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We explore a complex extension of finite calculus on the integer lattice of the
complex plane. f :Z[i]→C satisfies the discretized Cauchy–Riemann equations
at z if Re( f (z+ 1)− f (z)) = Im( f (z+ i)− f (z)) and Re( f (z+ i)− f (z)) =
−Im( f (z + 1) − f (z)). From this principle arise notions of the discrete path
integral, Cauchy’s theorem, the exponential function, discrete analyticity, and
falling power series.

1. Introduction

The theory of finite (or discrete) calculus, that is, finite differences, has been well
established. In addition, a unified theory of time scales has been formulated that
encompasses both continuous and discrete calculus (for real variables) [Bohner and
Peterson 2001]. The subject of complex analysis builds a continuous calculus on
the complex plane. A remaining, natural question is what can we say about finite
calculus on the complex plane? There are multiple approaches to addressing this
question, and unbeknownst to the authors until after this work was completed, the
question has been explored before under the monikers of discrete analytic func-
tions, preholomorphic functions, and monodiffric functions of the first kind [Duffin
1956; Ferrand 1944; Isaacs 1941; 1952; Kiselman 2005; Mercat 2001]. Conse-
quently, we do not claim mathematical originality for any of these results; we only
hope to present these ideas in a fresh context. The reader is hereby warned that
some familiar terms and theorem names will be used throughout this paper with a
new meaning derived from the discretized context. To avoid confusion, invocations
of these terms in their standard usage will be designated as classical.
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2. Definitions

Let Z[i] = {x + iy : x ∈ Z, y ∈ Z} denote the integer lattice in the complex plane.
Let f (z)= f (x, y)= u(x, y)+ iv(x, y) :�→C, where � is a subset of Z[i]. The
partial derivative of u with respect to x , 1x u(x, y), can be calculated by a finite
difference as

1x u(x, y)= u(x + 1, y)− u(x, y)

or more simply as 1x u(z)= u(z+ 1)− u(z). Similarly,

1yu(x, y)= u(x, y+ 1)− u(x, y)

and again,

1yu(z)= u(z+ i)− u(z).

This allows for the natural definition of

1x f =1x u+ i1xv and 1y f =1yu+ i1yv.

Note that 1x u(z) is defined at {z ∈ � : z + 1 ∈ �} and 1yu(z) is defined at
{z ∈� : z+ i ∈�}. We have the following lemma for mixed partials:

Lemma 2.1. If f is defined on a set �, then on {z ∈ � : z+1, z+i, z+1+i ∈ �}
we have

1xy f (z)=1yx f (z).

Proof. 1xy f (z)=1x( f (z+ i)− f (z))

= f (z+ i + 1)− f (z+ 1)− f (z+ i)+ f (z)

= f (z+ 1+ i)− f (z+ i)− f (z+ 1)+ f (z)

=1y( f (z+ 1)− f (z))=1yx f (z). �

Definition 2.2. The discrete function f is holomorphic at z if it satisfies the dis-
crete Cauchy–Riemann equations at z:

1x u(z)=1yv(z) and 1yu(z)=−1xv(z).

Definition 2.3. The partial derivative of f with respect to z is

1 f =
1x f − i1y f

2
=

f (z+ 1)− f (z)− i( f (z+ i)− f (z))
2

and with respect to z̄ is

1̄ f =
1x f + i1y f

2
=

f (z+ 1)− f (z)+ i( f (z+ i)− f (z))
2

.
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All partial derivative operators —1, 1̄,1x ,1y — are linear operators. There
is no immediately apparent Leibniz product rule, or chain rule. In particular, the
usual product of two holomorphic functions is not necessarily holomorphic. The
Cauchy–Riemann equations imply that f is holomorphic if and only if 1̄ f = 0. If
1̄ f = 0 then f (z+ 1)− f (z)=−i( f (z+ i)− f (z)) and, as in classical complex
analysis,

1 f =1x f =−i1y f.

Definition 2.4. The interior of a set �⊂ Z[i] is the subset

�̊= {z ∈� : z+1 ∈�, z+i ∈�}.

