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For a group G with generating set S={s1, s2, . . . , sk}, the G-graph of G, denoted
by 0(G, S), is the graph whose vertices are distinct cosets of 〈si 〉 in G. Two
distinct vertices are joined by an edge when the set intersection of the cosets is
nonempty. In this paper, we explore the planarity of 0(G, S).

1. Introduction

Let G be a group with a generating set S = {s1, . . . , sk}. We say that the subset
T〈si 〉 ⊂ G is a left transversal for the subgroup 〈si 〉 of G if {x〈si 〉 | x ∈ T〈si 〉}

is precisely the set of all left cosets of 〈si 〉 in G. As in [Bauer et al. 2008],
we associate with (G, S) a simple graph 0(G, S) with vertex set V (0(G, S)) =
{x j 〈si 〉 | x j ∈T〈si 〉}. Two distinct vertices x j 〈si 〉 and xl〈sk〉 in V (0(G, S)) are joined
by an edge if x j 〈si 〉 ∩ xl〈sk〉 is nonempty. The edge set, E(0(G, S)), consists of
pairs (x j 〈si 〉, xl〈sk〉). 0(G, S) defined this way has no multiedge or loop.

Let Vi = {x j 〈si 〉 | x j ∈ Tsi }. Then V =
⋃k

i=1 Vi . The number of vertices in Vi

is simply the order of G divided by the order of si which is the index of 〈si 〉 in
G, denoted [G : 〈si 〉]. The minimum number of elements required to generate a
finite group G is called the rank of G. A minimal generating set for G is a subset
S = {s1, . . . , sk} such that G = 〈S〉, where k is the rank of G. This concept is not
to be confused with nonredundancy. A nonredundant set of generators is a set S
such that S generates all of G, that is, 〈S〉 =G, but no proper subset of S generates
all of G.

The main object of this paper is to explore the planarity of 0(G, S).

Definition 1.1. A group G is G-planar if there exists a generating set S such that
the graph, 0(G, S), is a planar graph.

We recall a fundamental criterion for the G-planarity of a group:
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Theorem 1.2 (Wagner). A finite graph is planar if and only if it does not have K5

or K3,3 as a minor.

2. Examples of G-planar groups

The next two theorems give us two classes of G-planar groups.

Theorem 2.1. All cyclic groups are G-planar.

Proof. Let G be a cyclic group. Since G is cyclic, there exists an element b ∈ G
such that 〈b〉 = G. Let S = {b} be the generating set of G. Then 0(G, S) contains
only one vertex and 0(G, S) is a planar graph. Therefore G is a G-planar group. �

For the dihedral group, Dn , let r be a rotation of 360◦/n and let f be any
reflection.

Proposition 2.2. For S = { f, r f }, the graph 0(G, S) of the dihedral group Dn is
the cycle of length 2n, C2n .

Proof. Write
V1 = {〈 f 〉, r〈 f 〉, r2

〈 f 〉, . . . , rn−1
〈 f 〉},

V2 = {〈r f 〉, r〈r f 〉, r2
〈r f 〉, . . . , rn−1

〈r f 〉}.

Since f and r f are both reflections, their composition is a rotation. Denote this
rotation by rm .

Choose a vertex from V1, r s
〈 f 〉. Since

r s
∈ r s
〈 f 〉 ∩ r s

〈r f 〉,

the edge (r s
〈 f 〉, r s

〈r f 〉) is in E . Now we need to show that there is another
edge between r s

〈 f 〉 and V2. By simple calculation, we have r s f = r (s+m) mod nr f ;
moreover (r s

〈 f 〉, r (s+m) mod n
〈r f 〉) is in E .

Therefore the degree of each vertex in V1 is 2. By similar arguments, the degree
of each vertex in V2 is 2 and 0(G, S) is a cycle. �

Example 2.3. Let G = D3 and S = { f, r f }. Then the G-graph is the cycle C6:
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Theorem 2.4. All dihedral groups are G-planar.

Proof. Let G = Dn and S = { f, r f }. Since 0(G, S) is a cycle, 0(G, S) is a planar
graph and G is a G-planar group. �

From [DeWitt et al. ≥ 2010], we have a few other examples of G-planar groups.
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Example 2.5. The modular group M has presentation

〈s, t | s8
= t2
= e, st = ts5

〉.

