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Chaos theory examines the iterates of continuous functions to draw conclusions
about long-term behavior. As this relatively new theory has evolved, one dif-
ficulty still present is the absence of universally agreed upon definitions. On
the other hand, function spaces and equicontinuity are well established concepts
with mathematical definitions that are universally accepted. We will present
some theorems that display the natural connections between chaos and equi-
continuity.

1. Introduction

Modern dynamical systems theory began in 1890, when Henri Poincaré was study-
ing the three-body problem. He discovered the existence of aperiodic points that
approach neither infinity nor a fixed point. Although this chaotic behavior was ob-
served in 1890, it was not until around 1960 that chaos was formally studied. The
invention of the electronic computer made studying chaos possible, by allowing
one to iterate a simple function many times.

It can be said that chaos occurs when a deterministic system appears to be ran-
dom. Edward Lorenz observed this phenomenon in 1961, when small round off
errors led to unexpected results. The sensitive dependence on initial conditions
caused his deterministic system to appear random. This can be examined using
chaos theory.

There is no universal agreement on what the precise definition of a chaotic sys-
tem should be. Many authors use different definitions to describe similar concepts
[Devaney 1986; Li and Yorke 1975; Martelli 1999; Robinson 1999]. It is easy to
see how this could be a problem and it would be useful to unify the terminology.
A good starting point would be relating chaos to the classic idea of equicontinuity.

Well over one hundred years ago, equicontinuous families of functions were
introduced in [Arzelà 1895; Ascoli 1884]. Equicontinuity allowed Giulio Ascoli
and Cesare Arzelà to understand the behavior of families of continuous functions.
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Since chaos describes the behavior of a family of iterates of a continuous function,
it seems natural to examine chaotic systems in terms of equicontinuity.

2. Equicontinuity

Ascoli and Arzelá used equicontinuity to explain which families of continuous
functions will be “well behaved”. Their results now have many important applica-
tions throughout mathematics. We will first introduce their classic definition.

A function space is defined to be the set of functions from a space X into a space
Y , denoted by Y X . For our purposes we restrict our function space to the set of
continuous functions from X to Y , denoted by C(X, Y ).

Definition 2.1. Let (Y, d) be a metric space. Let F be a subset of the function
space C(X, Y ). If x0 ∈ X , the set F of functions is said to be equicontinuous at
x0 if given ε > 0, there is a neighborhood U of x0 such that for all x ∈ U and all
f ∈ F,

d ( f (x), f (x0)) < ε.

If the set F is equicontinuous at x0 for each x0 ∈ X , it is said simply to be equicon-
tinuous.

Many times in topology, it is important to know when a set will be compact.
Informally speaking, if a family of continuous functions is compact, then it will be
well behaved. More precisely, if a sequence from a compact family of continuous
functions converges in the supremum metric, then it must converge to a continuous
function. A subset of Rn is compact if and only if it is closed and bounded. As
Ascoli and Arzelá determined, equicontinuity is the additional property needed to
assure that a closed and bounded subset of a family of continuous functions will
be compact.

Theorem 2.2 (Arzelà–Ascoli theorem). Let X be a compact space, and consider
C(X,Rn) in the sup metric. A subset F of C(X,Rn) is compact if and only if it is
closed, bounded, and equicontinuous.

3. Chaos

Chaos theory describes behavior that is the diametric opposite of well behaved.
The first time the word chaos was used to describe this mathematical phenomenon
was in [Li and Yorke 1975], where the authors described when the iterates of a
continuous function on an interval of the real line exhibit chaotic behavior. The
definition of a chaotic function in that paper does not conveniently generalize, so
most subsequent authors have chosen to use a different definition of chaos.

One commonly cited definition of a chaotic function, given in Robert Devaney’s
book [1986], involves two important characteristics: topological transitivity and



CHAOS AND EQUICONTINUITY 365

sensitive dependence on initial conditions. But as for chaos itself, multiple defini-
tions exist for these two ideas (see [Devaney 1986; Martelli 1999; Robinson 1999;
2004]). We will adopt those used in [Robinson 2004].

Definition 3.1. f : X→ X is said to be topologically transitive if there exists x ∈ X
such that { f n(x) | n ∈ Z+} is dense in X .

Definition 3.2. Let f be a map on a metric space X . The map has sensitive de-
pendence on initial conditions at x0, provided that there exists ε > 0 such that, for
any δ > 0, there exists a y0 such that d(x0, y0) < δ and a n > 0 such that

d( f n(x0), f n(y0))≥ ε.

The map has sensitive dependence on initial conditions on a set A, provided that it
has sensitive dependence on initial conditions at every points x0 ∈ A.

These are the two characteristic properties of a chaotic function, according to
[Robinson 1999].

Definition 3.3. A subset S⊆ X is said to be invariant under f provided f (S)= S.

Definition 3.4. A map f on a metric space X is said to be chaotic on an invariant
set Y provided (i) f restricted to Y is topologically transitive and (ii) f restricted
to Y has sensitive dependence on initial conditions.

This idea of sensitive dependence on initial conditions appears to be related
to an equicontinuous family of functions. The following section will explore the
connections between chaos and equicontinuity.

4. Connections

If a family of iterates of a continuous function is equicontinuous at a point, then
all iterates of nearby points will remain close together. This idea appears contrary
to sensitive dependence on initial conditions, so the following theorem is natural.

