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We investigate Q-ranks of the elliptic curve Et : y2
+ t xy = x3

+ t x2
− x +1,

where t is a rational parameter. We prove that for infinitely many values of t the
rank of Et (Q) is at least 4.

1. Introduction

In this paper we investigate the family of curves

Et : y2
+ t xy = x3

+ t x2
− x+1, (1-1)

with parameter t ∈Q, and prove:

Main Theorem. For infinitely many u ∈Q, the elliptic curve over Q given by the
affine equation E(u2−u−3) : y2

+ (u2
−u−3)xy = x3

+ (u2
−u−3)x2

− x+1 has
Mordell–Weil group of rank at least 4. More precisely, the group E(u2−u−3)(Q)

contains the subgroup spanned by the linearly independent points

(0, 1), (1, 1), (u, u+1),
( 1

9 ,
1

54(9+3u−3u2
+v)

)
,

where the point (u, v) lies on the elliptic curve given by the equation

2569+18u−9u2
−18u3

+9u4
= v2.

The latter curve has Weierstrass model

y2
0 = x3

0−92835x0+1389150, (1-2)

which defines an elliptic curve over Q with Mordell–Weil group of rank 2 and
torsion group Z/2Z, spanned by the points

(−309, 756), (−45, 2340), (15, 0).

MSC2000: 11D25, 11G05.
Keywords: elliptic curves, Mordell–Weil group, ranks in families.
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The curves E(u2−u−3) have different j-invariants for all but finitely many u ∈Q

as in the statement of the theorem.
Brown and Myers [2002] constructed an infinite family of elliptic curves over

Q with quadratic growth of parameter and the rank of the Mordell–Weil group at
least three. They asked whether one can find similar families of elliptic curves with
higher ranks. Our Main Theorem resulted from attempts to answer the question.
The method developed in this paper is modeled on the approach of [Brown and
Myers 2002]. It naturally leads to computations with curves of high genera (instead
of using specializations [Silverman 1986; 1983] as in the well-known method of
Mestre).

It is of fundamental interest to find families of elliptic curves parametrized by
a rational parameter with ranks higher than a prescribed constant [Kowalski 2007;
Silverberg 2007; Rubin and Silverberg 2007; Kihara 1997; Mestre 1991; Nagao
1994]. The method of Mestre based on specialization theorems and computer
search gives several infinite families of elliptic curves over Q of ranks as high as
14. Recent work by Elkies [2007] revealed elliptic curves with rank 18 over Q(t)
and 19, parametrized by an elliptic curve of positive rank. Weierstrass equations
of these families are rather complicated rational expressions of high order.

The family in Main Theorem provides quadratic polynomials as coefficients of
the Weierstrass equation and four linearly independent points of a simple form.
In addition, we obtain a general algorithm which can provide more such simple
families with similar properties, and of rank at least 4. The main obstruction to
obtaining higher ranks with our method is the base change from the projective line
to a curve of higher genus — the best choice being a curve of genus 1 with infinite
set of rational points over Q (as suggested after Lemma 2.2).

Rubin and Silverberg [2007] have obtained other infinite families of elliptic
curves over Q of rank 4, constructed by twisting a curve given in the Legendre
form. The families in that work are parametrized the by projective line or by an
elliptic curve of rank 1 with twists parametrized by another elliptic curve of rank 1.

The choice of a particular family Et was motivated by the study of more general
families of elliptic curves with polynomial coefficients of degree at most one in the
variable t . We first choose two rational constant sections with small coefficients.
This method is likely to give rational elliptic surfaces with those two sections being
independent. Then we look for a subfamily which contains a section with noncon-
stant x-coordinate, for example linear in variable t . Computations reveal what base
change (e.g., quadratic base change from P1 to P1) shall increase the rank from
2 to 3 for particular values of t . Finally, we look for a suitable fourth point with
constant x-coordinate. This provides a new base change to curve of higher genus
(infinitely many curves of rank 4 occur only with elliptic curve with positive rank
as a base). Similar computations gave us one more family of the type described in
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Main Theorem, namely

Ft (u) : y2
− t (u)xy = x3

− t (u)x2
− t (u)x+1,

where t (u)= 1−u/2+u2/2 and

v2
= 361+198u−189u2

−18u3
+9u4

is the elliptic curve in a quartic form with rank 4 over Q. For all but finitely many
u ∈Q the points

(0, 1), (2, 3), (u, u−1),
( 4

9 ,
1

27(6−3u+3u2
+v)

)
on the curve Ft (u) are linearly independent.

The result stated in Main Theorem can be extended, if the parity conjecture
holds true for E [Rohrlich 1994]. Let 3(E/Q, s) be the complete L-series of the
elliptic curve over Q. Denote by w(E) ∈ {±1} the root number in the functional
equation

3(E, 2−s)= w(E)3(E, s). (1-3)

The parity conjecture predicts that

(−1)rank E(Q)
= w(E). (1-4)

We can compute the root numberw(Et) for the specific curves Et and determine the
parity of the rank of group Et(Q). Computations can be done explicitly using Sage
[Stein et al. 2005], by choosing primes of bad reduction of Et . We state numerical
results in Section 4.2. In particular, assuming parity conjecture we constructed
several elliptic curves over Q that have Mordell–Weil rank at least 5 (see Table 2).