Let S= {s, ts}. From [DeWitt et al. ≥ 2010], 0(M, S) is K2,2. Therefore 0(M, S)
is a planar graph and M is a G-planar group.

Example 2.6. The quasihedral group QS has presentation

〈s, t | s8
= t2
= e, st = ts3

〉.

Let S = {s, ts}. From [DeWitt et al. ≥ 2010], 0(QS, S) is K2,4. Therefore
0(QS, S) is a planar graph and QS is a G-planar group.

Recall that the generalized quaternion group Q2n has presentation

〈s, t | s2n−1
= e, s2n−2

= t2, tst−1
= s−1

〉.

Theorem 2.7. The generalized quaternion group Q2n is G-planar.

Proof. Let G = Q2n and S = {tsk, tsm
}, where k is odd and m is even. 0(G, S) is

a bipartite connected graph with every vertex of degree 2 [DeWitt et al. ≥ 2010].
Therefore, 0(G, S) is a cycle and Q2n is G-planar. �

3. Finite abelian groups

The fundamental theorem of finite abelian groups tells us that every finite abelian
group of rank k is isomorphic to a direct product of cyclic groups of prime-power
order, that is, G ∼= Zm1 ×Zm2 × · · ·×Zmk . A standard generating set for G is a
subset S = {s1, . . . , sk} such that G = 〈s1〉× · · ·× 〈sk〉. Let G be an abelian group
with standard generating set S = {s1, . . . , sk}, then G is isomorphic to

Z|s1|×Z|s2|× · · ·×Z|sk |.

From Theorem 2.1, we know that all finite abelian groups with 1 generator
are G-planar. We now consider three cases: finite abelian groups with 4 or more
generators, 3 generators or 2 generators.

Let G be a group with generating set S. There exists a subset of S, S′, that
is nonredundant and generates G. From [Bretto and Gillibert 2004], 0(G, S′) is
necessarily a subgraph of 0(G, S). If 0(G, S′) is not a planar graph, then 0(G, S)
is not planar. Therefore, it is only necessary to consider generating sets that are
nonredundant.

Example 3.1. Let G = Z2×Z6 and S = {(1, 0), (0, 0), (0, 2), (0, 3), (0, 4)}. The
subset S′ = {(1, 0), (0, 2), (0, 3)} of S is a nonredundant generating set of G. The
set S′′= {(1, 0), (0, 1)} is a minimal generating set of G that is also nonredundant.
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Lemma 3.2. Let G be a finite abelian group and let S = {s1, s2, s3, . . . , sk} be a
nonredundant generating set, then |si | ≥ 2 for all i .

Proof. Assume |si |< 2. Then |si | = 1 and 〈si 〉 = {e}. Therefore si is not needed to
generate G and S\{si } generates G. This is a contradiction. Therefore, |si | ≥ 2. �

Finite abelian groups G with 4 or more generators.

Lemma 3.3. Let G be a finite abelian group and let S = {s1, s2, s3, s4, . . . , sk} be
a nonredundant generating set of G with k ≥ 4. Consider the subgroup H of G
that is generated by S′ = {s1, s2, s3, s4}. The vertices 〈s1〉, 〈s2〉, 〈s3〉, 〈s4〉, s1〈s2〉,
s2〈s1〉, s2〈s3〉, s3〈s2〉, s3〈s4〉, s4〈s3〉 of 0(H, S′) are all unique.

Proof. To see that each of these vertices is unique, assume 〈s1〉, s2〈s1〉 ∈ V1 are
not distinct, that is, 〈s1〉 = s2〈s1〉. So there exists k ∈ Z+ such that s2 = sk

1 which
contradicts the fact that S is a nonredundant generating set of G. The proofs of the
other cases are similar. �

Theorem 3.4. Let G be a finite abelian group and let S = {s1, s2, s3, s4, . . . , sk}

be a nonredundant generating set of G with k ≥ 4. Then 0(G, S) is not a planar
graph.

Proof. Consider the subgroup H of G generated by S′ = {s1, s2, s3, s4}. Define a
contraction 0 of 0(H, S′) in this way: Let V 1, V 2, V 3, V 4, V 5 ∈ V (0) with

{〈s1〉} = V 1, {〈s2〉} = V 2, {〈s3〉} = V 3, {〈s4〉} = V 4,

{s1〈s2〉, s2〈s1〉, s2〈s3〉, s3〈s2〉, s3〈s4〉, s4〈s3〉} = V 5.

