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The most natural extensions to the law of quadratic reciprocity are the rational
reciprocity laws, described using the rational residue symbol. In this article, we
provide a reciprocity law from which many of the known rational reciprocity
laws may be recovered by picking appropriate primitive elements for subfields
of Q(ζp). As an example, a new generalization of Burde’s law is provided.

1. Introduction

The law of quadratic reciprocity has played a central role in the development of
number theory since Gauss published its first proof in 1801 (see [Lemmermeyer
2000] for the history of this important result). To state the law, assume that a ∈ Z

is not divisible by an odd prime p and define the Legendre symbol by( a
p

)
:=

{
1 if x2

≡ a (mod p) is solvable,
−1 if not.

Then if p and q are distinct odd primes, we have( p
q

)(q
p

)
= (−1)(p−1)(q−1)/4.

The remainder of the 1800s and early 1900s saw many generalizations of this result
to higher powers, culminating in class field theory, in which generalized reciprocity
laws were established. Making such generalizations requires one to leave the realm
of the integers, introducing rings of integers in algebraic number fields and primes
within these rings. Hence, the study of reciprocity laws can serve as a great topic
for students interested in learning about field extensions and Galois theory.

While class field theory has succeeded in capturing the true essence of the higher
reciprocity laws, the extensions to the law of quadratic reciprocity that are the most
accessible to students are the rational reciprocity laws. Such laws make use of the
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rational residue symbol, which only takes on the integer values ±1 and is defined
on rational primes. The simplicity of the rational residue symbol is much more
tangible to students than the power residue symbol, making such laws an excellent
starting point for students in algebraic number theory. Like the law of quadratic
reciprocity, the statements are often elementary, but the proofs elucidate the utility
of Galois theory and the ramification theory of prime ideals in algebraic number
fields.

We begin with a description of the quadratic residue symbol and the rational
residue symbol. Let K be an algebraic number field and N the norm map of K
over Q. Let p be a prime ideal such that p - 2OK , where OK is the ring of integers
in K . For every α ∈ OK − p, define the quadratic residue symbol

(
α
p

)
by(

α
p

)
≡ α(N (p)−1)/2 (mod p).

In the case where K = Q, our definition agrees with the Legendre symbol on the
generator of the prime ideal p= pZ.

Now let a ∈ Z and p be an odd prime satisfying (a, p)= 1 such that

a(p−1)/n
≡ 1 (mod p).

Then the 2n-th rational residue symbol (a/p)2n is defined by( a
p

)
2n
≡ a(p−1)/(2n) (mod p).

It is easily verified that this symbol only takes on the integer unit values ±1. It
should also be noted that it agrees with the 2n-th power residue symbol (a/p)Q(ζ2n),
where p is any prime ideal above p in Q(ζ2n) and ζ2n is the primitive 2n-th root of
unity eπ i/n .

An indispensable object used in the proofs of most reciprocity laws is the Galois
group

Gal(Q(ζp)/Q),

defined to be the group of all automorphisms Q(ζp)→Q(ζp) that fix Q pointwise
(here, ζp is the primitive p-th root of unity e2π i/p). By the fundamental theorem of
Galois theory (see [Gallian 2010, Chapter 32], for instance), there is a one-to-one
correspondence between the intermediate subfields of the extension Q(ζp)/Q and
the subgroups of Gal(Q(ζp)/Q). It is well known that

Gal(Q(ζp)/Q)∼= (Z/pZ)×

is a cyclic group of order p−1. So, whenever p≡ 1 (mod m), there exists a unique
subfield Km of Q(ζp) that satisfies [Km :Q] = m.
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Lemmermeyer [1994] showed that when p ≡ 1 (mod 4), specific choices of
A, B ∈Z so that K4=Q(

√
A+ B

√
p) result in the rational quartic reciprocity laws

of Scholz [1934], Lehmer [1958; 1978], and Burde [1969]. His work simplified
the all-encompassing rational quartic reciprocity law of Williams et al. [1985] as
well as its simplification by Evans [1989]. The reader unfamiliar with these laws
may consult Lehmer’s survey article [Lehmer 1978] and [Lemmermeyer 2000] for
the relevant background.

