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Let PR(m, n) denote the probability that two randomly chosen monic polynomi-
als f , g ∈ R[x] of degrees m and n, respectively, are relatively prime. Let q = pk

be a prime power. We establish an explicit formula for PR(m, 2) when R = Zq ,
the ring of integers mod q.

1. Introduction

Given two polynomials f (x), g(x) chosen at random, what is the probability that
they are relatively prime? For a ring R, we say that two polynomials f, g ∈ R[x]
are relatively prime if there is no monic polynomial of positive degree that divides
both f and g. Let PR(m, n) denote the probability that two randomly chosen
monic polynomials f , g ∈ R[x] of degrees m and n, respectively, are relatively
prime. If R has an infinite number of elements, then PR(m, n) = 1, so we restrict
our attention to finite rings R. Let R = Fq , the finite field with q elements. The
formula, PFq (m,m)=1−1/q was proved in [Corteel et al. 1998]. When q= p=2,
Reifegerste [2000] gave a combinatorial proof that PF2(m,m)=1/2. Benjamin and
Bennett subsequently found a beautifully simple proof generalizing these results:

Theorem 1.1 [Benjamin and Bennett 2007]. If m, n ≥ 1, then PFq (m, n)= 1− 1
q

.

This can be generalized in at least two ways. Hou and Mullen [2009] have gen-
eralized Theorem 1.1 by considering the problem of relatively prime polynomials
in several variables over a finite field. In earlier work, Gao and Panario [2006] con-
sidered the probability distribution of the greatest common divisor of l randomly
chosen monic single-variable polynomials in Fq [x] with degrees n1, . . . , nl as the
ni →∞. In this paper, we restrict ourselves to single-variable polynomials and
explore a different perspective.
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As the formula in Theorem 1.1 only depends on the number of elements in
the field Fq , one can ask whether the same formula holds when R is another ring
with q elements. For example, if R = Zq , the integers mod q, does the same
formula hold? It does not, but the formula for PFq (m, n) can be viewed as a first
approximation to the formula for PZq (m, n). In this paper, we prove an explicit
formula for PZpk (m, 2) for p odd.

For each positive integer k, we define a monic polynomial fk(x) ∈ 1
2 Z[x] by

fk(x)= x2k
+ (1− x)

(k−3)/2∑
i=0

x (k+3)/2+3i
+

1
2

k−1∑
i=0

(−x)i + 1
2 x (k−1)/2

− 1,

for k odd, and

fk(x)= x2k
+ (1− x)

k/2−1∑
i=1

x2k−3i
−

1
2

k−1∑
i=1

(−x)i − xk/2+1
+

3
2 xk/2

− 1,

for k even. The polynomial fk(x) has degree 2k and its coefficients have absolute
value at most 2.

Theorem 1.2. Let p be an odd prime and let m, k ≥ 1 be integers. The proba-
bility that two randomly chosen monic polynomials in Zpk [x] of degrees m and 2,
respectively, are relatively prime is

PZpk (m, 2)= 1−
1

p3k fk(p).

When k= 1, we rediscover PFp(m, 2)= 1−1/p. For small values of k, we have

PZp2 (m, 2)= 1−
1
p2 +

1
p4 −

2
p5 +

1
p6 ,

PZp3 (m, 2)= 1−
1
p3 +

1
p5 −

1
p6 −

1
2p7 +

1
2p9 ,

PZp4 (m, 2)= 1−
1
p4 +

1
p6 −

1
p7 +

1
2p9 −

1
p10 −

1
2p11 +

1
p12 .

As an immediate corollary to Theorem 1.2, we obtain:

Corollary 1.3. Given k ≥ 1, there exists a monic polynomial

gk(x)=
∑

ai x i
∈

1
2 Z[x]

with degree 2k− 2 and |ai | ≤ 2, such that

PZpk (m, 2)= 1−
1
pk +

1
p3k gk(p) for all odd primes p and all m ≥ 1.
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We obtain Theorem 1.2 and its corollary by adapting the arguments of Benjamin
and Bennett [2007], who proved Theorem 1.1 by a clever use of the Euclidean
algorithm in Fq [x]. While Zpk [x] does not have the Euclidean algorithm, due to
the existence of noninvertible elements in Zpk , it does have a division algorithm
for monic polynomials. This division algorithm, together with some facts about
polynomial factorization of quadratics in Zpk [x], suffices to prove Theorem 1.2 for
odd primes p. It appears that our arguments can also be used to prove the formula
for PZpk (m, 2) when p = 2, and also a formula for PZpk (m, 3), but the details
are much more involved and have not yet been fully worked through. However,
the present approach does not seem able to establish a formula for PZpk (m, n) for
general m, n≥4 as the number of cases to consider in the proof grows as a function
of min(m, n).

