

a journal of mathematics

The probability of relatively prime polynomials in $\mathbb{Z}_{p^k}[x]$

Thomas R. Hagedorn and Jeffrey Hatley

The probability of relatively prime polynomials in $\mathbb{Z}_{p^k}[x]$

Thomas R. Hagedorn and Jeffrey Hatley

(Communicated by Arthur T. Benjamin)

Let $P_R(m, n)$ denote the probability that two randomly chosen monic polynomials $f, g \in R[x]$ of degrees m and n, respectively, are relatively prime. Let $q = p^k$ be a prime power. We establish an explicit formula for $P_R(m, 2)$ when $R = \mathbb{Z}_q$, the ring of integers mod q.

1. Introduction

Given two polynomials f(x), g(x) chosen at random, what is the probability that they are relatively prime? For a ring R, we say that two polynomials $f, g \in R[x]$ are relatively prime if there is no monic polynomial of positive degree that divides both f and g. Let $P_R(m,n)$ denote the probability that two randomly chosen monic polynomials $f, g \in R[x]$ of degrees m and m, respectively, are relatively prime. If R has an infinite number of elements, then $P_R(m,n)=1$, so we restrict our attention to finite rings R. Let $R=\mathbb{F}_q$, the finite field with q elements. The formula, $P_{\mathbb{F}_q}(m,m)=1-1/q$ was proved in [Corteel et al. 1998]. When q=p=2, Reifegerste [2000] gave a combinatorial proof that $P_{\mathbb{F}_2}(m,m)=1/2$. Benjamin and Bennett subsequently found a beautifully simple proof generalizing these results:

Theorem 1.1 [Benjamin and Bennett 2007]. If
$$m, n \ge 1$$
, then $P_{\mathbb{F}_q}(m, n) = 1 - \frac{1}{q}$.

This can be generalized in at least two ways. Hou and Mullen [2009] have generalized Theorem 1.1 by considering the problem of relatively prime polynomials in several variables over a finite field. In earlier work, Gao and Panario [2006] considered the probability distribution of the greatest common divisor of l randomly chosen monic single-variable polynomials in $\mathbb{F}_q[x]$ with degrees n_1, \ldots, n_l as the $n_i \to \infty$. In this paper, we restrict ourselves to single-variable polynomials and explore a different perspective.

MSC2000: 11C20, 13B25, 13F20.

Keywords: relatively prime polynomials.

The authors would like to thank The College of New Jersey for its support of undergraduate research.

As the formula in Theorem 1.1 only depends on the number of elements in the field \mathbb{F}_q , one can ask whether the same formula holds when R is another ring with q elements. For example, if $R = \mathbb{Z}_q$, the integers mod q, does the same formula hold? It does not, but the formula for $P_{\mathbb{F}_q}(m, n)$ can be viewed as a first approximation to the formula for $P_{\mathbb{Z}_q}(m, n)$. In this paper, we prove an explicit formula for $P_{\mathbb{Z}_{q,k}}(m, 2)$ for p odd.

For each positive integer k, we define a monic polynomial $f_k(x) \in \frac{1}{2}\mathbb{Z}[x]$ by

$$f_k(x) = x^{2k} + (1-x) \sum_{i=0}^{(k-3)/2} x^{(k+3)/2+3i} + \frac{1}{2} \sum_{i=0}^{k-1} (-x)^i + \frac{1}{2} x^{(k-1)/2} - 1,$$

for k odd, and

$$f_k(x) = x^{2k} + (1-x) \sum_{i=1}^{k/2-1} x^{2k-3i} - \frac{1}{2} \sum_{i=1}^{k-1} (-x)^i - x^{k/2+1} + \frac{3}{2} x^{k/2} - 1,$$

for k even. The polynomial $f_k(x)$ has degree 2k and its coefficients have absolute value at most 2.

Theorem 1.2. Let p be an odd prime and let $m, k \ge 1$ be integers. The probability that two randomly chosen monic polynomials in $\mathbb{Z}_{p^k}[x]$ of degrees m and 2, respectively, are relatively prime is

$$P_{\mathbb{Z}_{p^k}}(m,2) = 1 - \frac{1}{p^{3k}} f_k(p).$$

When k = 1, we rediscover $P_{\mathbb{F}_p}(m, 2) = 1 - 1/p$. For small values of k, we have

$$\begin{split} \mathbf{P}_{\mathbb{Z}_{p^2}}(m,2) &= 1 - \frac{1}{p^2} + \frac{1}{p^4} - \frac{2}{p^5} + \frac{1}{p^6}, \\ \mathbf{P}_{\mathbb{Z}_{p^3}}(m,2) &= 1 - \frac{1}{p^3} + \frac{1}{p^5} - \frac{1}{p^6} - \frac{1}{2p^7} + \frac{1}{2p^9}, \\ \mathbf{P}_{\mathbb{Z}_{p^4}}(m,2) &= 1 - \frac{1}{p^4} + \frac{1}{p^6} - \frac{1}{p^7} + \frac{1}{2p^9} - \frac{1}{p^{10}} - \frac{1}{2p^{11}} + \frac{1}{p^{12}}. \end{split}$$