Note that for f to be holomorphic at z requires f is defined at z, z+1, and z+i .
Hence, for f to be holomorphic on � necessitates that f is defined on G, where
G̊ =�.

As in the classical case, holomorphic implies infinitely differentiable.

Theorem 2.5. If f is holomorphic on �, then 1 f is holomorphic on the interior
of �.

Proof. If z ∈ �̊, then f is holomorphic at z, z+ 1, and z+ i , so

1̄1 f (z)= 1̄
(

f (z+ 1)− f (z)− i( f (z+ i)− f (z))
2

)
=
1̄ f (z+ 1)− 1̄ f (z)− i(1̄ f (z+ i)− 1̄ f (z))

2

= 0. �

3. Formulas

Theorem 3.1. Let zn, j := z + (n − j)+ j i for j = 0, . . . , n, that is, {zn, j } forms
the hypotenuse of an isosceles triangle with right angle at z and base length n. If
f is holomorphic on the interior of this triangle then

f (z)=
(1− i

2

)n n∑
j=0

(
n
j

)
i j f (zn, j ).

Proof. We proceed by induction on n. When n = 1, we have

f (z)= 1−i
2
( f (z1,0)+ i f (z1,1)),

which is equivalent to 1̄ f (z)= 0. If f is holomorphic at zn, j then

f (zn, j )=
1−i

2
( f (zn+1, j )+ i f (zn+1, j+1)).
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Assuming the formula holds for n we write

f (z)=
(1−i

2

)n n∑
j=0

i j
(

n
j

)(1−i
2

)
( f (zn+1, j )+ i f (zn+1, j+1))

=

(1−i
2

)n+1
[

n∑
j=0

i j
(

n
j

)
f (zn+1, j )+

n∑
j=0

i j+1
(

n
j

)
f (zn+1, j+1)

]
=

(1−i
2

)n+1
[

n∑
j=0

i j
(

n
j

)
f (zn+1, j )+

n+1∑
j=1

i j
(

n
j−1

)
f (zn+1, j )

]
=

(1−i
2

)n+1
[

n+1∑
j=0

i j
(

n
j

)
f (zn+1, j )+

n+1∑
j=0

i j
(

n
j−1

)
f (zn+1, j )

]
=

(1−i
2

)n+1 n+1∑
j=0

i j f (zn+1, j )

((
n
j

)
+

(
n

j−1

))
=

(1−i
2

)n+1 n+1∑
j=0

i j
(

n+1
j

)
f (zn+1, j ). �

Corollary 3.2. If Mn =max | f (z+ j + ik)| for j + k = n and j, k ≥ 0,

| f (z)| ≤ 2n/2 Mn.

Proof. | f (z)| ≤ (1/
√

2)n
∑n

j=0

(
n
j

)
Mn ≤ (1/

√
2)n2n Mn = 2n/2 Mn. �

This formula, unlike the classical Cauchy estimate, grows as n →∞. So the
veracity of Liouville’s Theorem in this context remains in doubt. Theorem 3.4
presents a higher-order formula as a consequence of the following lemma.

Lemma 3.3. 1k f (z)=
(1+i

2

)k k∑
j=0

(
k
j

)
(−1) j f (zk, j ).

Proof. By definition,

1k f (z)=1(1k−1 f (z))=
(1+i

2

)
(1k−1 f (z+ 1)−1k−1 f (z+ i)).

An induction argument similar to the proof of Theorem 3.1 holds. �

Theorem 3.4. Let zn, j := z+ (n− j)+ j i for j = 0, . . . , n. Then {zn, j } forms the
hypotenuse of an isosceles triangle with right angle at z and base length n. If f is
holomorphic on the interior of this triangle then

1k f (z)= ik
(1−i

2

)n n∑
j=0

(
i j f (zn, j )

k∑
l=0

i l
(

k
l

)(
n− k
j − l

))
for all n ≥ k.
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Proof. Fix k and induct on n. The lemma establishes the case n = k. Assuming
the formula holds for n we have