When extending the known rational quartic reciprocity laws, it is natural to look
for analogues that involve the 2t-th rational residue symbols (p/q)2t and (q/p)2t

when p ≡ q ≡ 1 (mod 2t) are distinct primes. Such a generalization of Burde’s
law was proved by Evans [1981], and Budden et al. [2007] recently proved such
a generalization of Scholz’s law. In Section 2, we follow the approach of [Budden
et al. 2007] to prove a 2n-th reciprocity law (Theorem 1), from which many of the
known rational reciprocity laws can be recovered. The approach is similar to that
of [Lemmermeyer 1994] in that it compares the factorization of the prime ideal qZ

in Q(ζp) to its factorization in K2n . Additionally, the all-encompassing rational
quartic law in this last reference may be viewed as a special case of the quartic
version of the 2n-th law presented here. Hence, all of the known rational quartic
reciprocity laws may be recovered from Theorem 1.

Finally, as an application of Theorem 1, we give in Section 3 a 2t-th general-
ization of Burde’s law (Theorem 3), that differs from the known generalizations.
In particular, our result is different from Williams’ octic version of Burde’s law
[Williams 1976] when t = 3 (also proved independently by Wu [1975]), Leonard
and Williams’ sixteenth version of Burde’s law when t = 4 [Leonard and Williams
1977], and Evans’ 2t-th generalization of Burde’s law [Evans 1981]. Interesting
results follow from comparing the variations.

2. A 2n-th rational reciprocity law

Now assume that p ≡ q ≡ 1 (mod 2n) are distinct primes with n ≥ 1 such that( p
q

)
n
=

(q
p

)
n
= 1.

Then the ideal qOKn factors into prime ideals as

qOKn = λ1λ2 · · · λn,

with all of the λi distinct. We obtain the following reciprocity law.

Theorem 1. Let p ≡ q ≡ 1 (mod 2n) be distinct primes with n ≥ 1 and assume( p
q

)
n
=

(q
p

)
n
= 1.
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If β ∈ OKn is such that K2n = Kn(
√
β), then

(q
p

)
2n
=

(β
λ

)
, where λ is any prime

ideal above q in OKn .

Proof. The cyclotomic polynomial 8p(x) =
p−1∏
k=1
(x − ζ k

p) splits over Kn , and we
let ϕp(x) be the irreducible factor

ϕp(x)=
∏

1≤r≤p−1
(r/p)n=1

(x − ζ r
p).

Since 8p(x) ∈ Z[ζp][x], it follows that ϕp(x) ∈ OKn . Furthermore, it has degree
(p− 1)/n and splits further over K2n into ϕp(x)= ψp(x) · ψ̃ p(x), where

ψp(x)=
∏

1≤r≤p−1
(r/p)2n=1

(x − ζ r
p) and ψ̃ p(x)=

∏
1≤t≤p−1
(t/p)2n=−1
(t/p)n=1

(x − ζ t
p).

Define the polynomial ϑ(x) = ψp(x)− ψ̃ p(x) ∈ OK2n [x] and consider the au-
tomorphism σq ∈ Gal(Q(ζp)/Q) ∼= (Z/pZ)×, defined by σq(ζp) = ζ

q
p . Since the

group (Z/pZ)× is cyclic, it has unique cyclic subgroups of orders dividing p− 1,
implying that

Gal(Q(ζp)/Kn)∼= (Z/pZ)×n and Gal(Q(ζp)/K2n)∼= (Z/pZ)×2n.

Under the assumption (q/p)n = 1, the automorphism σq is contained in the Galois
group Gal(Q(ζp)/Kn). Its restriction to K2n must agree with either the identity
automorphism I ∈Gal(K2n/Kn), or the nontrivial automorphism α(

√
β)=−

√
β.

