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This article begins with an introduction to a conjecture made around 1930 in the
area of Diophantine approximation: the Littlewood Conjecture. The conjecture
asks whether any two real numbers can be simultaneously well approximated
by rational numbers with the same denominator. The introduction also focuses
briefly on an analogue of this conjecture, regarding power series and polynomi-
als with coefficients in an infinite field. Harold Davenport and Donald Lewis
disproved this analogue of the Littlewood Conjecture in 1963. Following the
introduction we focus on a claim relating to another analogue of this conjecture.
In 1970, John Armitage believed that he had disproved an analogue of the Little-
wood Conjecture, regarding power series and polynomials with coefficients in a
finite field. The remainder of this article shows that Armitage’s claim was false.

1. Introduction

Through studying the results of John Littlewood and Godfrey Hardy on topics
of Diophantine approximation, Littlewood’s student Donald Spencer questioned
whether any two real numbers can be approximated simultaneously by rational
numbers with the same denominator. For some reason this conjecture was attrib-
uted to Littlewood and is known as Littlewood’s problem of Diophantine approxi-
mation [Burkill 1979], or simply the Littlewood Conjecture.

To state it more formally, we fix some notation. As usual, |n| denotes the ab-
solute value of a number n. For x a real number, let ‖x‖ denote the Euclidean
distance of x to the nearest integer: ‖x‖ = infa∈Z |x − a|.

Conjecture 1.1 (Littlewood Conjecture). For every θ, φ ∈ R and for all ε > 0,
there exists n ∈ N such that

n‖nθ‖‖nφ‖< ε.
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No one has been able to prove this, in part because the method of continued
fractions commonly used with approximations cannot be used for simultaneous
approximations. The following definitions will aid in describing the analogue of
the Littlewood Conjecture for power series and polynomials, which is easier to
study than the original conjecture.

For any field K , let K [t] denote the set of polynomials with coefficients in K .
Define the norm of N ∈ K [t] as |N |K = e h , where h is the degree of N . Series
with coefficients in K , possibly infinitely many negative exponents, and finitely
many positive exponents form the field K ((t−1)). For every 9 ∈ K ((t−1)), define
the norm of 9 to be ‖9‖K = e l , where l is the greatest negative exponent of t . For
example, if K = R and 9(t)= 12t50

+ 3t9
+ 2+ 5t−11

+ 20t−99
+· · · ∈ K ((t−1)),

then ‖9(t)‖K = e−11.

Conjecture 1.2 (Polynomial analogue of the Littlewood Conjecture). Let K be a
field and consider2,8∈K ((t−1)). For every ε>0, there exists N ∈K [t] such that

|N |K‖N2‖K‖N8‖K < ε.

Davenport and Lewis [1963] proved that this analogue fails when K is an infinite
field. Baker [1964] furthered this result by showing that e1/t and e2/t

∈ K ((t−1))

serve as counterexamples to the analogue of the Littlewood Conjecture when K
is the set of real numbers. With the analogue of the Littlewood Conjecture settled
when K is an infinite field, the next problem to solve is the analogue with K a
finite field.

2. Armitage’s claim

Armitage [1970] published a corrigendum and addendum to his article from the
previous year, entitled An analogue of a problem of Littlewood [Armitage 1969].
At first, it appeared that Armitage had disproved the analogue of the Littlewood
Conjecture when K is a finite field of characteristic greater than or equal to 5.
For many years, mathematicians accepted this claim. Armitage’s proof appeared
to imitate Baker’s proof for his counterexample to the analogue of the Littlewood
Conjecture with K = R.

However, we found a parenthetical comment in [Adamczewski and Bugeaud
2007] that Armitage’s counterexample does not hold, an observation these authors
attribute to Bernard de Mathan. We also found a reference in [Larcher and Nieder-
reiter 1993] that Yves Taussat, a student of Mathan, disproved Armitage’s claim
in his Ph.D. thesis [Taussat 1986]. However, in this paper, Taussat did not show
why Armitage’s counterexample fails. Below we provide a simplified wording of



AN UNRESOLVED ANALOGUE OF THE LITTLEWOOD CONJECTURE 193

Armitage’s claim and in the next section we will show that his claim fails to dis-
prove the analogue of the Littlewood Conjecture for K a finite field of characteristic
p ≥ 5.

Claim 2.1 [Armitage 1970]. Let K be a field of characteristic p > 3. Define the
norm of N ∈ K [t] as |N |K = pdeg N , and the norm of 9 ∈ K ((t−1)) as ‖9‖K = p l ,
where l is the greatest negative exponent of t in 9. Define 2, 8 ∈ K ((t−1)) by

2(t)= (1+ t−1)1/3, 8(t)= (1+ t−1)2/3.

Then for all nonzero N ∈ K [t],

|N |K ‖N2‖K ‖N8‖K ≥ p−17.