1k f (z)= ik
(1−i

2

)n+1 n∑
j=0

(
i j ( f (zn+1, j )+ i f (zn+1, j+1))

k∑
l=0

i l
(

k
l

)(
n− k
j − l

))
= ik

(1−i
2

)n+1
(

n+1∑
j=0

i j f (zn+1, j )
k∑

l=0
i l
(

k
l

)(
n− k
j − l

)
+

n+1∑
j=0

i j f (zn+1, j )
k∑

l=0
i l
(

k
l

)(
n− k

j − 1− l

))
= ik

(1−i
2

)n+1 n+1∑
j=0

(
i j f (zn+1, j )

k∑
l=0

i l
(

k
l

)(
n+ 1− k

j − l

))
. �

Theorem 3.1 presents the value of f (z) as a sum of function values along the
hypotenuse of the triangle. The following formulas present the value of f at the
other triangle vertices as a sum of function values on the opposing side. The proofs
are similar to that of Theorem 3.1.

Proposition 3.5. Let z j = z− ni + j . Then

f (z)=
n∑

j=0
(1− i)n− j i j

(
n
j

)
f (z j ).

Proposition 3.6. Let z j = z− n+ i j . Then

f (z)=
n∑

j=0
(1+ i)n− j (−i) j

(
n
j

)
f (z j ).

In classical complex analysis, by using Green’s theorem, we have a Cauchy
formula for continuous, nonholomorphic functions. The discrete analogue of the
Cauchy–Pompeiu–Green formula is:

Theorem 3.7. For any function f defined on the isosceles, right triangle with base
length n ≥ 1,

f (z)=
(1−i

2

)n
(

n∑
j=0

i j
(

n
j

)
f (zn, j )− (1− i)

n−1∑
l=0

l∑
k=0

ik(1+ i)n−l
(

l
k

)
1̄ f (zl,k)

)
,

where zn, j = z+ (n− j)+ i j .

Proof. We proceed by induction on n. For n = 1, we need

f (z)= 1−i
2
(

f (z1,0)+ i f (z1,1)− (1− i)(1+ i)1̄ f (z0,0)
)
,

which holds by the definition of 1̄. In general, from our base case,

f (zn, j )=
1−i

2
(

f (zn+1, j )+ i f (zn+1, j+1)− 21̄ f (zn, j )
)
.
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the induction hypothesis,

f (z)=
(1−i

2

)n
(

n∑
j=0

i j
(

n
j

)(1−i
2

)(
f (zn+1, j )+ i f (zn+1, j+1)− 21̄ f (zn, j )

)
− (1− i)

n−1∑
l=0

l∑
k=0

ik(1+ i)n−l
(

l
k

)
1̄ f (zl,k)

)
=

(1−i
2

)n+1
(

n+1∑
j=0

i j
(

n+1
j

)
f (zn+1, j )− 2

n∑
j=0

i j
(

n
j

)
1̄ f (zn, j )

− 2
n−1∑
l=0

l∑
k=0

ik(1+ i)n−l
(

l
k

)
1̄ f (zl,k)

)
=

(1−i
2

)n+1
(

n+1∑
j=0

i j
(

n+1
j

)
f (zn+1, j )

− (1− i)
n∑

l=0

l∑
k=0

ik(1+ i)n+1−l
(

l
k

)
1̄ f (zl,k)

)
. �

4. Discretization of polynomials

As in the study of discrete calculus of a real variable, we redefine powers so that
the power rule holds. In the real variable case, if we consider falling powers x0

= 1
and xn

= x(x − 1)(x − 2) · · · (x − n+ 1) for n ≥ 1, the discrete derivative power
rule follows:

Proposition 4.1. 1x xn
= nxn−1 .

Proof. 1x xn
= (x + 1)n − xn

= (x + 1)x · · · (x − n+ 2)− x(x − 1) · · · (x − n+ 1)

= (x + 1− (x − n+ 1))x(x − 1) · · · (x − n+ 2)= nxn−1. �

To discretize zn in the complex setting, first expand zn
= (x + iy)n in terms of

x and y and replace each xn with xn and each yn with yn . We will denote this
polynomial as zn or D(zn). Hence, our formal definition is

D(zn)= zn
=

n∑
k=0

(
n
k

)
xn−k ykik .

Similarly, the discretization of a polynomial p(z) will be denoted D(p(z)). These
complex falling powers of z satisfy both the Cauchy–Riemann equations and the
following power rule.