Then, e ∈ (V 1∩V 2), e ∈ (V 1∩V 3), e ∈ (V 1∩V 4), s1 ∈ (V 1∩V 5), e ∈ (V 2∩V 3),
e ∈ (V 2∩V 4), s2 ∈ (V 2∩V 5), e ∈ (V 3∩V 4), s3 ∈ (V 3∩V 5), and s4 ∈ (V 4∩V 5).
Then (V i , V j ) ∈ E(0) for all i 6= j and 0 = K5. So, 0(H, S′) has K5 as a minor
and 0(H, S′) is not planar. From [Bretto et al. 2005], 0(H, S′) is a subgraph of
0(G, S). Therefore, 0(G, S) is not a planar graph. �

Corollary 3.5. Let G be a finite abelian group of rank 4 or more. Then G is not
G-planar.

Finite abelian groups G with 3 generators.

Example 3.6. Let G = Z2×Z2×Z2 with standard generating set

S = {s1, s2, s3} = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.

The graph 0(G, S), illustrated in Figure 1, is a planar graph; hence G is a G-planar
group.

Next we show that this example is the only abelian group of rank three that is
G-planar.
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〈s1〉

〈s2〉

〈s3〉
s3〈s1〉

s3〈s2〉

s2〈s3〉

s2〈s1〉

s1〈s2〉

s1s2〈s3〉
s2s3〈s1〉

s1s3〈s2〉

s1〈s3〉

Figure 1. The graph 0(G, S), with G=Z2
3 and S={(1, 0, 0), (0, 1, 0), (0, 0, 1)}.

Lemma 3.7. Let G be a finite abelian group with nonredundant generating set
S = {s1, s2, s3} such that |si | ≥ 3 for at least one i . Then the graph 0(G, S)
contains at least 16 vertices.

Proof. Without loss of generality, assume that |s3| ≥ 3. There are at least 6 vertices
in V1. They are 〈s1〉, s2〈s1〉, s3〈s1〉, s2s3〈s1〉, s2

3〈s1〉, s2s2
3〈s1〉. To see that each of

these vertices is unique, assume 〈s1〉, s2s3〈s1〉 ∈ V1 are not distinct, that is, 〈s1〉 =

s2s3〈s1〉. So there exists k ∈ Z+ such that s2s3 = sk
1 which contradicts the fact that

S is a nonredundant generating set of G. The proofs of the other cases are similar.
Likewise, there are at least 6 unique vertices in V2 and 4 unique vertices on

V3. They are 〈s2〉, s1〈s2〉, s3〈s2〉, s1s3〈s2〉, s2
3〈s2〉, s1s2

3〈s2〉 and 〈s3〉, s1〈s3〉, s2〈s3〉,
s1s2〈s3〉. �

Theorem 3.8. Let G be a finite abelian group with nonredundant generating set
S = {s1, s2, s3} such that |si | ≥ 3 for at least one i . Then 0(G, S) is not a planar
graph.

Proof. Define a contraction 0 of 0(G, S) by setting

V 1 = {〈s1〉, 〈s2〉}, V 2 = {s1〈s2〉, s1s2〈s3〉, s1s3〈s2〉},

V 3 = {s1〈s3〉, s2
3〈s1〉, s2

3〈s2〉}, V 4 = {〈s3〉, s3〈s2〉, s3〈s1〉, s2s3〈s1〉},

V 5 = {s2〈s1〉, s2〈s3〉, s2s2
3〈s1〉, s1s2

3〈s2〉}.
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Then
s1 ∈ (V 1 ∩ V 2), s1 ∈ (V 1 ∩ V 3),

e ∈ (V 1 ∩ V 4), s2 ∈ (V 1 ∩ V 5),

s1 ∈ (V 2 ∩ V 3), s1s2s3 ∈ (V 2 ∩ V 4),

s1s2 ∈ (V 2 ∩ V 5), s2
3 ∈ (V 3 ∩ V 4),

s2
3s2 ∈ (V 3 ∩ V 5), s2s3 ∈ (V 4 ∩ V 5).

It follows that (V i , V j ) ∈ E(0) for all i 6= j and 0 = K5. So, 0(G, S) has K5 as
a minor and is not a planar graph. �

Corollary 3.9. Let G be a finite abelian group of rank 3 such that G 6∼=Z2×Z2×Z2.
Then G is not a G-planar group.