As an immediate corollary to Theorem 1.2, we obtain:

Corollary 1.3. Given $k \ge 1$, there exists a monic polynomial

$$g_k(x) = \sum a_i x^i \in \frac{1}{2} \mathbb{Z}[x]$$

with degree 2k-2 and $|a_i| \le 2$, such that

$$P_{\mathbb{Z}_{p^k}}(m,2) = 1 - \frac{1}{p^k} + \frac{1}{p^{3k}} g_k(p) \quad \text{for all odd primes p and all $m \ge 1$.}$$

We obtain Theorem 1.2 and its corollary by adapting the arguments of Benjamin and Bennett [2007], who proved Theorem 1.1 by a clever use of the Euclidean algorithm in $\mathbb{F}_q[x]$. While $\mathbb{Z}_{p^k}[x]$ does not have the Euclidean algorithm, due to the existence of noninvertible elements in \mathbb{Z}_{p^k} , it does have a division algorithm for monic polynomials. This division algorithm, together with some facts about polynomial factorization of quadratics in $\mathbb{Z}_{p^k}[x]$, suffices to prove Theorem 1.2 for odd primes p. It appears that our arguments can also be used to prove the formula for $P_{\mathbb{Z}_{p^k}}(m,2)$ when p=2, and also a formula for $P_{\mathbb{Z}_{p^k}}(m,3)$, but the details are much more involved and have not yet been fully worked through. However, the present approach does not seem able to establish a formula for $P_{\mathbb{Z}_{p^k}}(m,n)$ for general $m,n\geq 4$ as the number of cases to consider in the proof grows as a function of $\min(m,n)$.

2. Arithmetic in $\mathbb{Z}_{p^k}[x]$

In this section, we establish some basic results on the rings \mathbb{Z}_{p^k} and $\mathbb{Z}_{p^k}[x]$. Recall that \mathbb{Z}_n denotes the ring of integers mod n. We will make use of Hensel's lemma [Gouvêa 1997, page 70] in the following form:

Lemma 2.1 (Hensel's lemma). Let $f(x) \in \mathbb{Z}_{p^k}[x]$ be a polynomial and denote its reduction mod p by $\bar{f}(x) \in \mathbb{Z}_p[x]$. Suppose there exists $u_0 \in \mathbb{Z}_p$ with $\bar{f}(u_0) = 0$ in \mathbb{Z}_p and $\bar{f}'(u_0) \neq 0$ in \mathbb{Z}_p . Then there exists a unique $u \in \mathbb{Z}_{p^k}$, with f(u) = 0 in \mathbb{Z}_{p^k} and $u \equiv u_0 \mod p$.

We start by counting the squares in \mathbb{Z}_{p^k} and its unit subgroup $\mathbb{Z}_{p^k}^*$.

Lemma 2.2. Let p be an odd prime and $k \ge 1$.

- (a) $\mathbb{Z}_{p^k}^*$ has $\frac{1}{2}p^{k-1}(p-1)$ squares.
- (b) Let d be even, with $0 \le d < k$. There are $\frac{1}{2}(p-1)p^{k-1-d}$ nonzero squares $x \in \mathbb{Z}_{p^k}$ with $x \in p^d \mathbb{Z}_{p^k} \setminus p^{d+1} \mathbb{Z}_{p^k}$.
- (c) There are $1 + \frac{1}{2(p+1)}(p^{k+1} p^{1-k+2[k/2]})$ squares in \mathbb{Z}_{p^k} .
- *Proof.* (a) We first note that the (p-1)/2 squares $x=1^2,\ldots,(\frac{p-1}{2})^2$ are distinct nonzero squares in both \mathbb{Z}_p and \mathbb{Z}_{p^k} . Now consider a unit $u\in\mathbb{Z}_{p^k}$ satisfying $u\equiv 1 \bmod p$. Letting $f(x)=x^2-u\in\mathbb{Z}_{p^k}[x]$, and $u_0=1$, by Lemma 2.1, u is a square in \mathbb{Z}_{p^k} . Thus the p^{k-1} units $u\in\mathbb{Z}_{p^k}$ with $u\equiv 1 \bmod p$ are squares. Hence, the $\frac{1}{2}p^{k-1}(p-1)$ distinct units xu are all squares and every unit square can be seen to be of this form.
- (b) Let $x \in \mathbb{Z}_{p^k}$ satisfy $x \in p^d \mathbb{Z}_{p^k} \setminus p^{d+1} \mathbb{Z}_{p^k}$. Let $x = (p^t u)^2 = p^{2t} u^2$, where u is a unit. To satisfy the given conditions, t = d/2, u^2 is a unit square in $\mathbb{Z}_{p^k}^*$,

and $u^2 \equiv u_1^2 \mod p^{k-d}$. Hence, the number of distinct x equals the number of unit squares in $\mathbb{Z}_{p^{k-d}}$, which is given by (a).