Theorem 4.2. 1(zn)= n(zn−1) and 1̄(zn)= 0.

Proof. Considering the binomial expansion of zn , by Proposition 4.1,

1x zn
=

n∑
k=0

(
n
k

)
(n− k)xn−k−1 ykik and 1yzn

=

n∑
k=0

(
n
k

)
xn−kkyk−1ik
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and by a change of indices,

1yzn
=

n−1∑
k=0

(
n

k+ 1

)
xn−k−1(k+ 1)ykik+1.

We can simplify these expressions because

(n− k)
(

n
k

)
=
(n− k)n!
k!(n− k)!

=
n(n− 1)!

k!(n− k− 1)!
= n

(
n− 1

k

)
and

(k+ 1)
(

n
k+ 1

)
=

(k+ 1)n(n− 1)!
(n− k− 1)!(k+ 1)k!

= n
(

n− 1
k

)
.

Using the definition for 1 and simplifying gives

1zn
=

n−1∑
k=0

2n
(

n− 1
k

)
xn−k−1 ykik

2
= nzn−1.

Similarly the definition of 1̄ gives 1̄zn
= 0. �

Corollary 4.3. If p(z) is a polynomial then D(p′(z))=1(D(p(z))).

Proof. In both cases the derivative operators are linear. �

In the real case, xn
=
∑n

j=0 s(n, j)x j where s(n, j) are Stirling numbers of the
first kind, so we also have the formula

zn
=

n∑
k=0

ik
(

n
k

)(n−k∑
j=0

s(n− k, j)x j
)( k∑

l=0
s(k, l)yl

)
.

Note that if n > 1 then zn is not holomorphic in the classical sense.
The definition of complex falling powers may seem unmotivated, so we furnish

an example. Consider the difference equation 1F(z)= 2z. In accordance with the
power rule, the solution should be an analogue of z2. The function F must be of
the form

z2
+ Az̄2

−
(1+ i)(1+ A)

2
z+ Bz̄+C,

and so

1̄F(z)= 2Az̄+
(1+ A)(1− i)

2
+ B.

Examples of solutions include:

z(z− 1)+ z(z− i)
2

+C and z2
−

1+ i
2

z−
1− i

2
z̄+C

with the latter being the general solution with 1̄F = 0; the particular holomorphic
solution with C = 0 is what we’ve denoted z2.

Proposition 4.4. {a+ bi : a, b ≥ 0 and a+ b < n} are zeros of zn .
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Proof. If for each k = 0, . . . , n we have either xn−k
= 0 or yk

= 0, then

zn
=

n∑
k=0

ik
(

n
k

)
xn−k yk

= 0.

The zeros of x j are given precisely by {x ∈ Z : 0≤ x < j} since

x j
= x(x − 1) · · · (x − j − 1).

So zn
= 0 if for each k = 0, . . . , n we have either 0≤ x < n−k or 0≤ y < k. This

condition is met precisely if x ≥ 0, y ≥ 0, and x + y < n. �

5. Power series and continuation

Lemma 5.1 (Weak Identity Theorem). If f and g are holomorphic functions which,
for some z0 agree on the line Im z = Im z0, Re z ≥ Re z0 then f and g agree for all
z such that Re z ≥ Re z0 and Im z ≥ Im z0.

Proof. Without loss of generality, assume z0 = 0. If f and g agree on the positive
real line, then, since both are holomorphic, they have a unique holomorphic exten-
sion to the points above this line. �

The standard Schwarz reflection principle for holomorphic continuation does
not hold. Falling power series can be represented as

∞∑
n=0

an(z− z0)
n.

Regions of convergence have vastly different shapes from those in the classical
case.

Theorem 5.2. The falling power series

∞∑
n=0

an(z− z0)
n

converges for at least all z such that Re z ≥ Re z0 and Im z ≥ Im z0.

Proof. We will prove this for z0 = 0 and the proof can be carried out similarly for
other finite z0. By Proposition 4.4 the zeros of zn include

{a+ bi : a, b ≥ 0 and a+ b < n}.