Note that Armitage uses p for the base of the norms rather than e, so his “lower
bound”, p−17, for |N |K ‖N2‖K ‖N8‖K specifies the characteristic of K .

To show that Armitage’s claim fails, we prove the following theorem.

Theorem 2.2. Let K be a field of characteristic p> 3. Define 2, 8 ∈ K ((t−1)) by

2= (1+ t−1)1/3, 8= (1+ t−1)2/3.

Given any ε > 0, there exists a polynomial N ∈ K [t] such that

|N |K ‖N2‖K ‖N8‖K < ε.

The proof is divided into two cases, depending on the residue of p modulo 3.

3. Preliminary lemmas

Lemma 3.1. For any prime p congruent to 2 modulo 3 and not equal to 2, the
coefficient of t−n in the expansion of (1+ t−1)1/3 is congruent to 0 modulo p if
(p3
+ 1)/3< n < p3.

Proof of Lemma 3.1. Consider the number of factors of p in the numerator of the
coefficient of t−n in 2= (1+ t−1)1/3. By the binomial theorem, this coefficient is(1

3
n

)
=
(−1) n−1

(
1(3 · 1− 1)(3 · 2− 1) · · · (3(n− 1)− 1)

)
3n n!

.

Thus, the last term in the numerator of the coefficient of t−n is 3n − 4. Since 3
always has a multiplicative inverse modulo p, we have

3l − 1≡ 3m− 1 (mod p) ⇐⇒ l ≡ m (mod p).

Moreover, the greatest common divisor of 3 and p2 is 1 for any p 6= 3, so

3l − 1≡ 3m− 1 (mod p2) ⇐⇒ l ≡ m (mod p2).
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Since 3l−1≡ 3m−1 (mod p)⇐⇒ l ≡m (mod p), p divides at least bn/pc terms
in the numerator of the coefficient of t−n . Similarly, because

3l − 1≡ 3m− 1 (mod p2) ⇐⇒ l ≡ m (mod p2),

p2 divides at least bn/p2
c terms.

Since p≡2 (mod 3), p3 will divide a term in the numerator of a coefficient if and
only if for some r ∈Z+ (0≤ r ≤ n−1) there exists s ∈Z such that 3r−1= sp3. In
other words, r= (sp3

+1)/3 must be a positive integer. Thus, such an s must satisfy
s ≡ 1 (mod 3). We are only considering n ≤ p3

− 1 and r = (sp 3
+ 1)/3≤ n− 1,

so (sp3
+ 1)/3 ≤ p3

− 2. Thus, sp3 will divide a numerator in the coefficient of
t−n for n ≤ p3

− 1 if and only if s ≤ (3p3
− 7)/p 3 < 3 and s ≡ 1 (mod 3). In

other words, the only term that could be divisible by p3 in the numerator of the
coefficient of t−n for n≤ p 3

−1 is p3 itself. The final term in the numerator of the
coefficient of t−(p

3
+4)/3 is 3((p3

+4)/3−1)−1= p3. Thus, the first time that p3

appears in the numerator of a coefficient of t−n is actually when n = (p3
+ 4)/3.

So, for each (p3
+ 4)/3 ≤ n ≤ p3

− 1, the numerator of the coefficient of t−n has
exactly one term that is divisible by p3. This and the preceding paragraph show
that for each (p3

+ 4)/3≤ n ≤ p3
− 1, the numerator of the coefficient of t−n has

at least bn/pc+ bn/p2
c+ 1 factors of p.

Now looking at the denominator of the coefficient of t−n for (p3
+ 4)/3 ≤

n ≤ p3
− 1, the only powers of p that divide n! are p and p2. So there are only

bn/pc+bn/p2
c factors of p in the denominator of t−n for (p3

+4)/3≤ n≤ p3
−1.

Therefore, for any (p3
+ 4)/3≤ n ≤ p3

− 1, the numerator of the coefficient of
t−n will have at least one more factor of p than the denominator and the coefficient
will be congruent to zero modulo p. �

The proof of the next lemma is similar to that of Lemma 3.1.

Lemma 3.2. For any prime p congruent to 1 modulo 3, the coefficient of t−n in the
expansion of (1+ t−1)2/3 is congruent to zero modulo p if (p2

+ 2)/3< n < p2.

Lemma 3.3. For any prime p > 3 and any even positive integer b, there exists an
integer a < 0 such that 1

3 = a+ pb
·

1
3 .

Proof of Lemma 3.3. We have

1
3 = a+ pb

·
1
3 ⇐⇒ a = (1− pb)/3 ∈ Z ⇐⇒ pb

≡ 1 (mod 3).

For any p > 3, p ≡ 1 (mod 3) or p ≡ 2 (mod 3). Obviously, 12
≡ 1 (mod 3),

but also 22
≡ 1 (mod 3). Thus, for any prime p > 3, p2

≡ 1 (mod 3). This further
implies that p2k

= (p2)k ≡ 1k
≡ 1 (mod 3) for any k ∈ N. Therefore, we have

shown that for any even integer b, pb
≡ 1 (mod 3). �

The proof of the following lemma is analogous to that of Lemma 3.3.