(c) Every nonzero square can be written as $p^{2d}u$, where u is a unit square and $0 \le 2d < n$. Counting the square 0, the total sum is, thanks to (b),

$$1 + \frac{1}{2}(p-1) \sum_{d=0}^{[(k-1)/2]} p^{k-1-2d}.$$

This expression simplifies to the claimed formula.

For $g(x) = x^2 + bx + c \in \mathbb{Z}_{p^k}[x]$, define the discriminant $\Delta_g = b^2 - 4c$. As when k = 1, we can describe the number of roots of $g(x) \in \mathbb{Z}_{p^k}[x]$ using Δ_g .

Lemma 2.3. Let p be an odd prime, $k \ge 1$, and $g(x) = x^2 + bx + c \in \mathbb{Z}_{p^k}[x]$.

- (a) Δ is a square mod p^k if and only if g is reducible.
- (b) If $\Delta \equiv 0 \mod p^k$, then g has the $p^{\lfloor k/2 \rfloor}$ roots given by $\frac{-b}{2} + p^{\lfloor (k+1)/2 \rfloor}t \mod p^k$, where $t = 1, \ldots, p^{\lfloor k/2 \rfloor}$.
- (c) Suppose $\Delta \equiv p^d u \mod p^k$ is a nonzero square with $0 \le d < k$, d even, $u \in \mathbb{Z}_{p^k}^*$ a square. Choose a such that $u \equiv a^2 \mod p^k$. Then g has the $2p^{d/2}$ roots

$$-\frac{1}{2}b \pm \frac{1}{2}ap^{d/2} + tp^{k-d/2} \mod p^k$$
, where $t = 1, \dots, p^{d/2}$.

Proof. Since p is odd, we have $g(x) = (x+b/2)^2 - \Delta/4$. Hence r = -(b+z)/2 is a root of g(x) if and only if z is a solution of the equation $z^2 \equiv \Delta \mod p^k$. Condition (a) is thus proved. Condition (b) follows as well as the roots of the equation $z^2 \equiv 0 \mod p^k$ are $z \equiv p^{\lfloor (k+1)/2 \rfloor}t \mod p^k$, for $t = 1, \ldots, p^{\lfloor k/2 \rfloor}$, or equivalently, $z \equiv 2p^{\lfloor (k+1)/2 \rfloor}t \mod p^k$, for $t = 1, \ldots, p^{\lfloor k/2 \rfloor}$. (c) By the hypothesis, d is even and $a \not\equiv 0 \mod p$. The solutions to the equation $z^2 \equiv p^d a^2 \mod p^k$ have the form $z \equiv p^{d/2}w \mod p^k$, where $w \in \mathbb{Z}_{p^k}$ is a solution of $x^2 \equiv a^2 \mod p^{k-d}$. Hensel's lemma (using the polynomial $f(x) = x^2 - a^2$), shows that the solutions to this latter equation are the $w \in \mathbb{Z}_{p^k}$ satisfying $w \equiv \pm a \mod p^{k-d}$. Thus $w = \pm a + tp^{k-d}$, for $t = 1, \ldots, p^d$, or equivalently, as 2 is a unit mod p^d , $w = \pm a + 2tp^{k-d}$ for $t = 1, \ldots, p^d$. Now two roots $z = p^{d/2}w$ and $z_1 = p^{d/2}w_1$ are equal precisely when the signs in the expressions for w and w_1 agree and the respective parameters t and t_1 satisfy $t \equiv t_1 \mod p^{d/2}$. Hence we have shown that the original equation $z^2 \equiv p^d a^2 \mod p^k$ has the $2p^{d/2}$ distinct roots given by $z = \pm ap^{d/2} + 2tp^{k-d/2}$, for $t = 1, \ldots, p^{d/2}$.

Lemma 2.4. Let p be an odd prime and $k \ge 1$.

(a) Given $\Delta \in \mathbb{Z}_{p^k}$, there are p^k monic, quadratic polynomials $g \in \mathbb{Z}_{p^k}[x]$ with $\Delta_g \equiv \Delta \mod p^k$.

(b) There are

$$\frac{p^k}{2(p+1)}(p^{k+1}+2p^k-p-p^{k-2[k/2]}-1)$$

monic, *irreducible*, *quadratic polynomials* $g \in \mathbb{Z}_{p^k}[x]$.