2. Description of the algorithm

There are two obvious points lying on the curve (1-1), namely:

(0, 1), (1, 1) ∈ Et(Q(t)).

We produce with them several other points with coordinates in the ring Z[t]:

−(0, 1)= (0,−1),
−(1, 1)= (1,−t−1),

(0, 1)+2(1, 1)= (−t+1,−1),
(0, 1)+(1, 1)= (−t−1, t2

+ t−1),
(0, 1)−(1, 1)= (t+3, 2t+5),
−(0, 1)+(1, 1)= (t+3,−t2

−5t−5),
−(0, 1)+2(1, 1)= (t+5, 2t+11),

2(1, 1)= (−1, t+1).
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The following lemma describes the structure of the group Et(Q(t)).

Lemma 2.1. The group Et(Q(t)) has rank 2 and has trivial torsion. It is generated
by the points (0, 1) and (1, 1).

Proof. Consider the elliptic curve

Et : y2
+ t xy = x3

+ t x2
− x+1

over Q(t) as the elliptic surface E over P1. The discriminant of Et is equal to

−(t+2)2(t4
+8t3

+11t2
−20t+92),

and the surface E has 6 singular fibers (in Kodaira classification):

• a fiber of type I6 over t =∞,

• a fiber of type I2 over t =−2,

• four fibers of type I1 over t = αi for i = 1, 2, 3, 4, where

t4
+8t3

+11t2
−20t+92= (t−α1)(t−α2)(t−α3)(t−α4).

Let S be the set of bad places, namely S = {∞,−2, α1, α2, α3, α4}. From the
Shioda–Tate formula [Shioda 1990, Corollary 5.3] we get

rank Et(Q(t))= ρ(E)−2−
∑
v∈S
(mv−1),

where ρ(E) is the Picard number of surface E and mv is the number of components
of singular fiber over place v. After [Shioda 1990, Equation 10.14] we find that
the elliptic surface E is rational since the coefficients of the defining equation in
Weierstrass form satisfy the condition:

deg ai (t)≤ i,

and the discriminant is nonconstant. This implies that ρ(E) = 10 [Shioda 1990,
Lemma 10.1] and we get from the Shioda–Tate formula:

rank Et(Q(t))= 2.

Computation of the height pairing matrix for the points P1= (0, 1) and P2= (1, 1)
gives the matrix:

(〈Pi , Pj 〉)1≤i, j≤2 =

(1
2 0
0 1

6

)
.

This shows that points P1 and P2 span the free part of the group Et(Q(t)). Since
they are both rational points over Q(t), it follows that they span the free part of the
group Et (Q(t)).



INFINITE FAMILY OF ELLIPTIC CURVES OF RANK AT LEAST 4 301

The map
φ : Et(Q(t))→

∏
v∈S

G(Fv)

takes a section to the respective fiber component of Fv that it meets. The group
G(Fv) is generated by simple components of the fiber Fv. The map φ is an in-
jection on the torsion part. From the Néron model structure we know that for the
multiplicative fibers In the group G(In) ∼= Z/nZ. In case of the family Et we get
the injection

Et(Q(t))tors ↪→ Z/2Z⊕Z/6Z.

Let P = (x, y) ∈ Et(Q(t)) be a 2-torsion point. The condition P = −P implies
that x-coordinate must satisfy:

0= 4−4x+4t x2
+ t2x2

+4x3.

The polynomial on the right side is irreducible over Q(t). Similarly, let P satisfy
P =−2P . It follows that

0=−1+4t+ t2
+12x−6x2

+4t x3
+ t2x3

+3x4.

Again the polynomial is irreducible over Q(t). This clearly implies that only the
point at infinity has finite order:

Et(Q(t))tors = {O}. �

In order to find more points on the curve (1-1) we specialize parameter t to a
polynomial function of another parameter u:

t (u)= anun
+· · ·+a1u+a0,

where ai ∈ Q. To get a rational point on the curve (1-1) with x-coordinate equal
to au+b, for a, b ∈Q, it is necessary and sufficient that

1(u)= 4(−1+b+au)2(1+b+au)+(2+ t (u))2(b+au)2 (2-1)

be a perfect square.

Lemma 2.2. Let P= (x, y) be a rational point on the curve Et (u) over Q(u), where
t (u) = anun

+· · ·+a1u+a0 ∈ Q[u] of positive degree. Let x = au+b ∈ Q[u].
Suppose that a 6= 0.

(i) If deg t = 1, then P = k(0, 1)+ l(1, 1) for some k, l ∈ Z.

(ii) If deg t = 2, then P = (x, x+1) and t (u)= x2
− x−3 or P = (x, x−1) and

t (u)=−x2
+ x+1.

If , in addition, deg t > 2, there is no rational point whose x-coordinate is equal to
au+b ∈Q[u].
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Proof. (i) Assume t (u)= a1u+a0 and a1 6= 0. Put P(u)= q2u2
+q1u+q0. Since

P is a rational point on Et (u), the discriminant1(u) as in (2-1) is a perfect square:

1(u)= P(u)2;

moreover, for some ε∈{1,−1}, we have q2=εaa1, q1=
2a2
+2aa1+aa0a1+ba2

1
εa1

,
and

q0 =
−2a3

−4a2a1−2a2a0a1−2aa2
1+4aba2

1+2ba3
1+ba0a3

1

εa3
1

.