For any point a+ bi in the first quadrant, there exists n with a+ b < n. Thus the
terms of the series zk with k > n will be 0 for z = a+bi . A sum of a finite number
of terms is trivially convergent. Since a+bi was arbitrary, the falling power series
converges for every point in the first quadrant. �
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The first quadrant may not be the only place a falling power series centered at
0 converges. For instance, the series

∞∑
n=0

zn

(n+ 1)!

evaluated at z =−1 is the alternating harmonic series and thus converges to ln 2.

Proposition 5.3. If the falling power series

f (z)=
∞∑

n=0
an(z− z0)

n

converges on a domain �, then

1 f (z)=
∞∑

n=0
1(an(z− z0)

n)=
∞∑

n=1
nan(z− z0)

n−1

for z ∈ �̊.

Proof. For any point z ∈ �̊, the series converges at {z, z+ 1, z+ i}. So

1 f (z)=
f (z+ 1)− f (z)− i( f (z+ i)− f (z))

2

=

∑
an(z+ 1)n −

∑
an(z)n − i

(∑
an(z+ i)n −

∑
an(z)n

)
2

=
∑

an

(
(z+ 1)n − zn

− i((z+ i)n − zn)

2

)
=
∑

an1zn. �

Definition 5.4. A function is analytic if it can be written locally as a convergent
falling power series.

Proposition 5.5. Analytic on � implies holomorphic on �̊.

Proof. As in the proof of Proposition 5.3, for z ∈ �̊, the 1̄ can be applied to the
series term by term. For each n, 1̄zn

=0 and so 1̄ f (z)=0. Thus f is holomorphic
on �̊. �

This brings us one of the main results dealing with falling power series.

Theorem 5.6. Holomorphic implies analytic.

Proof. We may assume z0 = 0 and the series converges everywhere in the first
quadrant (Theorem 5.2). By interpolation, we can form a unique falling power
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series which agrees with the function f on the positive real line according to the
recurrence relations

a0 = f (0) and an =

f (n)−
n−1∑
k=0

knak

nn .

From Proposition 5.5, we know that the series is holomorphic, and by the weak
identity theorem, since f agrees with this power series on the real line, then it
agrees with the series in the whole first quadrant, and f is analytic there. �

From the proof of Theorem 5.6, follows the usual Taylor expression.

Corollary 5.7 (Taylor’s theorem). A holomorphic function f is locally given by
the falling power series

f (z)=
∞∑

n=0

1n f (z0)

n!
(z− z0)

n.

6. Elementary functions

First, a discrete analogue of the exponential function:

Proposition 6.1. If 1 f = f and 1̄ f = 0, then

f (x + iy)= 2x(1+ i)y f (0).

Proof. Setting f (z)=1 f (z) gives

f (z)=
f (z+ 1)− f (z)− i( f (z+ i)− f (z))

2
,

and 1̄ f (z)= 0 gives

f (z+ 1)− f (z)+ i( f (z+ i)− f (z))
2

= 0.

After some simplification, we obtain

f (z+ 1)= 2 f (z) and f (z+ i)= (1+ i) f (z).

With these two functional equations,

f (x + iy)= 2x f (iy)= 2x(1+ i)y f (0). �

Definition 6.2. The discrete complex exponential is given by

exp(z)= exp(x + iy)= 2x(1+ i)y .
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Note that it satisfies a law of exponents, i.e., exp(z +w) = exp(z) exp(w). As a
falling power series, for z in the first quadrant,

exp(z)=
∞∑

n=0

zn

n!
.

Analogous to classical complex analysis where e2π ik
= 1, we have:

Proposition 6.3. exp(z)= 1 if and only if z = (4− 8i)k for some integer k.

Proof. arg(2x(1+ i)y) = y · arg(1+ i) = yπ/4, which is a multiple of 2π if and
only if y is a multiple of 8. Next, |exp(x + iy)| = |2x

| · |1+ i |y = 2x+y/2, which
equals 1 if and only if 2x =−y. We may conclude that exp(x+ iy)= 1 if and only
if x + iy = (4− 8i)k for some integer k. �

Next, we look for analogues of sine and cosine.

Proposition 6.4. If −12 f = f and 1̄ f = 0 then

f (x + iy)= (1− i)x 2y f (0).