2. Arithmetic in Z pk [x]

In this section, we establish some basic results on the rings Zpk and Zpk [x]. Recall
that Zn denotes the ring of integers mod n. We will make use of Hensel’s lemma
[Gouvêa 1997, page 70] in the following form:

Lemma 2.1 (Hensel’s lemma). Let f (x) ∈ Zpk [x] be a polynomial and denote its
reduction mod p by f̄ (x) ∈ Zp[x]. Suppose there exists u0 ∈ Zp with f̄ (u0)= 0 in
Zp and f̄ ′(u0) 6= 0 in Zp. Then there exists a unique u ∈Zpk , with f (u)= 0 in Zpk

and u ≡ u0 mod p.

We start by counting the squares in Zpk and its unit subgroup Z∗pk .

Lemma 2.2. Let p be an odd prime and k ≥ 1.

(a) Z∗pk has 1
2 pk−1(p− 1) squares.

(b) Let d be even, with 0 ≤ d < k. There are 1
2(p − 1)pk−1−d nonzero squares

x ∈ Zpk with x ∈ pdZpk\ pd+1Zpk .

(c) There are 1+ 1
2(p+1)

(pk+1
− p1−k+2[k/2]) squares in Zpk .

Proof. (a) We first note that the (p− 1)/2 squares x = 12, . . . , ( p−1
2 )2 are distinct

nonzero squares in both Zp and Zpk . Now consider a unit u ∈ Zpk satisfying
u ≡ 1 mod p. Letting f (x) = x2

− u ∈ Zpk [x], and u0 = 1, by Lemma 2.1, u is a
square in Zpk . Thus the pk−1 units u ∈ Zpk with u ≡ 1 mod p are squares. Hence,
the 1

2 pk−1(p− 1) distinct units xu are all squares and every unit square can be
seen to be of this form.

(b) Let x ∈ Zpk satisfy x ∈ pdZpk\ pd+1Zpk . Let x = (pt u)2 = p2t u2, where
u is a unit. To satisfy the given conditions, t = d/2, u2 is a unit square in Z∗pk ,
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and u2
≡ u2

1 mod pk−d . Hence, the number of distinct x equals the number of unit
squares in Zpk−d , which is given by (a).

(c) Every nonzero square can be written as p2du, where u is a unit square and
0≤ 2d < n. Counting the square 0, the total sum is, thanks to (b),

1+ 1
2(p− 1)

[(k−1)/2]∑
d=0

pk−1−2d .

This expression simplifies to the claimed formula. �

For g(x) = x2
+ bx + c ∈ Zpk [x], define the discriminant 1g = b2

− 4c. As
when k = 1, we can describe the number of roots of g(x) ∈ Zpk [x] using 1g.

Lemma 2.3. Let p be an odd prime, k ≥ 1, and g(x)= x2
+ bx + c ∈ Zpk [x].

(a) 1 is a square mod pk if and only if g is reducible.

(b) If1≡ 0 mod pk , then g has the p[k/2] roots given by −b
2
+ p[(k+1)/2]t mod pk ,

where t = 1, . . . , p[k/2].

(c) Suppose1≡ pdu mod pk is a nonzero square with 0≤ d < k, d even, u ∈ Z∗pk

a square. Choose a such that u ≡ a2 mod pk . Then g has the 2pd/2 roots

−
1
2 b± 1

2apd/2
+ tpk−d/2 mod pk, where t = 1, . . . , pd/2.

Proof. Since p is odd, we have g(x)= (x+b/2)2−1/4. Hence r =−(b+z)/2 is a
root of g(x) if and only if z is a solution of the equation z2

≡1mod pk . Condition
(a) is thus proved. Condition (b) follows as well as the roots of the equation z2

≡

0 mod pk are z ≡ p[(k+1)/2]t mod pk , for t = 1, . . . , p[k/2], or equivalently, z ≡
2p[(k+1)/2]t mod pk , for t = 1, . . . , p[k/2]. (c) By the hypothesis, d is even and
a 6≡ 0 mod p. The solutions to the equation z2