Equating the last two coefficients of 1(u) and P(u)2 gives two equations in the
variables a1, a0, a, b:

R1(a, b, a0, a1)= −a6
−4a5a1−2a5a0a1−6a4a2

1+4a4ba2
1−4a4a0a2

1−a4a2
0a2

1

−4a3a3
1+10a3ba3

1−2a3a0a3
1+5a3ba0a3

1−a2a4
1+8a2ba4

1

−4a2b2a4
1+4a2ba0a4

1+a2ba2
0a4

1+2aba5
1−4ab2a5

1+aba0a5
1

−2ab2a0a5
1+a6

1−ba6
1−b2a6

1+b3a6
1

= 0,

R2(a, b, a0, a1)= 2a4
+6a3a1+3a3a0a1+6a2a2

1−3a2ba2
1+4a2a0a2

1+a2a2
0a2

1

+2aa3
1−4aba3

1+aa0a3
1−2aba0a3

1−a4
1−ba4

1+b2a4
1

= 0.

The ideal I = I (R1, R2) of these equations can be rearranged in the form of the
Gröbner basis I = I (a9

−2a7a2
1+a5a4

1, R′1, . . . , R′18), with R′i = R′i (a, b, a0, a1).
The first polynomial of the new basis factors as a5(a−a1)

2(a+a1)
2. The equation

a5(a−a1)
2(a+a1)

2
= 0 can only have solutions a=±a1 since we assumed a 6= 0.

For a = a1 the equations reduce to

a0 = b−3 or a0 = b−5.

For t (u)= au+(b−3) or t (u)= au+(b−5), we get respectively the points(
t (u)+3, 5+2t (u)

)
,
(
t (u)+3,−5−5t (u)− t (u)2

)
,(

t (u)+5, 11+2t (u)
)
,
(
t (u)+5,−11−7t (u)− t (u)2

)
.

They are linear combinations of (0, 1) and (1, 1) in the group Et(Q(u)).
For a =−a1 the equations reduce to

a0 =−1−b or a0 = 1−b.
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For t (u)=−au−b−1 and t (u)=−au−b+1 we get the points(
− t (u)−1, 1

)
,
(
− t (u)−1,−1+ t (u)+ t (u)2

)
,(

− t (u)+1,−1
)
,
(
− t (u)+1, 1− t (u)+ t (u)2

)
,

respectively. Again both points are the linear combinations of (0, 1) and (1, 1).
We can now proceed analogously to the proof of (i) and show property (ii). Let

t (u)= a2u2
+a1u+a0 and a1 6= 0. Put P(u)= q3u3

+q2u2
+q1u+q0. Comparing

coefficients of (2-1) and P(u)2 implies

q3= εaa2, q2=
aa1+ba2

ε
, q1=

2a+aa0+ba1

ε
, q0=

2a2
+2ba2+ba0a2

εa2
,

with ε =±1. By comparing the three lowest terms in P(u)2 and 1(u) we obtain

a1 =
(−1+2b)a2

a
, a3(2+a0)+a(1+b−b2)a2 = 0, a2

= λa2,

with λ = ±1. This implies that t (u) = −2−λ− (au+b)λ+ (au+b)2λ. In this
way — assuming x(u)= au+b — we get the two distinct families

point parameter t (u)

Family A (x, x+1) x2
− x−3

Family B (x, x−1) −x2
+ x+1

To show the last case we proceed by induction on degree of the polynomial t (u).
Consider t (u) as a polynomial in u of degree n > 2; then deg1 = 2n+2, so we
look for the polynomial P(u) of degree n+1 such that 1(u)= P(u)2. We put

a∗i =


ai if 0< i ≤ n,
a0+2 if i = 0,
0 otherwise,

and q∗j =
{

q j if 0≤ j ≤ n+1,
0 otherwise.

We prove by induction the formula

q∗j = ε(aa∗j−1+bb∗j ),

using the identities

c j (1)= a2
∑

j=α+β

a∗αa∗β+2ab
∑

j+1=α+β

a∗αa∗β+b2
∑

j+2=α+β

a∗αa∗β, c j (P2)=
∑

j=α+β

q∗αq∗β,

for j = n+1, . . . , 2n+2, where c j (a0+a1x+· · ·+anxn) = a j . It follows from
1= P2 that

c j (1)= c j (P2).
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We substitute the coefficients q0= ε(2b+ba0) and q1= ε(a(a0+2)+ba1) into the
identities above with j=0, 1, 2 and we get b2

=1 and finally a=0, a contradiction.
This completes the proof of the lemma. �

By Lemma 2.2, we can specialize to one of the quadratic parameters, since the
families A and B (see previous page) have similar properties. For the rest of the
paper we choose the specialization t (u)= u2

−u−3:

E(u2−u−3) : y
2
+(u2

−u−3)xy = x3
+(u2

−u−3)x2
− x+1.