Finite abelian groups G with 2 generators. Since we have results for groups of
rank 1 and for groups of rank 3 or more, the only case left to consider is that of
groups of rank 2. Notice that any finite abelian group of rank 2 is isomorphic to
the direct product Zm ×Zn with gcd(m, n) 6= 1.

Lemma 3.10. Let G be a finite abelian group of rank 2 and let S be a nonredundant
generating set of G. If |S| ≥ 3, then 0(G, S) is not a planar graph.

Proof. If |S|> 3, then 0(G, S) is not planar by Theorem 3.4. Assume that |S| = 3,
that is, S = {s1, s2, s3} and that |si | < 3 for i = 1, 2, 3. Since S is nonredundant
|si |> 1 and therefore |si | = 2 for i = 1, 2, 3. Consider the subset

H = 〈s1〉〈s2〉 = {hk | h ∈ 〈s1〉, k ∈ 〈s2〉} = {e, s1, s2, s1s2}

of G. Since G is abelian, this subset is a subgroup. Now consider the subset

K = H〈s3〉 = {hk | h ∈ H, k ∈ 〈s3〉} = {e, s1, s2, s1s2, s3, s1s3, s2s3, s1s2s3}

of G. Again K is necessarily a subgroup of G.
Now assume that g ∈ G. Since S generates G, there exists n,m, l such that

g = sn
1 sm

2 sl
3. Since the order of each generator is 2, n,m, l are congruent to 0 or

1 modulo 2 and g ∈ K . Therefore G = K . Since the order of each element in G
is two, G ∼= Z2 × Z2 × Z2. This is a contradiction since G is a group of rank 2.
Therefore, |si | ≥ 3 for at least one i and by Theorem 3.8 the graph, 0(G, S), is not
planar. �

Theorem 3.11. Let G be a finite abelian group of rank 2. G is G-planar if and
only if G ∼= Z2×Zk , for some k ∈ N.

Proof. (⇐) Let G ∼= Z2×Zk and let 0(Z2×Zk, S) be the associated G-graph of
Z2 × Zk with S = {(1, 0), (0, 1)}. There exist an isomorphism φ : Z2 × Zk → G.
Let (x, y) ∈ Z2×Zk . There exists a, b such that (x, y) = a(1, 0)+ b(0, 1). Then
φ(x, y)=φ(a(1, 0)+b(0, 1))=aφ(1, 0)⊕bφ(0, 1). So φ(S)={φ(1, 0), φ(0, 1)}
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Rank Group Planarity

1 all G planar

2 G ∼= Z2×Zk planar
G 6∼= Z2×Zk not planar

3 G ∼= Z2×Z2×Z2 planar
G 6∼= Z2×Z2×Z2 not planar

4 or more all G not planar

Table 1. G-planarity of finite abelian groups.

generates G. 0(Z2×Zk , S) is Kk,2, so Kk,2 ∼= 0(G, φ(S)). Since Kk,2 is planar,
0(G, φ(S)) is planar. Therefore G is G-planar.
(⇒) Let G be a finite abelian G-planar group of rank 2 and let S be a generating

set such that 0(G, S) is a planar graph. From Lemma 3.10, |S| = 2, that is, S =
{s1, s2}.

Case 1. Assume that |s1| = 2. Let |G| = n, |V1| = [G : 〈s1〉] = n/2. So

V1 = {〈s1〉, s2〈s1〉, s2
2〈s1〉, · · · , sn/2−1

2 〈s1〉},

and the elements of G are of the form

s2, s2
2 , . . . , sn/2−1

2 , e and s1s2, s1s2
2 , . . . , s1sn/2−1

2 , s1.

Therefore |s2| = n/2 and G is isomorphic to Z2×Zn/2.
Case 2. Assume that |s1|, |s2|> 2. Consider the vertex induced subgraph gener-

ated by the six vertices 〈s1〉, s2〈s1〉, s2
2〈s1〉, 〈s2〉, s1〈s2〉, s2

1〈s2〉. This graph is K3,3.
Since this subgraph is not planar, 0(G, S) is not planar. This contradicts the sup-
position that S is a generating set such that 0(G, S) is a planar graph. Therefore,
if G is G-planar, then G ∼= Z2×Zk . �

Table 1 summarizes the results for all finite abelian groups.
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Józeph H. Przytycki George Washington University, USA
przytyck@gwu.edu