It follows that

σq |K2n = I ⇐⇒ (q/p)2n = 1.

Since

α(
√
β ϑ(x))=

√
β ϑ(x)

and the coefficients in ϑ(x) come from OK2n , every coefficient must be an element
in OKn multiplied by

√
β so that we can write

ϑ(x)=
√
β φ(x), for some φ(x) ∈ OKn [x].

We have also assumed that (p/q)n = 1, so that the ideal qOKn splits completely
in OKn (i.e., qOKn = λ1λ2 · · · λn , a product of distinct prime ideals). If λ is any
such prime ideal in OKn , then OKn/λ

∼= Z/qZ. We have the congruence

(ϑ(x))q = (ψp(x)− ψ̃ p(x))q ≡
(q

p

)
2n
(ψp(xq)− ψ̃ p(xq)) (mod λ).
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On the other hand, we also have

(ϑ(x))q = (
√
β φ(x))q ≡ β(q−1)/2

√
β φ(xq) (mod λ)

≡

(β
λ

)
(ψp(xq)− ψ̃ p(xq)) (mod λ).

We will obtain the desired result from the congruence(q
p

)
2n
(ψp(xq)− ψ̃ p(xq))≡

(β
λ

)
(ψp(xq)− ψ̃ p(xq)) (mod λ)

once we show thatψp(X) 6≡ ψ̃ p(X) (mod λ); note that ifψp(X)≡ ψ̃ p(X) (mod λ),
then ϕp(X)≡ψ(X)2 (mod λ). Applying Kummer’s theorem [Janusz 1996, Theo-
rem 7.4], the polynomial 8p(X) factors in exactly the same way in

(Z/qZ)[X ] ∼= (OKn/λ)[X ],

as qZ[ζp] factors in Z[ζp]. However, the distinctness of the primes p and q implies
that qZ[ζp] does not ramify, giving a contradiction. Thus, we conclude that(q

p

)
2n
≡

(β
λ

)
(mod λ),

which reduces to an equality since the residue symbols only take on the values
±1. �

While this reciprocity law may not appear to be rational, given the existence of
the quadratic residue symbol, it can be identified with a Legendre symbol. Namely,
the element β is a coset representative in

OKn/λ
∼= Z/qZ,

and since 0, 1, . . . , q−1 represent distinct cosets in OKn/λ, we have β≡a (mod λ)
for some unique element a ∈ {1, 2, . . . , q − 1}. Thus, we have(β

λ

)
=

(a
λ

)
,

and since Theorem 1 is independent of the choice of prime λ above q, we may
write (β

λ

)
=

(a
q

)
.

In this capacity, Theorem 1 may be viewed as a rational reciprocity law.
We chose the polynomial-based proof given for Theorem 1 because it highlights

the significance of Kummer’s theorem, relating the factoring of minimal polyno-
mials in function fields to that of prime ideals in number fields. We note that
Theorem 1 can also be proved in an analogous way to Lemmermeyer’s proof of
the all-encompassing rational quartic reciprocity law in [Lemmermeyer 1994].
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3. Generalizing Burde’s law

Since Theorem 1 is a generalization of the all-encompassing rational quartic reci-
procity law in [Lemmermeyer 1994], the rational quartic laws of Scholz [1934],
Lehmer [1958; 1978] and Burde [1969] all follow by picking appropriate primitive
elements for K4. In this section, we show that Theorem 1 implies a generalization
of Burde’s law that differs from the known generalizations. Before giving the
general case, we recall Lemmermeyer’s proof [2000] of Burde’s law for motivation.

Assume that p≡ q ≡ 1 (mod 4) are distinct primes, so we can write p= a2
+b2

and q = A2
+ B2 with 2 - a A. We also assume that (p/q) = 1. A few simple

consequences of these conditions that can be checked directly are( A
q

)
= 1 and

(2B
q

)
= 1.