For notational simplicity, we write f (x, y, u) = 0 for this equation. The point
(u, u+1) lies on these curves and gives several new integral points over Q[u]:

−(u, u+1)= (u,−u3
+u2
+2u−1),

(0, 1)+(u, u+1)= (−u+1, u3
−2u2

−u+1),

(1, 1)−(u, u+1)= (u3
−2u, u4

+u3
−3u2

−2u+1),

2(1, 1)+(u, u+1)= (−u3
+4u2

−6u+4, u5
−6u4

+14u3
−17u2

+10u−1).

To find the fourth linearly independent rational point on the curve E(u2−u−3), we
consider the following general algorithm:

(1) Choose two rational functions a(x), b(x) ∈Q(x).

(2) Form the simultaneous equations f (a(u),ya(u),u)= 0, f (b(u),yb(u),u)= 0.

(3) Find a(x), b(x) such that ya(x), yb(x) ∈Q(x).

(4) A sufficient and necessary condition for ya, yb to be rational is that the dis-
criminant of the quadratic equation f (a(x), ya, x) = 0 in ya be a perfect
square. The same condition holds for the equation in yb.

(5) Find all rational points, i.e., the triples (u, s, w) ∈Q3 on the affine curve:

1 f (a(x),ya,x)=0(u)= s2, 1 f (b(x),yb,x)=0(u)= w2, (2-2)

where 1 f (a(x),ya,x)=0(x) and 1 f (b(x),yb,x)=0(x) belong to Q(x).

We now pick a(x) = x and b(x) = c. Then the first equation in (2-2) reduces to
(2−u−u2

+u3)2 = s2, while the second gives

4−4c−3c2
+4c3

+2c2u−c2u2
−2c2u3

+c2u4
= w2.

We choose c∈Q so that it defines the elliptic curve in a quartic form with infinitely
many points (u, w). A direct search with u ∈ N reveals that for u = 7 we have on
the curve E39 the four linearly independent points

(0, 1), (1, 1), (7, 8),
( 1

9 ,
8

27

)
;

hence we put c = 1
9 , as in the statement of Main Theorem.
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3. Proofs

To prove Main Theorem, we will need the following elementary lemma.

Lemma 3.1. Let b ∈ M , where M is a left Z-module. Suppose a1, . . . , ak ∈ M are
linearly independent over Z and the nonzero cosets [a1], . . . , [ak] ∈ M/2M are
linearly independent over F2. If [b] /∈ 〈[a1], . . . , [ak]〉 and the 2-torsion of M is
trivial, then b, a1, . . . , ak are independent over Z in M.

Proof. Suppose, contrary to our claim, that there exists α1, . . . , αk, β ∈ Z, not all
zero, such that βb+α1a1+· · ·+αkak = 0. We can assume that β is the least
positive integer for which this holds. If β is odd, we have [βb] = [b] and [b] =
[α1a1+· · ·+αkak], a contradiction. If β is even, we have [0]= [α1a1+· · ·+αkak];
but the linear independence of cosets [ai ] over F2 implies that all αi are even, so
it is possible to write β ′b = α′1a1+· · ·+α

′

kak , where 2β ′ = β and 2α′i = αi . This
contradicts the minimality of β. �

We now establish the structure of the torsion subgroup of the curve Et for all
but finitely many t ∈Q.

Lemma 3.2. Let t1(u) = u and t2(u) = u2
−u−3. The structure of the torsion

subgroup of groups Eti (u)(Q) for u ∈Q is as follows:

Group T #
{
u ∈Q : Et1(u)(Q)tors ∼= T

}
#
{
u ∈Q : Et2(u)(Q)tors ∼= T

}
Z/2Z ∞ 0

Z/2Z⊕Z/2NZ 0 0N = 1, 2, 3, 4

Z/4Z, Z/8Z <∞ 0

Z/3NZ 0 0N = 1, 2, 3, 4

Z/5Z, Z/10Z <∞ <∞

Z/7Z <∞ <∞

Proof. Mazur [Mazur 1978] showed that the group Et(Q)tors is isomorphic either
to Z/NZ with 1 ≤ N ≤ 10 or N = 12, or to Z/NZ⊕Z/2Z with N = 2, 4, 6 or 8.
We prove below that for t = u2

−u−3, with u ∈ Q, the groups Et(Q)tors[2] and
Et(Q)tors[3] are trivial for all u. The triviality of rational 5-torsion and 7-torsion
subgroups is proved only for all but finitely many u. The 2-torsion is computed
also for the general parameter t , which leads to curve of genus zero with rational
parametrization. These facts, combined with Mazur’s theorem, will suffice to finish
the proof of the lemma.
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Let P = (x, y) be a 2-torsion point on the curve y2
+ t xy = x3

+ t x2
−x+1. Its

negative is −P = (x,−t x− y). From the condition P =−P it follows that

y =− t x
2
.

Substitution into the Weierstrass equation of Et gives the equation

0= 4−4x+4t x2
+ t2x2

+4x3, (3-1)

which defines the curve of genus zero with the parametrization

t =
−8−8s−2s2

−s3

4+s2 , x =−1−
s2

4
.