≡ pda2 mod pk have the form
z ≡ pd/2wmod pk , where w ∈ Zpk is a solution of x2

≡ a2 mod pk−d . Hensel’s
lemma (using the polynomial f (x)= x2

−a2), shows that the solutions to this latter
equation are the w ∈ Zpk satisfying w ≡ ±a mod pk−d . Thus w = ±a + tpk−d ,
for t = 1, . . . , pd , or equivalently, as 2 is a unit mod pd , w = ±a + 2tpk−d for
t = 1, . . . , pd . Now two roots z = pd/2w and z1 = pd/2w1 are equal precisely
when the signs in the expressions forw andw1 agree and the respective parameters
t and t1 satisfy t ≡ t1 mod pd/2. Hence we have shown that the original equation
z2
≡ pda2 mod pk has the 2pd/2 distinct roots given by z = ±apd/2

+ 2tpk−d/2,
for t = 1, . . . , pd/2. �

Lemma 2.4. Let p be an odd prime and k ≥ 1.

(a) Given 1 ∈ Zpk , there are pk monic, quadratic polynomials g ∈ Zpk [x] with
1g ≡1mod pk .
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(b) There are
pk

2(p+ 1)
(pk+1

+ 2pk
− p− pk−2[k/2]

− 1)

monic, irreducible, quadratic polynomials g ∈ Zpk [x].

Proof. If g = x2
+ bx + c, then 1g = b2

− 4c. Since 4 is invertible mod pk , for
every 1, b ∈ Zpk , there is a unique choice of c such that 1g ≡ 1mod pk . Since
there are pk choices for b, (a) is proved. Now g is irreducible precisely when 1g

is not a square. Let S be the number of squares in Zpk . Then for each b ∈ Zpk ,
there are pk

− S choices for c such that b2
− 4c is not a square. Thus, using the

formula for S given by Lemma 2.2(c), there are

pk(pk
− S)=

pk

2(p+ 1)

(
pk+1
+ 2pk

− 2p+ p1−k+2[k/2]
− 2

)
irreducible polynomials g. Simplification gives (b). �

Given a monic, quadratic polynomial g ∈ Zpk [x], we define the set

Ag = {h ∈ Zpk [x] : deg h ≤ 1 and g, h are not relatively prime},

and let |Ag| denote its cardinality. We note that in the definition of Ag, we allow
nonmonic polynomials h.

Lemma 2.5. Let p be an odd prime and g(x) be a monic quadratic polynomial in
Zpk [x].

(a) If 1g ≡ 0 mod pk , then

|Ag| = pk−[k/2]
(

p2[k/2]+1
+ 1

p+ 1

)
.

(b) Assume1g ∈Zpk is a nonzero square. Let1g ≡ pdvmod pk , where d is even,
0≤ d < k, and v ∈ (Z∗pk )

2. Then

|Ag| = 2pk−d/2
(

pd+1
+ 1

p+ 1

)
− pd/2.

Proof. We first note that a linear factor of g(x) must have the form u(x−r), where
u, r ∈ Zpk , u is a unit, and r is a root of g. Therefore, the elements h(x) ∈ Ag are
exactly the polynomials h(x)= α(x−r), for some α ∈ Zpk and some root r ∈ Zpk

of g. Hence, to calculate |Ag|, we need to count the number of distinct h(x) of this
form.

Suppose r1 and r2 are two roots of g and α(x − r1) ≡ β(x − r2)mod pk . Then
β ≡ αmod pk and α(r1−r2)≡ 0 mod pk . Let α= psu, with u ∈Z∗pk . If s= k, then
α= 0 is the only choice. Now suppose s< k. Then there are pk−s−1(p−1) distinct
choices for u giving rise to distinct α. For each such α, we need to calculate the
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number of roots of g in Zpk−s . To proceed further, we need to have a description
of the roots.

Writing g(x)= x2
+bx+c, in case (a), the roots of g are r =−b/2+ p[(k+1)/2]t ,

for t = 1, . . . , p[k/2] by Lemma 2.3. If [k/2] ≤ s < k, for each choice of α = psu,
there is exactly one factor α(x − r)mod pk . As there are pk−s−1(p− 1) choices
for u, and hence α, we obtain the same number of distinct factors α(x−r) for each
s. If 0 ≤ s ≤ [k/2], then for each choice of α = psu, there are p[k/2]−s distinct
factors α(x − r)mod pk . Hence there are pk+[k/2]−2s−1(p − 1) distinct factors
α(x − r)mod pk for each s. In total then, we have

|Ag| =

[k/2]∑
s=0

(p− 1)pk+[k/2]−2s−1
+

( k−1∑
s=[k/2]+1

(p− 1)pk−s−1
+ 1

)