Proof. If $g = x^2 + bx + c$, then $\Delta_g = b^2 - 4c$. Since 4 is invertible mod p^k , for every Δ , $b \in \mathbb{Z}_{p^k}$, there is a unique choice of c such that $\Delta_g \equiv \Delta \mod p^k$. Since there are p^k choices for b, (a) is proved. Now g is irreducible precisely when Δ_g is not a square. Let S be the number of squares in \mathbb{Z}_{p^k} . Then for each $b \in \mathbb{Z}_{p^k}$, there are $p^k - S$ choices for c such that $b^2 - 4c$ is not a square. Thus, using the formula for S given by Lemma 2.2(c), there are

$$p^{k}(p^{k} - S) = \frac{p^{k}}{2(p+1)} (p^{k+1} + 2p^{k} - 2p + p^{1-k+2[k/2]} - 2)$$

irreducible polynomials g. Simplification gives (b).

Given a monic, quadratic polynomial $g \in \mathbb{Z}_{p^k}[x]$, we define the set

$$A_g = \{h \in \mathbb{Z}_{p^k}[x] : \deg h \le 1 \text{ and } g, h \text{ are not relatively prime}\},$$

and let $|A_g|$ denote its cardinality. We note that in the definition of A_g , we allow nonmonic polynomials h.

Lemma 2.5. Let p be an odd prime and g(x) be a monic quadratic polynomial in $\mathbb{Z}_{p^k}[x]$.

(a) If $\Delta_g \equiv 0 \mod p^k$, then

$$|A_g| = p^{k-[k/2]} \left(\frac{p^{2[k/2]+1} + 1}{p+1} \right).$$

(b) Assume $\Delta_g \in \mathbb{Z}_{p^k}$ is a nonzero square. Let $\Delta_g \equiv p^d v \mod p^k$, where d is even, $0 \le d < k$, and $v \in (\mathbb{Z}_{p^k}^*)^2$. Then

$$|A_g| = 2p^{k-d/2} \left(\frac{p^{d+1}+1}{p+1}\right) - p^{d/2}.$$

Proof. We first note that a linear factor of g(x) must have the form u(x-r), where $u, r \in \mathbb{Z}_{p^k}$, u is a unit, and r is a root of g. Therefore, the elements $h(x) \in A_g$ are exactly the polynomials $h(x) = \alpha(x-r)$, for some $\alpha \in \mathbb{Z}_{p^k}$ and some root $r \in \mathbb{Z}_{p^k}$ of g. Hence, to calculate $|A_g|$, we need to count the number of distinct h(x) of this form

Suppose r_1 and r_2 are two roots of g and $\alpha(x - r_1) \equiv \beta(x - r_2) \bmod p^k$. Then $\beta \equiv \alpha \bmod p^k$ and $\alpha(r_1 - r_2) \equiv 0 \bmod p^k$. Let $\alpha = p^s u$, with $u \in \mathbb{Z}_{p^k}^*$. If s = k, then $\alpha = 0$ is the only choice. Now suppose s < k. Then there are $p^{k-s-1}(p-1)$ distinct choices for u giving rise to distinct α . For each such α , we need to calculate the

number of roots of g in $\mathbb{Z}_{p^{k-s}}$. To proceed further, we need to have a description of the roots.

Writing $g(x) = x^2 + bx + c$, in case (a), the roots of g are $r = -b/2 + p^{[(k+1)/2]}t$, for $t = 1, \ldots, p^{[k/2]}$ by Lemma 2.3. If $[k/2] \le s < k$, for each choice of $\alpha = p^s u$, there is exactly one factor $\alpha(x - r) \mod p^k$. As there are $p^{k-s-1}(p-1)$ choices for u, and hence α , we obtain the same number of distinct factors $\alpha(x - r)$ for each s. If $0 \le s \le [k/2]$, then for each choice of $\alpha = p^s u$, there are $p^{[k/2]-s}$ distinct factors $\alpha(x - r) \mod p^k$. Hence there are $p^{k+[k/2]-2s-1}(p-1)$ distinct factors $\alpha(x - r) \mod p^k$ for each s. In total then, we have

$$|A_g| = \sum_{s=0}^{\lfloor k/2 \rfloor} (p-1) p^{k+\lfloor k/2 \rfloor - 2s - 1} + \left(\sum_{s=\lfloor k/2 \rfloor + 1}^{k-1} (p-1) p^{k-s - 1} + 1 \right)$$

$$= \sum_{s=0}^{\lfloor k/2 \rfloor} (p-1) p^{k+\lfloor k/2 \rfloor - 2s - 1} + p^{k-\lfloor k/2 \rfloor - 1} = p^{k-\lfloor k/2 \rfloor} \left(\frac{p^{2\lfloor k/2 \rfloor + 1} + 1}{p+1} \right),$$

where the last equality is obtained by evaluating a geometric sum. We thus obtain the desired formula for case (a). In case (b), by Lemma 2.3, the roots of g are $-\frac{1}{2}b\pm\frac{1}{2}ap^{d/2}+tp^{k-d/2} \bmod p^k$, where $a^2\equiv v \bmod p^k$, $t=1,\ldots,p^{d/2}$. As in case (a), we let $\alpha=p^su$, and consider the number of distinct factors $h(x)=\alpha(x-r)$ for each choice of s. When s=k, $h(x)=\alpha=0$ is the only factor. There are three additional cases:

- (1) Suppose $k > s \ge k d/2$. Then $k s \le d/2$ and all the roots of g are equivalent mod p^{k-s} . Since there are $p^{k-s-1}(p-1)$ distinct choices for α , there are the same number of distinct factors $\alpha(x-r)$.
- (2) Suppose $k d/2 > s \ge d/2$. Then $d/2 < k s \le k d/2$ and the roots of g determine two equivalence classes mod p^{k-s} . Thus for each s, there are a total of $2p^{k-s-1}(p-1)$ distinct factors $\alpha(x-r)$.
- (3) Suppose $d/2 \ge s \ge 0$. Then the roots of g determine $2p^{d/2-s}$ equivalence classes mod p^{k-s} for each α . Thus there are a total of $2p^{k+d/2-2s-1}(p-1)$ distinct factors $\alpha(x-r)$, for each s.

In total, when d < k - 1, we have for $|A_g|$ the value

$$\sum_{s=0}^{d/2} 2(p-1)p^{k+d/2-2s-1} + \left(\sum_{s=d/2+1}^{k-d/2-1} 2(p-1)p^{k-s-1} + \sum_{s=k-d/2}^{k-1} (p-1)p^{k-s-1} + 1\right)$$

$$= \sum_{s=0}^{d/2} 2(p-1)p^{k+d/2-2s-1} + 2p^{k-d/2-1} - p^{d/2},$$

which simplifies to the formula stated in (b). When d = k-1, the second summation does not appear, and

$$|A_g| = \sum_{s=0}^{d/2} 2(p-1)p^{k+d/2-2s-1} + \left(\sum_{s=k-d/2}^{k-1} (p-1)p^{k-s-1} + 1\right)$$
$$= \sum_{s=0}^{d/2} 2(p-1)p^{k+d/2-2s-1} + p^{d/2},$$

which again simplifies to the stated formula for (b).

3. Proof of the main theorem

In this section, we let $q = p^k$. To prove Theorem 1.2, we will count the number of polynomial pairs (f, g), where $f, g \in \mathbb{Z}_q[x]$ are not relatively prime. Let f(x), g(x) be monic polynomials. Then by the division algorithm, there is a unique choice of polynomials $q(x), r(x) \in \mathbb{Z}_q[x]$, with q(x) monic, satisfying

$$f(x) = g(x)q(x) + r(x), \tag{1}$$

where r(x) = 0 or $\deg r(x) < \deg g(x)$. Thus the pair (f, g) is uniquely determined by the triple (g, q(x), r(x)). From (1), any common divisor of f and g is a common divisor of g and f and vice-versa. We define

 $S_{m,d,q} = \{(f,g) : f,g \in \mathbb{Z}_q[x] \text{ monic with deg } f = m, \text{ deg } g = d,$ $f \text{ and } g \text{ not relatively prime}\},$

 $T_{m,q} = \{(g,r) : g, r \in \mathbb{Z}_q[x] \text{ with } g \text{ monic of degree } m, \text{ deg } r < m,$ $g \text{ and } r \text{ not relatively prime}\}.$

Lemma 3.1. *If* $m \ge d$, then $|S_{m,d,q}| = q^{m-d} |T_{d,q}|$.

Proof. Let $(g, r) \in T_{d,q}$. Then each of the q^{m-d} monic polynomials q(x) with degree m-d gives rise via (1) to a unique pair $(f, g) \in S_{m,d,q}$. Conversely, the inverse map

$$(f,g) \mapsto (g,q,r) \mapsto (g,r)$$

is a q^{m-d} -to-1 map from $S_{m,d,q}$ to $T_{d,q}$.

Thus, proving Theorem 1.2 is reduced to calculating $|T_{2,q}|$. We begin with:

Proposition 3.2. $|T_{1,q}| = q$.

Proof. If $(g, r) \in T_{1,q}$, then g(x) = x - c. For g and r to have a common factor, r = 0. Hence $T_{1,q}$ consists of the q pairs (x - c, 0).