When this is substituted in (3-1), the only nontrivial 2-torsion point is obtained:(
−1− 1

4 s2, 1
8(−8−8s−2s2

−s3)
)
.

Therefore the groups Z/2Z⊕Z/2NZ for N = 1, 2, 3, 4 cannot occur as torsion
subgroups of Et(Q). Specialization of the parameter t (u) = u2

−u−3 gives the
curve of genus two

C1 : 4−4x+4(−3−u+u2)x2
+(−3−u+u2)2x2

+4x3
= 0,

which has the normal form

C2 : Y 2
= (−5−2X− X2)(11+34X+7X2

+4X3).

where

X = 1+ux−u2x
x−1

, Y =−4x+8ux . (3-2)

We define Jac(C2) to be the Jacobian variety of the curve C2 over Q. The group
Jac(C2)(Q) of rational points of this variety has the torsion subgroup isomorphic
to Z/4Z and 2-Selmer group Sel(Jac(C2)/Q)[2] over Q isomorphic to Z/2Z (com-
puted with the Magma commands TorsionSubgroup and TwoSelmerGroup). This
enables us to perform a two-descent and compute that the rank Jac(C2)(Q)= 0.

The only rational points on the curve C2 might come from the torsion points of
the Jacobian. We compute (with the Magma Chabauty0 procedure) that actually
only the point at infinity is the rational point on C2. The affine points on the curve
C1 come from the affine part of C2 via the map defined in (3-2), except for the
points (x, u)= (1, 1

2(1±
√

5)); hence there are only two rational points on C1: the
points at infinity (the parameter u =∞ defines a singular curve). This shows that
Eu2−u−3(Q)tors[2] = {O} for all u ∈Q such that Eu2−u−3 is nonsingular.

Let P = (x, y) be a 3-torsion point on the curve y2
+ t xy = x3

+ t x2
− x+1.

The condition P =−2P implies that the pair (x, t) must satisfy the equation

C3 : 1−4t− t2
−12x+6x2

−4t x3
− t2x3

−3x4
= 0.
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The curve C3 has genus two and has the normal form

C4 : Y 2
= (1− X)(5+3X)(1+ X3),

where

X = x, Y = 2+t+2x3
+t x3

1−x
.

Similarly to the case of 2-torsion we compute that the rank of Jac(C4)(Q) is zero
because Sel(Jac(C4)/Q)[2] ∼= Z/8Z and Jac(C4)(Q)tors ∼= Z/8Z. We obtain four
rational points on C3: two at infinity, plus

(x, t)=
(
−

5
3 ,−2

)
and (x, t)= (1,−2).

The parameter t =−2 gives a singular nodal curve; hence Et(Q)tors[3] = {O}, for
all t ∈Q such that Et is nonsingular.

Let P = (x, y) ∈ Et(Q) be the point of order 4. The conditions 2P =−2P and
2P 6= O imply that the pair (x, t) satisfies the equation

−14−8t−2t2
+8x−4t x+15t2x+8t3x+ t4x−10x2

+40t x2
+10t2x2

+40x3
−10x4

+4t x5
+ t2x5

+2x6
= 0,

which defines a curve of genus 3. From Faltings’ theorem [1983] we see that for all
but finitely many t ∈Q groups Z/4Z and Z/8Z cannot occur as torsion subgroups
of Et(Q).

The cases of rational 5-torsion and 7-torsion do not generate hyperelliptic curves
so we use again Faltings’ theorem.

The condition 3P = −2P for P = (x, y) ∈ Et(Q) implies that the pair (x, t)
lies on the curve of genus 13 given by

223+140t−13t2
+40t3

+45t4
+12t5

+ t6
−540x−480t x+200t2x+160t3x+20t4x

+190x2
+1680t x2

+900t2x2
+240t3x2

+30t4x2
+1520x3

−820t x3
−685t2x3

−560t3x3
−270t4x3

−60t5x3
−5t6x3

−1795x4
−120t x4

−430t2x4
+440t3x4

+455t4x4

+120t5x4
+10t6x4

+696x5
+112t x5

+1372t2x5
+736t3x5

−124t4x5
−244t5x5

−95t6x5
−16t7x5

− t8x5
−60x6

+720t x6
+420t2x6

−840t3x6
−705t4x6

−180t5x6

−15t6x6
+240x7

+360t x7
−1350t2x7

−720t3x7
−90t4x7

+105x8
−1140t x8

−285t2x8

−380x9
+80t x9

+20t2x9
+62x10

−16t2x10
−8t3x10

− t4x10
−20t x11

−5t2x11
−5x12

= 0.

The condition 4P = −3P for P = (x, y) ∈ Et(Q) implies that the pair (x, t)
lies on a curve of genus 31 (equation omitted).

Applying the theorem of Faltings, we deduce that, for all but finitely many t , the
rational 5-torsion and 7-torsion are trivial. Mazur’s structure theorem now implies
the statement of the lemma. �
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Proof of Main Theorem. In order to prove Main Theorem we check if the ap-
propriate points and their linear combinations belong to 2E(u2−u−3)(Q). Given a
Q-rational point P = (x, y) on the curve E(u2−u−3) over Q we have the following
formula for the x-coordinate of the point 2P:

x(2P)= 4−2u+u2
+2u3

−u4
−8x+2x2

+x4

4−4x+(−3+2u−u2−2u3+u4)x2+4x3 .