Lemmermeyer argued that K4 =Q(
√
β4), where

β4 = pq + (b(A2
− B2)+ 2a AB)

√
p.

Then we see that(
β4
q

)
≡ β

(q−1)/2
4 ≡ (b(A2

− B2)+ 2a AB)(q−1)/2 p(q−1)/4 (mod q)

≡ (−2bB2
+ 2a AB)(q−1)/2

( p
q

)
4
(mod q)

≡ (−2B(bB− a A))(q−1)/2
( p

q

)
4
(mod q)

≡

(
−2B

q

)(bB−a A
q

)( p
q

)
4
(mod q)

≡

(bB−a A
q

)( p
q

)
4
(mod q).

Thus, from Theorem 1, we obtain Burde’s law:( p
q

)
4

(q
p

)
4
=

(bB− a A
q

)
.

Note that Burde’s law is independent of the choices of signs of a, b, A, and B.
We now describe a primitive element for K2t , when t ≥ 2, analogous to

√
β4

used above for K4.

Theorem 2. Let p ≡ q ≡ 1 (mod 2t) be distinct primes with t ≥ 2 such that p =
a2
+b2 and q = A2

+ B2 with 2 - a A. If β4 = pq+ (b(A2
− B2)+2a AB)

√
p, then

a primitive element for K2t can be defined recursively for t > 2 by

β2t =
(
q
√

p+ (b(A2
− B2)+ 2a AB)

)√
β2t−1,

with K2t =Q(
√
β2t ).
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Proof. Our proof proceeds by using (weak) induction on t ≥ 2 following Lem-
mermeyer’s approach [Lemmermeyer 1994] in the quartic case (and as our start-
ing point when t = 2). Assume that the theorem holds for the 2t−1 case with
K2t−1 =Q(

√
β2t−1) and let

α2t = q
√

p
√
β2t−1, γ = (b(A2

− B2)+ 2a AB), δ = (a(A2
− B2)− 2bAB).

It is easily checked that α2t , γ , and δ are pairwise relatively prime and that

α2
2t = β2t−1(γ 2

+ δ2).

From the identity

2
(
α2t + γ

√
β2t−1

)(
α2t + δ

√
β2t−1

)
=
(
α2t + γ

√
β2t−1 + δ

√
β2t−1

)2
,

we see that

K2t :=Q
(√
α2t + γ

√
β2t−1

)
=Q

(√
2(α+ δ

√
β2t−1)

)
.

Thus, the only primes that can possibly ramify in K2t /K2t−1 are 2 and any common
divisors of

α2
2t −β2t−1γ 2

= β2t−1δ2 and α2
2t −β2t−1δ2

= β2t−1γ 2.

Since δ and γ are relatively prime, the only odd primes that can ramify are divisors
of β2t−1 . However, any such prime would have to have ramified in Q

(√
β2t−1

)
and

by our inductive hypothesis, only p ramified there. Thus, p is the only odd prime
that ramifies in K2t /K2t−1 .

Finally, we must argue that 2 does not ramify. Lemmermeyer [1994] showed
the case t = 2, that is, β4 ≡ 1 (mod 4). As our inductive hypothesis, we assume
that β2t−1 ≡ 1 (mod 4). Then the congruences√

β2t−1 ≡±1 (mod 4),
√

p ≡±1 (mod 4), q ≡ 1 (mod 4)

and the fact that γ is even show that β2t ≡
√
β2t−1(q

√
p+ γ ) ≡±1 (mod 4). By

Stickelberger’s discriminant relation [Ribenboim 2001, Section 6.3], the discrim-
inant of an algebraic number field is 0, 1 (mod 4). Thus, β2t ≡ 1 (mod 4) and
we conclude that 2 does not ramify in K2t /K2t−1 . Since p is the only prime that
ramifies in the abelian Galois extension K2t /Q, K2t is the unique subfield of Q(ζp)

of degree 2t over Q by the theorem of Kronecker and Weber [Ribenboim 2001,
Section 15.1]. �

Using the reciprocity law given in Theorem 1 with the choice of primitive ele-
ment for K2t given in Theorem 2, we obtain the following 2t -th generalization of
Burde’s law, which is also independent of the choices of signs of a, b, A, and B.
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Theorem 3. Let p ≡ q ≡ 1 (mod 2t) be distinct primes with t ≥ 2 such that

p = a2
+ b2 and q = A2

+ B2,

with 2 - a A. If ( p
q

)
2t−1
=

(q
p

)
2t−1
= 1,

then ( p
q

)
2t

(q
p

)
2t
=

(2B(bB− a A)
q

)
2t−1

.

Proof. Once again, we use an inductive argument with Lemmermeyer’s proof of
Burde’s law as a starting point. With regard to Theorem 1, assuming that Theorem
3 is true for the t − 1 case is equivalent to assuming that(β2t−1

q

)
=

(2B(bB− a A)
q

)
2t−2

( p
q

)
2t−1

.

Letting
( p

q

)
2t−1
=

(q
p

)
2t−1
= 1, we then obtain, for t > 2,

(q
p

)
2t
=

(β2t

q

)
≡ β

(q−1)/2
2t ≡ β

(q−1)/4
2t−1 (b(A2

− B2)+ 2a AB)(q−1)/2 (mod q)

≡

(2B(bB− a A)
q

)
2t−1

( p
q

)
2t

(2B(bB− a A)
q

)
(mod q)

≡

(2B(bB− a A)
q

)
2t−1

( p
q

)
2t
(mod q).

Since all of the rational residue symbols take on only the values ±1, we may drop
the congruence and conclude the statement of Theorem 3. �

Perhaps the other known generalizations of Burde’s law also follow as conse-
quences of Theorem 1. At this time, we have not been able to find suitable primitive
elements to prove such implications.
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andrew@dms.umontreal.ca

Jerrold Griggs University of South Carolina, USA
griggs@math.sc.edu

Ron Gould Emory University, USA
rg@mathcs.emory.edu

Sat Gupta U of North Carolina, Greensboro, USA
sngupta@uncg.edu

Jim Haglund University of Pennsylvania, USA
jhaglund@math.upenn.edu

Johnny Henderson Baylor University, USA
johnny henderson@baylor.edu

Natalia Hritonenko Prairie View A&M University, USA
nahritonenko@pvamu.edu

Charles R. Johnson College of William and Mary, USA
crjohnso@math.wm.edu

Karen Kafadar University of Colorado, USA
karen.kafadar@cudenver.edu

K. B. Kulasekera Clemson University, USA
kk@ces.clemson.edu

Gerry Ladas University of Rhode Island, USA
gladas@math.uri.edu

David Larson Texas A&M University, USA
larson@math.tamu.edu

Suzanne Lenhart University of Tennessee, USA
lenhart@math.utk.edu

Chi-Kwong Li College of William and Mary, USA
ckli@math.wm.edu

Robert B. Lund Clemson University, USA
lund@clemson.edu

Gaven J. Martin Massey University, New Zealand
g.j.martin@massey.ac.nz

Mary Meyer Colorado State University, USA
meyer@stat.colostate.edu

Emil Minchev Ruse, Bulgaria
eminchev@hotmail.com

Frank Morgan Williams College, USA
frank.morgan@williams.edu

Mohammad Sal Moslehian Ferdowsi University of Mashhad, Iran
moslehian@ferdowsi.um.ac.ir

Zuhair Nashed University of Central Florida, USA
znashed@mail.ucf.edu

Ken Ono University of Wisconsin, USA
ono@math.wisc.edu

Joseph O’Rourke Smith College, USA
orourke@cs.smith.edu

Yuval Peres Microsoft Research, USA
peres@microsoft.com
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