AN UNRESOLVED ANALOGUE OF THE LITTLEWOOD CONJECTURE 195

Lemma 3.4. For any prime p > 3 and any even positive integer b, there exists an
integer a < 0 such that 2

3 = a+ pb
·

2
3 .

4. Proof of Theorem 2.2

By assumption, the characteristic of K is p > 3.

First case: p ≡ 2 (mod 3). By Lemma 3.3, for b an even positive integer, there
exists a negative integer a such that (1+ t−1)1/3 = (1+ t−1)a+pb/3. Multiplying
both sides by (1+ t−1)−a , yields (1+ t−1)−a (1+ t−1)1/3 = (1+ t−1)pb/3. Since
we are working in a field with characteristic p, (1+ t−1)pb/3

= (1+ t−pb
)1/3, and

therefore

(1+ t−1)−a (1+ t−1)1/3 = (1+ t−pb
)1/3.

Multiplying both sides by t−a results in

(1+ t)−a (1+ t−1)1/3 = t−a(1+ t−pb
)1/3.

Now applying Lemma 3.1, we know that the coefficient of t−i in t−a(1+ t−pb
)1/3

is congruent to zero modulo p for each i with a+((p3
+1)/3)pb< i < a+(p3)pb.

Multiplying

(1+ t)−a (1+ t−1)1/3 = t−a(1+ t−pb
)1/3

by ta+((p3
+1)/3)pb

, we have

ta+((p3
+1)/3)pb

(1+ t)−a (1+ t−1)1/3 = q(t)+ c t pb((−2p3
+1)/3)

+ · · · ,

where q(t) ∈ K [t] and c 6≡ 0 (mod p).
Let N be the polynomial

N (t)= ta+((p3
+1)/3)pb

(1+ t)−a.

Then by the definitions for the norm of a polynomial and the norm of a power
series,

|N | = p((p
3
+1)/3)pb

and ‖N2‖ = p pb((−2p3
+1)/3).

Therefore

|N |‖N2‖ = p pb((2−p3)/3).

For any ε > 0, choosing an even positive integer b such that

b > logp

∣∣∣∣ logp(ε)

((2− p3)/3)

∣∣∣∣
implies that |N |‖N2‖< ε.
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Second case: p ≡ 1 (mod 3). A similar method of proof works in this case, if we
choose as the approximating polynomial

N = ta+((p2
+2)/3)pb

(1+ t)−a,

with b an even positive integer such that

b > logp

∣∣∣ logp(ε)

((4− p2)/3)

∣∣∣.
Since ‖N9‖≤ p0 for any9 ∈ K ((t−1)), together these cases show that Theorem

2.2 holds with the approximating polynomial N chosen as above depending on the
characteristic of the finite field. �

Thus, Armitage’s counterexample does not settle the analogue of the Littlewood
Conjecture when K is a finite field of characteristic p ≥ 5.
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andrew@dms.umontreal.ca

Jerrold Griggs University of South Carolina, USA
griggs@math.sc.edu

Ron Gould Emory University, USA
rg@mathcs.emory.edu

Sat Gupta U of North Carolina, Greensboro, USA
sngupta@uncg.edu

Jim Haglund University of Pennsylvania, USA
jhaglund@math.upenn.edu

Johnny Henderson Baylor University, USA
johnny henderson@baylor.edu

Natalia Hritonenko Prairie View A&M University, USA
nahritonenko@pvamu.edu

Charles R. Johnson College of William and Mary, USA
crjohnso@math.wm.edu

Karen Kafadar University of Colorado, USA
karen.kafadar@cudenver.edu

K. B. Kulasekera Clemson University, USA
kk@ces.clemson.edu

Gerry Ladas University of Rhode Island, USA
gladas@math.uri.edu

David Larson Texas A&M University, USA
larson@math.tamu.edu

Suzanne Lenhart University of Tennessee, USA
lenhart@math.utk.edu

Chi-Kwong Li College of William and Mary, USA
ckli@math.wm.edu

Robert B. Lund Clemson University, USA
lund@clemson.edu

Gaven J. Martin Massey University, New Zealand
g.j.martin@massey.ac.nz

Mary Meyer Colorado State University, USA
meyer@stat.colostate.edu

Emil Minchev Ruse, Bulgaria
eminchev@hotmail.com

Frank Morgan Williams College, USA
frank.morgan@williams.edu

Mohammad Sal Moslehian Ferdowsi University of Mashhad, Iran
moslehian@ferdowsi.um.ac.ir

Zuhair Nashed University of Central Florida, USA
znashed@mail.ucf.edu

Ken Ono University of Wisconsin, USA
ono@math.wisc.edu

Joseph O’Rourke Smith College, USA
orourke@cs.smith.edu

Yuval Peres Microsoft Research, USA
peres@microsoft.com
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