To simplify the notation, define:

Pε1,ε2,ε3 = ε1(0, 1)+ε2(1, 1)+ε3(u, u+1).

If for u ∈Q there exists a rational point
( 1

9 , y
)

on the curve E(u2−u−3) and y is one
of two possible values

y = 1
54

(
9+3u−3u2

±

√
2569+18u−9u2−18u3+9u4

)
,

then we put

Qε1,ε2,ε3,ε4 = ε1(0, 1)+ε2(1, 1)+ε3(u, u+1)+ε4
( 1

9 , y
)
, (3-3)

where εi ∈ {−1, 0, 1}.
The proof falls naturally into two parts. In the first part we establish the criteria

for which the equations Pε1,ε2,ε3 = x(2P) and Qε1,ε2,ε3,ε4 = x(2P) have solutions
in pairs of rational numbers (u, x) (recall that P = (x, y) lies on E(u2−u−3)). In the
second part of the proof we gather information to find the infinite subset of Q of
parameters u for which the rank is at least 4. To use Lemma 3.1 we must consider
the tuples (ε1, ε2, ε3) in

{(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (0, 1,−1), (1, 0, 1), (1, 1, 1)}. (3-4)

Assume that
( 1

9 , y
)

is Q-rational. Consider (ε1, ε2, ε3, ε4) in the set

{(0, 0, 0, 1), (1, 0, 0, 1), (0, 1, 0, 1),

(0, 0, 1, 1), (1, 1, 0, 1), (0, 1,−1, 1), (1, 0, 1, 1), (1, 1, 1, 1)}.

The tuples with negative entries were chosen to lower the genera of corresponding
curves. Since we work mod 2E(u2−u−3)(Q) the tuples can be chosen with a fair
amount of freedom. We compute genera of curves using the genus command from
the algcurves package in Maple 12. We consider in detail three specific cases.

(ε1, ε2, ε3) = (1, 0, 0). This tuple implies the equation

4−2u+u2
+2u3

−u4
−8x+2x2

+ x4

4−4x+(−3+2u−u2−2u3+u4)x2+4x3 = 0. (3-5)
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Since (0, 1) is not the point at infinity, the denominator is nonvanishing and

4−2u+u2
+2u3

−u4
−8x+2x2

+ x4
= 0.

It defines an elliptic curve of rank 1. By means of the formulas

x0 =
1

3(u2−u−1)
(12u4

−12u3x−36u3
+12u2x2

+30u2x+35u2

−12ux3
−24ux2

−42ux+61u+18x3
+6x2

+36x−113),

y0 =−
2

u2−u−1
(8u5
−8u4x−32u4

+8u3x2
+28u3x+44u3

−8u2x3
−24u2x2

−39u2x+9u2
+20ux3

+20ux2
+43ux−101u−19x3

−11x2
−54x+122),

we can transform the equation into short Weierstrass form:

y2
0 = x3

0+
359
3 x0+

3130
27 .

The Mordell–Weil group of this elliptic curve is generated by the point
( 53

3 , 88
)
.

Hence in the original form the generator is equal to (u, x)=
( 1

2 ,
1
2

)
. The remaining

cases for (ε1, ε2, ε3) in (3-4) are summarized in the first table below; the genera
were computed with Maple.

ε1 ε2 ε3 genus

1 0 0 1
0 1 0 3
0 0 1 2
1 1 0 3
0 1 −1 4
1 0 1 2
1 1 1 4

ε1 ε2 ε3 ε4 genus

0 0 0 1 5
1 0 0 1 9
0 1 0 1 13
0 0 1 1 19
1 1 0 1 13
0 1 −1 1 15
1 0 1 1 11
1 1 1 1 28

Now assume that we are given a rational point
( 1

9 , y
)

lying on the curve E(u2−u−3)
for a suitable u ∈Q.

(ε1, ε2, ε3, ε4) = (0, 0, 0, 1). In this case

−u4
+2u3

+u2
−2u+ x4

+2x2
−8x+4

(u4−2u3−u2+2u−3)x2+4x3−4x+4
=

1
9 . (3-6)

This equation defines an affine curve of genus 5.
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(ε1, ε2, ε3, ε4) = (1, 0, 0, 1). Here we have

−u4
+2u3

+u2
−2u+ x4

+2x2
−8x+4

(u4−2u3−u2+2u−3)x2+4x3−4x+4
=−9u2

+9u−162y+180. (3-7)

From the equation of the curve E(u2−u−3) we can find the formula

y = 1
54(−3u2

+3u+v+9), (3-8)

with v=±
√

2569+18u−9u2−18u3+9u4. Using these relations we can assume
that if a point (u, x) lies on the curve given by (3-7), it also lies on the curve

9(9u4
−18u3

−9u2
+18u+2569)(u4x2

−2u3x2
−u2x2

+2ux2
+4x3

−3x2
−4x+4)2

−(153u4x2
+u4
−306u3x2

−2u3
−153u2x2

−u2
+306ux2

+2u− x4

+612x3
−461x2

−604x+608)2 = 0.