Richard Rebarber University of Nebraska, USA
rrebarbe@math.unl.edu

Robert W. Robinson University of Georgia, USA
rwr@cs.uga.edu

Filip Saidak U of North Carolina, Greensboro, USA
f saidak@uncg.edu

Andrew J. Sterge Honorary Editor
andy@ajsterge.com

Ann Trenk Wellesley College, USA
atrenk@wellesley.edu

Ravi Vakil Stanford University, USA
vakil@math.stanford.edu

Ram U. Verma University of Toledo, USA
verma99@msn.com

John C. Wierman Johns Hopkins University, USA
wierman@jhu.edu

PRODUCTION

Silvio Levy, Scientific Editor Sheila Newbery, Senior Production Editor Cover design: ©2008 Alex Scorpan

See inside back cover or http://pjm.math.berkeley.edu/involve for submission instructions.
The subscription price for 2010 is US $100/year for the electronic version, and $120/year (+$20 shipping outside the US) for print
and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to
Mathematical Sciences Publishers, Department of Mathematics, University of California, Berkeley, CA 94704-3840, USA.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, Department of Mathematics, University of
California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional
mailing offices.

Involve peer review and production are managed by EditFLOW™ from Mathematical Sciences Publishers.

PUBLISHED BY
mathematical sciences publishers

http://www.mathscipub.org
A NON-PROFIT CORPORATION

Typeset in LATEX
Copyright ©2010 by Mathematical Sciences Publishers

http://pjm.math.berkeley.edu/involve
mailto:berenhks@wfu.edu
mailto:baxley@wfu.edu
mailto:benjamin@hmc.edu
mailto:bohner@mst.edu
mailto:boston@math.wisc.edu
mailto:budhiraj@email.unc.edu
mailto:pietro.cerone@vu.edu.au
mailto:scott.chapman@shsu.edu
mailto:corcoran@colorado.edu
mailto:mdorff@math.byu.edu
mailto:sever@matilda.vu.edu.au
mailto:bemamizadeh@pi.ac.ae
mailto:fulp@wfu.edu
mailto:andrew@dms.umontreal.ca
mailto:griggs@math.sc.edu
mailto:rg@mathcs.emory.edu
mailto:sngupta@uncg.edu
mailto:jhaglund@math.upenn.edu
mailto:johnny_henderson@baylor.edu
mailto:nahritonenko@pvamu.edu
mailto:crjohnso@math.wm.edu
mailto:karen.kafadar@cudenver.edu
mailto:kk@ces.clemson.edu
mailto:gladas@math.uri.edu
mailto:larson@math.tamu.edu
mailto:lenhart@math.utk.edu
mailto:ckli@math.wm.edu
mailto:lund@clemson.edu
mailto:g.j.martin@massey.ac.nz
mailto:meyer@stat.colostate.edu
mailto:eminchev@hotmail.com
mailto:frank.morgan@williams.edu
mailto:moslehian@ferdowsi.um.ac.ir
mailto:znashed@mail.ucf.edu
mailto:ono@math.wisc.edu
mailto:orourke@cs.smith.edu
mailto:peres@microsoft.com
mailto:petermann@math.unige.ch
mailto:plemmons@wfu.edu
mailto:carl.pomerance@dartmouth.edu
mailto:poonen@math.berkeley.edu
mailto:jpropp@cs.uml.edu
mailto:przytyck@gwu.edu
mailto:rrebarbe@math.unl.edu
mailto:rwr@cs.uga.edu
mailto:f_saidak@uncg.edu
mailto:andy@ajsterge.com
mailto:atrenk@wellesley.edu
mailto:vakil@math.stanford.edu
mailto:verma99@msn.com
mailto:wierman@jhu.edu
http://pjm.math.berkeley.edu/involve
http://www.mathscipub.org
http://www.mathscipub.org


inv lve
a journal of mathematics

involve
2010 vol. 3 no. 2

129Recursive sequences and polynomial congruences
J. LARRY LEHMAN AND CHRISTOPHER TRIOLA

149The Gram determinant for plane curves
JÓZEF H. PRZYTYCKI AND XIAOQI ZHU

171The cardinality of the value sets modulo n of x2
+ x−2 and x2

+ y2

SARA HANRAHAN AND MIZAN KHAN

183Minimal k-rankings for prism graphs
JUAN ORTIZ, ANDREW ZEMKE, HALA KING, DARREN NARAYAN AND MIRKO
HORŇÁK
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