We now determine $|T_{2,q}|$. By Lemma 2.3, we have $|T_{2,q}| = B_1 + B_2 + B_3$, where the B_i are defined by

$$B_1 = \big| \{ (g, r) \in T_{2,q} : g \text{ is irreducible} \} \big|,$$

$$B_2 = \big| \{ (g, r) \in T_{2,q} : \Delta_g \equiv 0 \mod p^k \} \big|,$$

$$B_3 = \big| \{ (g, r) \in T_{2,q} : \Delta_g \mod p^k \text{ is a square, and, for each } d < k,$$

$$\Delta_g \equiv 0 \mod p^d \text{ and } \Delta_g \not\equiv 0 \mod p^{d+1} \} \big|.$$

Lemma 3.3. (a)
$$B_1 = \frac{p^k}{2(p+1)}(p^{k+1} + 2p^k - p - p^{k-2[k/2]} - 1).$$

(b)
$$B_2 = p^{2k-\lfloor k/2 \rfloor} \left(\frac{p^{2\lfloor k/2 \rfloor + 1} + 1}{p+1} \right)$$
.

(c)
$$B_3 = \frac{p^{2k-1-[(k-1)/2]} - p^{2k}}{2(p+1)(p^2+p+1)}\alpha$$
, where

$$\alpha = (p+1)(p^2+p+1) - 2p^{k+1}(p+1)^2 - 2p^{k-\lceil (k-1)/2 \rceil}(p+p^{-\lceil (k-1)/2 \rceil}).$$

Proof. (a) Assume $g \in \mathbb{Z}_{p^k}[x]$ is a monic, irreducible, quadratic polynomial. Since g has no factors, $(g, r) \in T_{2,q}$ only when r = 0. Hence, B_1 equals the number of monic, irreducible quadratic polynomials, which is given by Lemma 2.4.

(b) Assume $g \in \mathbb{Z}_{p^k}[x]$ is a monic quadratic with $\Delta_g \equiv 0 \mod p^k$. By Lemma 2.4, there are p^k such g. For each g, $|A_g|$ is given by Lemma 2.5(a). Thus

$$B_2 = p^k |A_g|.$$

(c) If $(g, r) \in T_{2,q}$ is included in the pairs counted for B_3 , then $\Delta_g = p^d u$, where $0 \le d < k$, d even, and $u \in \mathbb{Z}_{p^k}^*$ is a square. For a fixed d, u, satisfying these conditions, there are p^k polynomials g with $\Delta_g = p^d u$ by Lemma 2.4(a). And for any such g, $|A_g|$ is given by Lemma 2.5(b). Now, for a fixed d, there are

$$\frac{1}{2}(p-1)p^{k-d-1}$$

choices for u that give distinct values for $p^d u$. Putting these results together, and replacing d by 2d, we have

$$B_{3} = \sum_{d=0}^{\left[(k-1)/2\right]} \frac{1}{2} (p-1) p^{2k-d-1} \left(2p^{k-2d} \left(\frac{p^{2d+1}+1}{p+1} \right) - 1 \right)$$

$$= \frac{p^{2k-1} (p-1)}{2(p+1)} \sum_{d=0}^{\left[(k-1)/2\right]} p^{-d} \left(2p^{k-2d} (p^{2d+1}+1) - p - 1 \right). \tag{2}$$

Summing the geometric sequences, we have

$$\begin{split} \sum_{d=0}^{\lceil (k-1)/2 \rceil} p^{-d}(-p-1) &= -(p+1)p^{-\lceil (k-1)/2 \rceil} \Big(\frac{p^{\lceil (k-1)/2 \rceil + 1} - 1}{p-1} \Big), \\ \sum_{d=0}^{\lceil (k-1)/2 \rceil} p^{-d} \Big(2p^{k-2d}(p^{2d+1} + 1) \Big) &= 2p^{k-\lceil (k-1)/2 \rceil + 1} \Big(\frac{p^{\lceil (k-1)/2 \rceil + 1} - 1}{p-1} \Big) \\ &+ 2p^{k-3\lceil (k-1)/2 \rceil} \Big(\frac{p^{3\lceil (k-1)/2 \rceil + 3} - 1}{p^3 - 1} \Big). \end{split}$$

Substituting these equations in (2) and simplifying with the help of a computer algebra system, we obtain the desired expression.