This curve has genus 9. The rest is computed in a similar way; the results are given
in the second table on the previous page.

In the last step of the proof we show for which u ∈ Q the point
( 1

9 , y
)

is Q-
rational. By formula (3-8) y ∈ Q if and only if 2569+18u−9u2

−18u3
+9u4

is a full square. This condition defines the elliptic curve in a quartic form. It is
birational to elliptic curve in the Weierstrass form:

y2
0 = x3

0−92835x0+1389150. (3-9)

The Mordell–Weil group of the curve has rank 2. The torsion subgroup is iso-
morphic to Z/2. Generators of the free part are (x0, y0) = (−309,−756), and
(x0, y0) = (390,−4950) and the generator of the torsion subgroup is (15, 0). In
the quartic form they correspond respectively to( 1

9 ,
1369

27

)
,
( 27

10 ,−
5173
100

)
, (−6,−133).

The birational map between models of elliptic curve provides a method to gener-
ate a suitable infinite set S of parameters u ∈Q (see Section 4.2 for details). In fact
{u ∈Q : rank (E(u2−u−3)(Q))≥ 4} ⊂ S and the difference between sets correspond
precisely to the set of u-coordinates of rational points on the curves listed in the
tables on the previous page. Except for the case (ε1, ε2, ε3) = (1, 0, 0), all curves
have finitely many rational points due to Faltings’ theorem. Consider the curve
Et : y2

+ t xy = x3
+ t x2

− x+1, and assume the point
( 1

9 , y
)

on the curve Et is
Q-rational. Solving the quadratic equation gives

y = 1
54

(
−3t±

√
2596+36t+9t2

)
.
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The point (0, 1) is a double in Et(Q) and
( 1

9 , y
)

is a rational point when there
exists a triple (t, x, s) ∈Q3 on

s2
= 2596+36t+9t2, 0= 1−4t− t2

−8x+2x2
+ x4.

The parametrization of the first equation gives

t =
2596− f 2

6 f −36
, s =

f 2
−12t+2596
2 f −12

,

with a new parameter f ∈ Q\{6}. Substituting into the second equation gives the
curve:

−6364096−62736 f +5084 f 2
+24 f 3

− f 4
−10368x+3456 f x−288 f 2x

+2592x2
−864 f x2

+72 f 2x2
+1296x4

−432 f x4
+36 f 2x4

= 0.

This curve has genus 3, so it has finitely many rational points by Faltings’ theorem.
Specializing to a parameter t (u)= u2

−u−3 we obtain that there are only finitely
many u ∈Q for which (0, 1) is a double in E(u2−u−3)(Q)while

( 1
9 , y

)
is Q-rational.

So in fact the difference S\B is a finite set.
It remains to show that the j-invariant of the curve Et : y2

+t xy= x3
+t x2

−x+1
repeats itself for finitely many t ∈Q. We compute

j (Et)=−
(48+ t2(4+ t)2)3

(2+ t)2(92+(−1+ t)t (4+ t)(5+ t))
. (3-10)

Hence the equation
j (Et1)= j (Et2)

defines an affine curve with coordinates (t1, t2) which has genus 11 according to
computations in Maple. This implies that specializing the parameter t to u2

−u−3
gives a curve with finitely many rational points. �

4. Numerical results

4.1. General statistics. We show in Figure 1, left, the rank of the curves

y2
+ t xy = x3

+ t x2
− x+1, (4-1)

with positive integers t < 230. All computations were performed with Sage 3.4
[Stein et al. 2005] using the mwrank procedure. In some 6% of cases the value
shown is conjectural, since it was not possible to prove an upper bound for the
rank. Here is the percentage of curves of each rank:

rank 1 2 3 4 ?
fraction 1% 41% 45% 7% 6%
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Figure 1. Left: Rank of curves of the form (4-1). Right: Growth
of t for curves of rank 3 (abscissa: number of curves of rank 3 up
to a certain t).

Also interesting is the plot of curves of rank 3 in Figure 1, right. It suggests that
the progression for curves of rank 3 is almost linear, and hence that we can use the
general algorithm from the introduction to state another version of the main Main
Theorem and find many more infinite families of elliptic curves over Q.

4.2. Explicit version of the main theorem. The statement of the theorem requires
removing a finite subset of “bad rational points” due to Faltings’ theorem (Mordell’s
conjecture). The upper bound of heights of this points is hard to obtain. We shall
give an explicit and effective version of the main result of this paper. For rational
points on the curve (1-2) with low height we can compute the explicit table of
corresponding elliptic curves E(u2−u−3) over Q of rank at least 4. The curve

C1 : y2
0 = x3

0−92835x0+1389150 (4-2)

is mapped to the curve

C2 : 2569+18u−9u2
−18u3

+9u4
= v2 (4-3)

via the map
φ : C1→ C2,

where φ(x0, y0)= (u, v) is given by the formulas

u =
565605+ x0(−948+7x0)+266y0

(−1551+ x0)(45+ x0)
,

v =
1

(−1551+ x0)2(45+ x0)2

(
133(92385+(−30+ x0)x0)(−115425+ x0(1536+ x0))