Proof. If f is holomorphic at z, then 1 f (z)=1x f (z)=−i1y f (z). Hence,

−12 f (z)=−1y1y f (z)=1y f (z+ i)−1y f (z)= f (z+2i)−2 f (z+ i)+ f (z).

Setting equal to f (z) gives f (z+ 2i)= 2 f (z+ i), or by change of variables

f (z+ i)= 2 f (z).

Also,

−12 f (z)= i1y1x f (z)= i1y f (z+ 1)− i1y f (z)

= i f (z+ 1+ i)− i f (z+ 1)− i f (z+ i)+ i f (z).

Setting equal to f (z) and substituting f (z+1+i)=2 f (z+1) and f (z+i)=2 f (z)
gives (1+ i) f (z)= i f (z+ 1), or

f (z+ 1)= (1− i) f (z).

Combining results yields the solution f (x + iy)= (1− i)x 2y f (0). �

Motivated by the classical equation, ex+iy
= ex(cos y + i sin y), let us find an

analogue for exp(x + iy)= 2x(1+ i)y , by setting

c(t)= Re(1+ i)t and s(t)= Im(1+ i)t

for t ∈ Z. With these definitions on the real line, define c(x+ iy) and s(x+ iy) for
y ≥ 0 by holomorphic extension to the upper half-plane.
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Proposition 6.5. For y > 0,

c(x + iy)=
(1− i)x 2y

2
and s(x + iy)=

(1− i)x 2y

−2i
.

Proof. By Proposition 6.4, the functions

(x + iy) 7→
(1− i)x 2y

2
and (x + iy) 7→

(1− i)x 2y

−2i

are holomorphic everywhere. Hence by Lemma 5.1, it is sufficient to show that
equality holds on the line Im z = 1. Let x ∈ Z. Since c is holomorphic at x , by
Proposition 3.5,

c(x + i)= (1− i)c(x)+ ic(x + 1)

= (1− i)Re(1+ i)x + i Re(1+ i)x+1

= (1− i)Re(1+ i)x + i(Re(1+ i)x − Im(1+ i)x)

= Re(1+ i)x − i Im(1+ i)x = (1+ i)x = (1− i)x ,

which equals (1−i)x 2y

2
for y = 1. Similarly,

s(x + i)= (1− i)s(x)+ is(x + 1)

= (1− i) Im(1+ i)x + i Im(1+ i)x+1

= (1− i) Im(1+ i)x + i(Re(1+ i)x + Im(1+ i)x)

= i Re(1+ i)x + Im(1+ i)x = i(1+ i)x = i(1− i)x ,

which equals (1−i)x 2y

−2i
for y = 1. �

7. Path integration

Definition 7.1. A path γ of length n is a sequence {γ j }
n
j=0 ⊂ Z[i] such that

|γ j − γ j−1| = 1,

for every integer j such that 1≤ j ≤ n. A closed path satisfies γ0 = γn .

Definition 7.2. A simply connected domain � is a path-connected set of points
{z ∈ Z[i]} with no holes, i.e., � is such that the interior of every closed path set
lies inside �.

Definition 7.3. A corner of a path γ is a point γ j with 0< j < n such that

|γ j+1− γ j−1| 6= 2.
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Definition 7.4. The path integral of f along γ is∫
γ

f (z)=
n∑

j=1
f
(
min{x j , x j−1}+ i min{y j , y j−1}

)
(γ j − γ j−1),

where x j = Re γ j and y j = Im γ j for 0≤ j ≤ n.

Lemma 7.5. If γ is a path from γ0 to γn with no corners and f is holomorphic
everywhere along the path, then∫

γ

1 f (z)= f (γn)− f (γ0).

Proof. For a horizontal path oriented from left to right having no corners, γ j−γ j−1

is constant and equal to 1, so∫
γ

1 f (z)=
∫
γ

1x f (z)=
∫
γ

f (z+ 1)− f (z)=
n∑

j=1
f (γ j )− f (γ j−1),

which telescopes leaving
∫
γ1 f (z)= f (γn)− f (γ0). For a horizontal path oriented

from right to left, γ j − γ j−1 =−1, so∫
γ

1 f (z)=−
n∑

j=1
f (γ j−1)− f (γ j )= f (γn)− f (γ0).