Proof of Theorem 1.2. There are q^m monic polynomials in $\mathbb{Z}_q[x]$ with degree m. Hence there are q^{m+2} pairs of monic polynomials (f, g) with deg f = m, deg g = 2. By Lemma 3.1, the probability that a pair of these polynomials is relatively prime is

$$1 - \frac{|S_{m,2,q}|}{q^{m+2}} = 1 - \frac{|T_{2,q}|}{q^4}.$$

Now $|T_{2,q}| = B_1 + B_2 + B_3$, with the values of B_i given by Lemma 2.5. Manipulating this expression with the help of a computer algebra system, one obtains

$$|T_{2,q}| = \frac{p^k}{2(p+1)}D,$$

where D equals the expression

$$2p^{2k+1} + 2p^{2+k/2}(p-1)\left(\frac{p^{3k/2}-1}{p^3-1}\right) + p^{1+k/2} + 3p^{k/2} + p^k - p - 2$$

when k is even, and D equals

$$2p^{2k+1} + 2(p-1)\left(\frac{p^{2(k+1)} - p^{(k+1)/2}}{p^3 - 1}\right) + 3p^{(k+1)/2} + p^{(k-1)/2} + p^k - 2p - 1,$$

when k is odd. When k is even, algebraic manipulation shows

$$2p^{2k+1} = 2(p+1)p^{2k} - 2p^{2k},$$

$$2p^{2+k/2}(p-1)\left(\frac{p^{3k/2} - 1}{p^3 - 1}\right) = 2p^{2k} - 2p^{2+k/2} + 2(1-p^2)\sum_{i=1}^{k/2-1} p^{2k-3i},$$

$$p^{1+k/2} + 3p^{k/2} = (p+1)(-2p^{1+k/2} + 3p^{k/2}) + 2p^{2+k/2},$$

$$p^k - p - 2 = -(p+1)\sum_{i=1}^{k-1} (-p)^i - 2(p+1).$$

Adding both sides, the left hand side sums to D. With $f_k(x)$ defined as in the introduction, we then have

$$\frac{1}{2(p+1)}D = f_k(p).$$

Theorem 1.2 follows immediately for k even. Similar calculations establish it for k odd.

Acknowledgment

The authors thank the anonymous referee for many helpful suggestions.

References

[Benjamin and Bennett 2007] A. T. Benjamin and C. D. Bennett, "The probability of relatively prime polynomials", *Math. Mag.* **80**:3 (2007), 196–202. MR 2008b:11036

[Corteel et al. 1998] S. Corteel, C. D. Savage, H. S. Wilf, and D. Zeilberger, "A pentagonal number sieve", J. Combin. Theory Ser. A 82:2 (1998), 186–192. MR 99d:11111 Zbl 0910.05008

[Gao and Panario 2006] Z. Gao and D. Panario, "Degree distribution of the greatest common divisor of polynomials over \mathbb{F}_q ", *Random Structures Algorithms* **29**:1 (2006), 26–37. MR 2008k:60020 Zbl 1099.11072

[Gouvêa 1997] F. Q. Gouvêa, *p-adic numbers*, 2nd ed., Universitext, Springer, Berlin, 1997. MR 98h:11155 Zbl 0874.11002

[Hou and Mullen 2009] X.-D. Hou and G. L. Mullen, "Number of irreducible polynomials and pairs of relatively prime polynomials in several variables over finite fields", *Finite Fields Appl.* **15**:3 (2009), 304–331. MR 2010c:11146 Zbl 05554713

[Reifegerste 2000] A. Reifegerste, "On an involution concerning pairs of polynomials over \mathbf{F}_2 ", *J. Combin. Theory Ser. A* **90**:1 (2000), 216–220. MR 2001a:11196 Zbl 1010.11068