+234(−3922935+ x0(9010+41x0))y0
)
;
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the map is defined at each of the points (−45,2340), (−45,−2340), (1551,59904),
(1551,−5990), and∞C1 :

φ(−45, 2340)= φ(1551, 59904)=∞C2, φ(∞C1)= (7, 133),

φ(−45,−2340)=
(
−

10898
5187 ,−

477412081
8968323

)
, φ(1551,−59904)=

( 16085
5187 ,

477412081
8968323

)
,

Here∞C1 is the point at infinity on C1 and analogously for C2. The map is regular
at every point of C1, so it is a morphism of curves. The inverse mapping is

ψ : C1→ C2,

where ψ(u, v)= (x0, y0) is given by

x0 =
5117−948u+753u2

+266v
(−7+u)2

,

y0 =
266

(
5201+9u(−4+u(−22+13u))

)
+2(1799+4797u)v

(−7+u)3
,

which is not regular at the point ∞C2 and is defined at the points (7, 133) and
(7,−133):

ψ(7, 133)=∞C1, ψ(7,−133)=
(
−

3628425
17689 ,

8081948160
2352637

)
.

With the notation A=C1\{(−45, 2340), (1551, 59904)}, B=C2\{∞C2}, we have

φ ◦ψ = idA, ψ ◦φ = idB .

We now give an explicit table of curves of rank at least 4 as stated in the Main
Theorem. If we assume the parity conjecture we can show that some of them have
actually the rank at least 5. Let

E(u2−u−3) : y
2
+(u2

−u−3)xy = x3
+(u2

−u−3)x2
− x+1,

and P1 = (−309, 756), P2 = (−45, 2340), T = (15, 0)— the points spanning
the group C1(Q). From the computations above we can associate uniquely a pair
(u, v) on C2 corresponding to the point αT +β1 P1+β2 P2. We abbreviate this as
(u, v)↔ (α, β1, β2). We define the following functions:

• R(u) is the regulator of the points

(0, 1), (1, 1), (u, u+1),
( 1

9 ,
1
54(9+3u−3u2

+v)
)
;

• N (u) is the conductor of the curve E(u2−u−3);

• j (u) is the j-invariant of E(u2−u−3);

• w(u) is equal to the global root number w(E(u2−u−3)/Q).



314 BARTOSZ NASKRĘCKI

All the computations were performed for the minimal model of each curve.
For the last tuple the regulator is equal to 0 because the tuple corresponds to

u= 1
9 for which the fourth point from the statement of the Main Theorem coincides

with the third point. For the tuple (0,−1, 1) (when u = 8/9) the fourth point is
linearly dependent on the other three points. Moreover the curves corresponding
to these tuples are isomorphic over Q.

Remark. We can find in the family E(u2−u−3) curves of unconditional rank at least
five. The curve E239 : y2

+239xy = x3
+239x2

−x+1 is a curve of unconditional
rank five. The set of generators of the nontorsion part is given by

(0, 1), (1, 1), (16, 17),
(
−

14
25 ,

16661
125

)
,
( 52

81 ,
469
729

)
.

We can show that for c=− 14
25 the associated auxiliary elliptic curve from the Main

Theorem,

4−4c−3c2
+4c3

+2c2u−c2u2
−2c2u3

+c2u4
= w2,

has rank 4 over Q. Applying the technique of the proof of the Main Theorem we
can actually prove a similar result to the one stated there. Precisely, we would have

α β1 β2 R(u) N (u) j (u) W (u) rank

0 −2 −2 253637.08 7.42×10117
−4382.17 −1 ≥ 5

0 −2 −1 53400.57 4.79×1079
−1.39×106 1 ≥ 4

0 −2 0 16681.20 5.69×1059
−4.14×1011

−1 ≥ 5
0 −2 1 23528.39 1.89×1064

−1.11×1016 1 ≥ 4
0 −1 −2 117347.77 1.22×1095

−4.66×1019 1 ≥ 4
0 −1 −1 6398.35 2.46×1046

−7.42×108 1 ≥ 4
0 −1 0 28.40 4.13×1012

−1255.79 1 ≥ 4
0 −1 1 0 6.54×1011

−1264.95 1 –
0 0 −2 138113.04 6.46×1098

−912.11 −1 ≥ 5
0 0 −1 4697.68 1.21×1043

−20742.18 1 ≥ 4
0 0 0 8.61 57482738.0 −4.72×109 1 ≥ 4
0 1 −2 608830.99 3.64×10145

−4.45×1019 1 ≥ 4
0 1 −1 56796.71 1.80×1081

−3.75×1010
−1 ≥ 5

0 1 0 1301.45 8.98×1031
−200862.89 −1 ≥ 5

0 1 1 0 6.54×1011
−1264.95 1 –

Table 2. Curves of rank 4 and 5. See previous page for the mean-
ing of the columns.
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four linearly independent points for infinitely many rational parameters u ∈Q:

(0, 1), (1, 1), (u, u+1),
(
−

14
25 ,

1
125(−105−35u+35u2

+v)
)
,

where
v2
= 17956+2450u−1225u2

−2450u3
+1225u4.
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