For a vertical path oriented from bottom to top, γ j − γ j−1 = i , so∫
γ

1 f (z)=
∫
γ

−i1y f (z)=−i
n∑

j=1

(
f (γ j )− f (γ j−1)

)
i = f (γn)− f (γ0).

For a vertical path oriented from top to bottom, γ j − γ j−1 =−i , so∫
γ

1 f (z)=
∫
γ

−i1y f (z)=−i
n∑

j=1

(
f (γ j−1)− f (γ j )

)
(−i)= f (γn)− f (γ0). �

Theorem 7.6 (Fundamental Theorem). If γ is a path from γ0 to γn and f is holo-
morphic everywhere along the path, then∫

γ

1 f (z)= f (zn)− f (z0).

Proof. Decompose γ into a union of paths having no corners:

γ= γ1
+ γ2
+ · · ·+ γm .

Then∫
γ

1 f =
∫
γ1
1 f +

∫
γ2
1 f + · · ·+

∫
γm
1 f

= ( f (γm
nm
)− f (γm

0 ))+ · · ·+ ( f (γ1
n1
)− f (γ1

0))= f (γn)− f (γ0). �
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Corollary 7.7. If 1 f (z) = 0 on a path-connected set �, then f (z) is constant
on �.

Proof. If z andw are in�, there exists a path in� from z tow. Since
∫
γ1 f (z)=0,

it follows that f (w)= f (z). �

Lemma 7.8 (Goursat’s lemma). Let T be a unit square given by the path

{z, z+ 1, z+ 1+ i, z+ i, z},

and suppose f is holomorphic at z. Then
∫

T f (z)= 0.

Proof.
∫

T f (z)= f (z)+ i f (z+ 1)− f (z+ i)− i f (z)= 2i1̄ f (z)= 0. �

The following corollary immediately follows.

Corollary 7.9 (Morera’s theorem). Let f be a function defined on a set G. If∫
T f (z)= 0 for all unit squares T whose interior point is contained in the interior

of G, then f is holomorphic on the interior of G.

Theorem 7.10 (Cauchy’s theorem). Let � be a simply connected domain and let
γ be a closed path in �. Then ∫

γ

f (z)= 0,

for each function f that is holomorphic on �.

Proof. γ can be written as a canceling sum of unit squares, T1+T2+· · ·+Tm . Since
� is simply connected, all of these squares lie in the interior of �. By Goursat’s
lemma,

∫
T1

f (z)=
∫

T2
f (z)= · · · =

∫
Tn

f (z)= 0, and so∫
γ

f (z)=
∫

T1

f (z)+
∫

T2

f (z)+ · · ·+
∫

Tn

= 0. �

Theorem 7.11. If f is holomorphic on a simply connected domain, �, then f has
a primitive in �.

Proof. Fix z0 ∈ �. Let F(z) =
∫
γ f (w) where γ0 = z0 and γn = z. By Cauchy’s

Theorem, this function is path-independent and well-defined.

1F(z)=1
∫
γ

f (w)

=

∫ z+1
z0

f (w)−
∫ z

z0
f (w)− i(

∫ z+i
z0

f (w)−
∫ z

z0
f (w))

2

=

∫ z
z0

f (w)+ f (z)−
∫ z

z0
f (w)− i(

∫ z
z0

f (w)+ i f (z)−
∫ z

z0
f (w))

2
= f (z). �
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317Curvature measures for nonlinear regression models using continuous designs with
applications to optimal experimental design

TIMOTHY O’BRIEN, SOMSRI JAMROENPINYO AND CHINNAPHONG BUMRUNGSUP

333Numerical semigroups from open intervals
VADIM PONOMARENKO AND RYAN ROSENBAUM

341Distinct solution to a linear congruence
DONALD ADAMS AND VADIM PONOMARENKO

345A note on nonresidually solvable hyperlinear one-relator groups
JON P. BANNON AND NICOLAS NOBLETT

1944-4176(2010)3:3;1-E

involve
2010

vol.3,
no.3


	
	
	