Received: 2009-12-11 Revised: 2010-04-25 Accepted: 2010-04-26

Statistics, P.O. Box 7718, Ewing, NJ 08628, United States

Statistics, P.O. Box 7718, Ewing, NJ 08628, United States

Department of Mathematics and Statistics,

University of Massachusetts at Amherst, Amherst, MA 01003

pjm.math.berkeley.edu/involve

EDITORS

MANAGING EDITOR

Kenneth S. Berenhaut, Wake Forest University, USA, berenhks@wfu.edu

BOARD OF EDITORS

John V. Baxley	Wake Forest University, NC, USA baxley@wfu.edu	Chi-Kwong Li	College of William and Mary, USA ckli@math.wm.edu
Arthur T. Benjamin	Harvey Mudd College, USA benjamin@hmc.edu	Robert B. Lund	Clemson University, USA lund@clemson.edu
Martin Bohner	Missouri U of Science and Technology, US bohner@mst.edu	A Gaven J. Martin	Massey University, New Zealand g.j.martin@massey.ac.nz
Nigel Boston	University of Wisconsin, USA boston@math.wisc.edu	Mary Meyer	Colorado State University, USA meyer@stat.colostate.edu
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA budhiraj@email.unc.edu	Emil Minchev	Ruse, Bulgaria eminchev@hotmail.com
Pietro Cerone	Victoria University, Australia pietro.cerone@vu.edu.au	Frank Morgan	Williams College, USA frank.morgan@williams.edu
Scott Chapman	Sam Houston State University, USA scott.chapman@shsu.edu	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran moslehian@ferdowsi.um.ac.ir
Jem N. Corcoran	University of Colorado, USA corcoran@colorado.edu	Zuhair Nashed	University of Central Florida, USA znashed@mail.ucf.edu
Michael Dorff	Brigham Young University, USA mdorff@math.byu.edu	Ken Ono	University of Wisconsin, USA ono@math.wisc.edu
Sever S. Dragomir	Victoria University, Australia sever@matilda.vu.edu.au	Joseph O'Rourke	Smith College, USA orourke@cs.smith.edu
Behrouz Emamizadeh	The Petroleum Institute, UAE bemamizadeh@pi.ac.ae	Yuval Peres	Microsoft Research, USA peres@microsoft.com
Errin W. Fulp	Wake Forest University, USA fulp@wfu.edu	YF. S. Pétermann	Université de Genève, Switzerland petermann@math.unige.ch
Andrew Granville	Université Montréal, Canada andrew@dms.umontreal.ca	Robert J. Plemmons	Wake Forest University, USA plemmons@wfu.edu
Jerrold Griggs	University of South Carolina, USA griggs@math.sc.edu	Carl B. Pomerance	Dartmouth College, USA carl.pomerance@dartmouth.edu
Ron Gould	Emory University, USA rg@mathcs.emory.edu	Bjorn Poonen	UC Berkeley, USA poonen@math.berkeley.edu
Sat Gupta	U of North Carolina, Greensboro, USA sngupta@uncg.edu	James Propp	U Mass Lowell, USA jpropp@cs.uml.edu
Jim Haglund	University of Pennsylvania, USA jhaglund@math.upenn.edu	Józeph H. Przytycki	George Washington University, USA przytyck@gwu.edu
Johnny Henderson	Baylor University, USA johnny_henderson@baylor.edu	Richard Rebarber	University of Nebraska, USA rrebarbe@math.unl.edu
Natalia Hritonenko	Prairie View A&M University, USA nahritonenko@pvamu.edu	Robert W. Robinson	University of Georgia, USA rwr@cs.uga.edu
Charles R. Johnson	College of William and Mary, USA crjohnso@math.wm.edu	Filip Saidak	U of North Carolina, Greensboro, USA f_saidak@uncg.edu
Karen Kafadar	University of Colorado, USA karen.kafadar@cudenver.edu	Andrew J. Sterge	Honorary Editor andy@ajsterge.com
K. B. Kulasekera	Clemson University, USA kk@ces.clemson.edu	Ann Trenk	Wellesley College, USA atrenk@wellesley.edu
Gerry Ladas	University of Rhode Island, USA gladas@math.uri.edu	Ravi Vakil	Stanford University, USA vakil@math.stanford.edu
David Larson	Texas A&M University, USA larson@math.tamu.edu	Ram U. Verma	University of Toledo, USA verma99@msn.com
Suzanne Lenhart	University of Tennessee, USA lenhart@math.utk.edu	John C. Wierman	Johns Hopkins University, USA wierman@jhu.edu
		X COMPX C 3 X	

PRODUCTION

Silvio Levy, Scientific Editor Sheila Newbery, Senior Production Editor Cover design: ©2008 Alex Scorpan

See inside back cover or http://pjm.math.berkeley.edu/involve for submission instructions.

The subscription price for 2010 is US \$100/year for the electronic version, and \$120/year (+\$20 shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to Mathematical Sciences Publishers, Department of Mathematics, University of California, Berkeley, CA 94704-3840, USA.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, Department of Mathematics, University of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOWTM from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers

 $\label{eq:http://www.mathscipub.org} \mbox{A NON-PROFIT CORPORATION} \\ \mbox{Typeset in } \mbox{LMT}_{\mbox{E}}\mbox{X}$

Copyright ©2010 by Mathematical Sciences Publishers

Recursive sequences and polynomial congruences J. LARRY LEHMAN AND CHRISTOPHER TRIOLA	129
The Gram determinant for plane curves JÓZEF H. PRZYTYCKI AND XIAOQI ZHU	149
The cardinality of the value sets modulo n of $x^2 + x^{-2}$ and $x^2 + y^2$ SARA HANRAHAN AND MIZAN KHAN	171
Minimal k -rankings for prism graphs JUAN ORTIZ, ANDREW ZEMKE, HALA KING, DARREN NARAYAN AND MIRKO HORŇÁK	183
An unresolved analogue of the Littlewood Conjecture CLARICE FEROLITO	191
Mapping the discrete logarithm Daniel Cloutier and Joshua Holden	197
Linear dependency for the difference in exponential regression INDIKA SATHISH AND DIAWARA NOROU	215
The probability of relatively prime polynomials in $\mathbb{Z}_{p^k}[x]$ Thomas R. Hagedorn and Jeffrey Hatley	223
G-planar abelian groups	233