=

[k/2]∑
s=0

(p− 1)pk+[k/2]−2s−1
+ pk−[k/2]−1

= pk−[k/2]
(

p2[k/2]+1
+ 1

p+ 1

)
,

where the last equality is obtained by evaluating a geometric sum. We thus obtain
the desired formula for case (a). In case (b), by Lemma 2.3, the roots of g are
−

1
2 b± 1

2apd/2
+ tpk−d/2 mod pk , where a2

≡ v mod pk, t = 1, . . . , pd/2. As in
case (a), we let α= psu, and consider the number of distinct factors h(x)=α(x−r)
for each choice of s. When s = k, h(x)= α = 0 is the only factor. There are three
additional cases:

(1) Suppose k> s≥ k−d/2. Then k−s≤d/2 and all the roots of g are equivalent
mod pk−s . Since there are pk−s−1(p−1) distinct choices for α, there are the
same number of distinct factors α(x − r).

(2) Suppose k − d/2 > s ≥ d/2. Then d/2 < k − s ≤ k − d/2 and the roots of
g determine two equivalence classes mod pk−s . Thus for each s, there are a
total of 2pk−s−1(p− 1) distinct factors α(x − r).

(3) Suppose d/2 ≥ s ≥ 0. Then the roots of g determine 2pd/2−s equivalence
classes mod pk−s for each α. Thus there are a total of 2pk+d/2−2s−1(p− 1)
distinct factors α(x − r), for each s.

In total, when d < k− 1, we have for |Ag| the value

d/2∑
s=0

2(p−1)pk+d/2−2s−1
+

( k−d/2−1∑
s=d/2+1

2(p−1)pk−s−1
+

k−1∑
s=k−d/2

(p−1)pk−s−1
+ 1

)

=

d/2∑
s=0

2(p−1)pk+d/2−2s−1
+ 2pk−d/2−1

− pd/2,
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which simplifies to the formula stated in (b). When d=k−1, the second summation
does not appear, and

|Ag| =

d/2∑
s=0

2(p− 1)pk+d/2−2s−1
+

( k−1∑
s=k−d/2

(p− 1)pk−s−1
+ 1

)

=

d/2∑
s=0

2(p− 1)pk+d/2−2s−1
+ pd/2,

which again simplifies to the stated formula for (b). �

3. Proof of the main theorem

In this section, we let q = pk . To prove Theorem 1.2, we will count the number of
polynomial pairs ( f, g), where f, g∈Zq [x] are not relatively prime. Let f (x), g(x)
be monic polynomials. Then by the division algorithm, there is a unique choice of
polynomials q(x), r(x) ∈ Zq [x], with q(x) monic, satisfying

f (x)= g(x)q(x)+ r(x), (1)

where r(x)= 0 or deg r(x)< deg g(x). Thus the pair ( f, g) is uniquely determined
by the triple (g, q(x), r(x)). From (1), any common divisor of f and g is a common
divisor of g and r and vice-versa. We define

Sm,d,q = {( f, g) : f, g ∈ Zq [x] monic with deg f = m, deg g = d,
f and g not relatively prime},

Tm,q = {(g, r) : g, r ∈ Zq [x] with g monic of degree m, deg r < m,
g and r not relatively prime}.

Lemma 3.1. If m ≥ d , then |Sm,d,q | = qm−d
|Td,q |.

Proof. Let (g, r) ∈ Td,q . Then each of the qm−d monic polynomials q(x) with
degree m − d gives rise via (1) to a unique pair ( f, g) ∈ Sm,d,q . Conversely, the
inverse map

( f, g) 7→ (g, q, r) 7→ (g, r)

is a qm−d -to-1 map from Sm,d,q to Td,q . �

Thus, proving Theorem 1.2 is reduced to calculating |T2,q |. We begin with:

Proposition 3.2. |T1,q | = q.

Proof. If (g, r) ∈ T1,q , then g(x) = x − c. For g and r to have a common factor,
r = 0. Hence T1,q consists of the q pairs (x − c, 0). �
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We now determine |T2,q |. By Lemma 2.3, we have |T2,q | = B1+B2+B3, where
the Bi are defined by

B1 =
∣∣{(g, r) ∈ T2,q : g is irreducible}

∣∣,
B2 =

∣∣{(g, r) ∈ T2,q :1g ≡ 0 mod pk
}
∣∣,

B3 =
∣∣{(g, r) ∈ T2,q :1g mod pk is a square, and, for each d < k,

1g ≡ 0 mod pd and 1g 6≡ 0 mod pd+1
}
∣∣.

