

+
3
4
,

by (10) and (11). We complete the proof with simple algebraic computations. �

Proof of Theorem 6, case p = 2. Interestingly this was the most difficult and time
consuming part. It was only through experimenting with Maple that we discovered
the map f (defined below) that allowed us to prove the formula for powers of 2.

Proposition 10. Let t ≥ 3. The image of the map

f : I (x2,Z2t )→ {0, 1, . . . , 2t+6
− 1}
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given by
f (k2)= (64k2

+ 4) mod 2t+6

is I ((x + x−1)2,Z2t+6). Since f is injective we conclude that

#I ((x + x−1)2,Z2t+6)= #I (x2,Z2t ). (12)

Proof. First we show that I ((x + x−1)2,Z2t+6) ⊆ Image( f ). Let (x, y) ∈ H2t+6 .
We can write

x = 8x1+ a and y = 8y1+ a,

with 0≤ x1, y1< 2t+3 and a= 1, 3, 5 or 7. (We are using the fact that each element
in Z∗8 is its own inverse.) The following calculation now shows that (x + y)2

mod 2t+6
∈ Image( f ).

(x + y)2 = (8x1+ 8y1+ 2a)2

= 64x2
1 − 128x1 y1+ 64y2

1 + 256x1 y1+ 32x1a+ 32y1a+ 4a2

= 64(x1− y1)
2
+ 4(64x1 y1+ 8x1a+ 8y1a+ a2)

= 64(x1− y1)
2
+ 4xy

≡ (64(x1− y1)
2
+ 4) (mod 2t+6).

To show the reverse inclusion, let k2
∈ I (x2,Z2t ). By Proposition 3 the congru-

ence
x2
≡ 16k2

+ 1 (mod 2n)

has a solution for all values of n. Let l be any integer such that l2
= 16k2

+ 1
(mod 2t+6), and let

x = (l − 4k) mod 2t+6, y = (l + 4k) mod 2t+6.

The immediate observations that (x, y) ∈H2t+6 and

(x + y)2 ≡ 4l2
≡ 64k2

+ 4 (mod 2t+6)

complete the proof. �

Now the formula (6) for #I ((x+ x−1)2,Z2t ) is obtained by combining (2), (12)
and (16). This concludes the proof of Theorem 6. �

We can also derive the formula for #I (x2
+ x−2,Zp) as a special case of an old

formula for pairs of quadratic residues.

Theorem 11 [Berndt et al. 1998, Theorem 6.3.1, page 197]. Let p be an odd prime
and let c be an integer relatively prime to p. Let ε1 =±1 and ε2 =±1. Then

#
{

n : 0≤ n < p,
( n

p

)
= ε1,

(n+c
p

)
= ε2

}
=

1
4

{
p− 2ε1

(
−c
p

)
− ε2

( c
p

)
− ε1ε2

}
. (13)
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The special case of this formula with ε1 = ε2 = c = 1 was first published by
Aladov in 1896. The connection between (13) and #I (x2

+ x−2,Zp) is as follows.

Theorem 12. Let a ∈ Z with gcd(a2
− 4, n)= 1. Then Ca,n ∩Hn 6=∅ if and only

if for every prime, p, in the canonical factorization of n we have(a−2
p

)
=

(a+2
p

)
= 1. (14)

Consequently,

#I (x2
+ x−2,Zp)= #

{
a : 0≤ a < p,

(a−2
p

)
=

(a+2
p

)
= 1

}
+ 1.

Proof. For the “only if” part, let (r, s) ∈ Ca,n ∩Hn and let p be an arbitrary prime
divisor of n. So, (r − s)2 ≡ a − 2 (mod p) and (r + s)2 ≡ a + 2 (mod p), which
leads immediately to (14).

To prove the converse, let n =
∏t

i=1 pei
i be the canonical factorization of n. By

Proposition 3, we can lift the square roots (modulo p) of (a−2) and (a+2) to the
ei th power, pei

i . Let si =
√

a− 2 (mod pei
i ), and ri =

√
a+ 2 (mod pei

i ). Then

2−1
· (ri + si , ri − si ) ∈ Cpei

i
∩Hpei

i
,

where 2−1 denotes the inverse of 2 modulo pei
i . Now invoke the Chinese remainder

theorem to determine integers r and s such that

r ≡ ri (mod pei
i ) and s ≡ si (mod pei

i ) for i = 1, . . . , t.

Clearly (r, s) ∈ Cn ∩Hn. �

3. The formulas for #I (x2+ y2, Z2
pt )

We now determine the formulas for #I (x2
+ y2,Z2

pt ) to contrast them to

#I (x2
+ x−2,Zpt ).

Theorem 13. Let p be an odd prime. Then

#I (x2
+y2,Z2

pt )=


pt if p ≡ 1 (mod 4),

p if p ≡ 3 (mod 4) and t = 1,

pt
−

[t/2]−1∑
j=0

ϕ(pt−1−2 j ) if p ≡ 3 (mod 4) and t > 1,

(15)

When p = 2 we have

#I (x2
+ y2,Z2

2t )= ϕ(2t)+ 1. (16)

As is typically the case, the formula for powers of two, 2t , will require a separate
argument. We first prove (15).



180 SARA HANRAHAN AND MIZAN KHAN

Proof of formula (15). We treat each case separately.

• p ≡ 1 (mod 4). Let a ∈ {0, 1, . . . , pt
− 1}. The simultaneous congruences

x − y ≡ 1 (mod pt) and x + y ≡ a (mod pt)

have the solutions

x = ((a+ 1) · (2−1 mod pt)) mod pt ,

y = ((a− 1) · (2−1 mod pt)) mod pt .

It immediately follows that x2
+ (i pt y)2 ≡ a (mod pt), where

i2
pt ≡−1 (mod pt).

• p≡ 3 (mod 4), t = 1. Let a ∈ {0, 1, . . . , p−1}. By (3), #I (x2,Zp)= (p+1)/2
and therefore #(a− I (x2,Zp))= (p+ 1)/2. Since

#I (x2,Zp)+ #(a− I (x2,Zp))= p+ 1,

it follows that there is an element (a − x2
1) ∈ (a − I (x2,Zp)) and an element

x2
2 ∈ I (x2,Zp) such that (a− x2

1)≡ x2
2 (mod p).

• p≡ 3 (mod 4), t ≥ 2. The key is to prove that an element a ∈ {0, 1, 2, . . . , pt
−1}

satisfies a ≡ x2
+ y2 (mod pt) if and only if a = pkb, with gcd(p, b) = 1 and k

even.
(⇐) Since pk is a square in Z, it is sufficient to prove this for integers a that are
relatively prime to p. We argue by induction. The previous case shows that the
result holds for t = 1. Let us assume it is true for t . So

a ≡ (x2
+ y2) (mod pt).

If pt+1
| (a−x2

−y2), there is nothing to prove. So let us assume that (a−x2
−y2)=

pt l, with gcd(l, p)= 1. Since gcd(a, p)= 1 either gcd(x, p)= 1 or gcd(y, p)= 1.
Without loss of generality we assume the former. We now define s ∈ Z, with
1≤ s < p, to be the solution of the congruence

2xs ≡ l (mod p).

An immediate calculation shows that

a ≡ (x + spt)2+ y2 (mod pt+1).

(⇒) We argue by contradiction. Suppose a= pkb, with a< pt , gcd(b, p)= 1,and
k odd, be the sum of two squares modulo pt . So there are integers x = pe1 x1, y =
pe2 y1, with gcd(x1 y1, p)= 1, such that

pkb ≡ (x2
+ y2) (mod pt),
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that is,
pkb ≡ (p2e1 x2

1 + p2e2 y2
1) (mod pt).

Since b 6≡ 0 mod p and k is odd we have min{2e1, 2e2} < k. Without loss of
generality we may assume that e1 ≤ e2. We can reduce the congruence

pkb ≡ (x2
+ y2) (mod pt)

to pk−2e1b ≡ x2
1 + p2(e2−e1)y2

1 (mod pk−2e1), which in turns reduces to

x2
1 + p2(e2−e2)y2

1 ≡ 0 (mod p).

Since x1 6≡ 0 (mod p) we must have p2(e2−e2)y2
1 6≡ 0 (mod p), that is e2 = e1, and

consequently (x2
1 + y2

1)≡ 0 (mod p), with gcd(x1 y1, p)= 1. But this gives us the
contradiction that x2

≡−1 (mod p) is solvable for a prime p with p ≡ 3 (mod 4).
This concludes the proof of (15). �

Proposition 14. Let t ≥ 3 and 0 < m < 2t . Then m ∈ I (x2
+ y2,Z2

2t ) if and only
if m = 2 j

· a, with j < t and a ≡ 1 (mod 4).

Proof. (⇐) Let a ≡ 1 (mod 4). Since 2 j is a sum of squares (in Z) we only need
to show that a is a sum of two squares modulo 2t . If a ≡ 1 (mod 8) then a is a
square modulo 2t by Proposition 3. If a≡ 5 (mod 8), then a−4≡ 1 (mod 8) and is
therefore a square modulo 2t . Consequently a is a sum of two squares modulo 2t .

(⇒) We now assume that a ≡ 3 (mod 4) and argue by contradiction. Let

x2
+ y2
≡ m (mod 2t).

We look at four possible cases.

(1) j = 0: We obtain the contradiction that

x2
+ y2
≡ 3 (mod 4).

(2) j = 1: We obtain the contradiction that

x2
+ y2
≡ 6 (mod 8).

(3) j ≥ 2, j ≤ (t − 2): We have x = 2e1 · x1 and y = 2e2 · y1, with x1, y1 odd and
j = min{2e1, 2e2}. Without loss of generality we may assume that e1 ≤ e2.
We now obtain the contradiction

x2
1 + 4e2−e1 y2

1 ≡ a ≡ 3 (mod 4).

(4) j = t − 1: Then
m = 2t−1

· a ≥ 2t−1
· 3> 2t ,

contradicting the fact that the elements of I (x2
+ y2,Z2

2t ) are less than 2t . �
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Proof of formula (16). Let Mt denote the set

Mt = {m : 0< m < 2t , m = 2 j
· a, j < t, a ≡ 1 (mod 4)}.

In our previous proposition we proved that

I (x2
+ y2,Z2

2t ) \ {0} = Mt .

We now make the following two observations about elements in Mt :

(i) If m ∈ Mt , then (m+ 2t) ∈ Mt+1 provided m 6= 2t−1.

(ii) If m ∈ Mt+1 with m > 2t , then (m− 2t) ∈ Mt .

From these two observations we conclude that

Mt+1 \ {2t
} = Mt ∪ {m+ 2t

: m ∈ Mt \ {2t−1
}},

and consequently #Mt+1= 2 ·#Mt . An inductive argument now proves that #Mt =

ϕ(2t) and therefore #I (x2
+ y2,Z2

2t )= ϕ(2t)+ 1. �
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