Lemma 3.3. (a) B1 =
pk

2(p+ 1)
(pk+1

+ 2pk
− p− pk−2[k/2]

− 1).

(b) B2 = p2k−[k/2]
(

p2[k/2]+1
+ 1

p+ 1

)
.

(c) B3 =
p2k−1−[(k−1)/2]

− p2k

2(p+ 1)(p2+ p+ 1)
α, where

α = (p+ 1)(p2
+ p+ 1)− 2pk+1(p+ 1)2− 2pk−[(k−1)/2](p+ p−[(k−1)/2]).

Proof. (a) Assume g ∈Zpk [x] is a monic, irreducible, quadratic polynomial. Since
g has no factors, (g, r) ∈ T2,q only when r = 0. Hence, B1 equals the number of
monic, irreducible quadratic polynomials, which is given by Lemma 2.4.

(b) Assume g ∈ Zpk [x] is a monic quadratic with 1g ≡ 0 mod pk . By Lemma 2.4,
there are pk such g. For each g, |Ag| is given by Lemma 2.5(a). Thus

B2 = pk
|Ag|.

(c) If (g, r) ∈ T2,q is included in the pairs counted for B3, then 1g = pdu, where
0 ≤ d < k, d even, and u ∈ Z∗pk is a square. For a fixed d, u, satisfying these
conditions, there are pk polynomials g with 1g = pdu by Lemma 2.4(a). And for
any such g, |Ag| is given by Lemma 2.5(b). Now, for a fixed d , there are

1
2(p− 1)pk−d−1

choices for u that give distinct values for pdu. Putting these results together, and
replacing d by 2d , we have

B3 =

[(k−1)/2]∑
d=0

1
2
(p− 1)p2k−d−1

(
2pk−2d

( p2d+1
+ 1

p+ 1

)
− 1

)

=
p2k−1(p− 1)

2(p+ 1)

[(k−1)/2]∑
d=0

p−d(2pk−2d(p2d+1
+ 1)− p− 1

)
. (2)
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Summing the geometric sequences, we have

[(k−1)/2]∑
d=0

p−d(−p− 1)= −(p+ 1)p−[(k−1)/2]
( p[(k−1)/2]+1

− 1
p− 1

)
,

[(k−1)/2]∑
d=0

p−d(2pk−2d(p2d+1
+ 1)

)
= 2pk−[(k−1)/2]+1

( p[(k−1)/2]+1
− 1

p− 1

)
+2pk−3[(k−1)/2]

( p3[(k−1)/2]+3
− 1

p3− 1

)
.

Substituting these equations in (2) and simplifying with the help of a computer
algebra system, we obtain the desired expression. �

Proof of Theorem 1.2. There are qm monic polynomials in Zq [x] with degree m.
Hence there are qm+2 pairs of monic polynomials ( f, g)with deg f =m, deg g=2.
By Lemma 3.1, the probability that a pair of these polynomials is relatively prime is

1−
|Sm,2,q |

qm+2 = 1−
|T2,q |

q4 .

Now |T2,q |= B1+B2+B3, with the values of Bi given by Lemma 2.5. Manipulating
this expression with the help of a computer algebra system, one obtains

|T2,q | =
pk

2(p+ 1)
D,

where D equals the expression

2p2k+1
+ 2p2+k/2(p− 1)

( p3k/2
− 1

p3− 1

)
+ p1+k/2

+ 3pk/2
+ pk
− p− 2

when k is even, and D equals

2p2k+1
+ 2(p− 1)

( p2(k+1)
− p(k+1)/2

p3− 1

)
+ 3p(k+1)/2

+ p(k−1)/2
+ pk
− 2p− 1,

when k is odd. When k is even, algebraic manipulation shows

2p2k+1
= 2(p+ 1)p2k

− 2p2k,

2p2+k/2(p− 1)
( p3k/2

− 1
p3− 1

)
= 2p2k

− 2p2+k/2
+ 2(1− p2)

k/2−1∑
i=1

p2k−3i ,

p1+k/2
+ 3pk/2

= (p+ 1)(−2p1+k/2
+ 3pk/2)+ 2p2+k/2,

pk
− p− 2=−(p+ 1)

k−1∑
i=1

(−p)i − 2(p+ 1).
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Adding both sides, the left hand side sums to D. With fk(x) defined as in the
introduction, we then have

1
2(p+ 1)

D = fk(p).

Theorem 1.2 follows immediately for k even. Similar calculations establish it for
k odd. �
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