Theorem 4.1 [Henry and Trapp 1998]. Let X be a metric space, f : X → X be a
continuous function, x ∈ X , and F={ f n

|n∈N}. Then f has sensitive dependence
on initial conditions at x , if and only if F is not equicontinuous at x.

Proof. Suppose that F is not equicontinuous at x ∈ X . Then there exists an ε > 0
such that, for any δ > 0, there exists a y such that d(x, y) < δ and an n > 0 such
that d( f n(x), f n(y))≥ ε. Therefore, F being equicontinuous at x is the negation
of f having sensitive dependence on initial conditions at x . �

It becomes clear that equicontinuity is closely related to chaos. There are ad-
ditional natural connections, so we continue to show the various forms in which
equicontinuity appears. One definition that appears throughout texts on chaos is
stability.
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Definition 4.2. A point p is Lyapunov stable provided given any ε > 0 there is a
δ > 0 such that if |x − p|< δ then

∣∣ f j (x)− f j (p)
∣∣< ε, for all j ≥ 0.

Theorem 4.3. Let X be a metric space, f : X→ X be a continuous function, and
F= { f n

| n ∈ N}. Then F is equicontinuous at x ∈ X if and only if x is Lyapunov
stable.

Proof. First suppose that F is equicontinuous at x ∈ X . Then for all ε > 0 there
exists δ > 0 such that d(x, y) < δ implies that

d( f n(x), f n(y)) < ε for all n ∈ N.

Without loss of generality, we may assume δ ≤ ε. Thus, d(x, y) < ε. Therefore,

d( f n(x), f n(y)) < ε for all n ≥ 0.

So f is Lyapunov stable at x . Now if f is Lyapunov stable at x , then F is clearly
equicontinuous at x . �

Definition 4.4 (Stable fixed point [Henry and Trapp 1998]). Let p be a fixed point
of f . We call p a stable fixed point provided there is a neighborhood U of p such
that

lim
n→∞

diam( f n(U ))= 0.

Definition 4.5. A point p is called periodic if f n(p) = p for some n ∈ N. The
smallest such n is the period of p.

Two theorems relating this definition to equicontinuity are proved in [Henry and
Trapp 1998]. We say that p is a stable periodic point if and only if p is a stable
fixed point of f n for some n ∈ N.

Theorem 4.6 [Henry and Trapp 1998]. Let p be a fixed point of f . If p is stable
then the iterates of f are equicontinuous at p.

Theorem 4.7 [Henry and Trapp 1998]. If p is a stable periodic point, then f has
equicontinuous iterates at p.

Another definition that appears extensively in chaos theory is that of an ω-limit
set.

Definition 4.8. A point y is an ω-limit point of x for f provided there exists a
sequence of nk going to infinity as k goes to infinity such that

lim
k→∞

d( f nk (x), y)= 0.

The set of all ω-limit points of x for f is called the ω-limit set of x and is denoted
by ω(x) or ω(x, f ).

A useful characterization of an ω-limit set is given by the following theorem.
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Theorem 4.9 [Robinson 1999]. Let f : X → X be a continuous function on a
metric space X. Then for any x ∈ X , ω(x)=

⋂
N≥0 cl(

⋃
n≥N { f n(x)}).

Notice that if ω(x) = X , then { f n(x) | n ∈ Z+} is dense in X . This is useful
for showing a system is topologically transitive. We will now prove a theorem that
allows us to connect ω-limit sets to equicontinuity.

Theorem 4.10. Let X be a metric space, f : X→ X be a continuous function, and
F= { f n

| n ∈N}. Now suppose that x ∈ X is a point at which F is equicontinuous.
If y ∈ X and x ∈ cl(

⋃
n≥0{ f n(y)}), then F is equicontinuous at y.

Proof. Suppose x ∈ X is a point at which F is equicontinuous and

x ∈ cl
(⋃

n≥0{ f n(y)}
)
.

Let ε > 0 be given. By equicontinuity of F, there exists a δ1 > 0 such that
d(x, α) < δ1 implies that d( f n(x), f n(α)) < ε/2, for all n ∈ N. Without loss
of generality, we may take δ1 < ε. Now let x ∈ cl(

⋃
n≥0{ f n(y)}). So there ex-

ists an m ∈ N such that d(x, f m(y)) < δ1/2. Since any finite set of continuous
functions is equicontinuous, there exists δ2 > 0 such that d(y, β) < δ2 implies that
d( f i (y), f i (β)) < δ1/2 for 1≤ i ≤ m. Thus

d(x, f m(β))≤ d(x, f m(y))+ d( f m(y), f m(β)) < δ1/2+ δ1/2= δ1.

Hence for j > m,

d( f j (y), f j (β))≤ d( f j (y), f j−m(x))+ d( f j−m(x), f j (β)) < ε/2+ ε/2= ε.

So d(y, β) < δ2 implies that for all n ∈ N,

d( f n(y), f n(β))

≤max{d( f i (y), f i (β)), d( f j (y), f j (β)) | 1≤ i ≤ m, j > m}< ε. �

Corollary 4.11. Let X be a metric space, f : X→ X be a continuous function, and
F= { f n

| n ∈N}. Now suppose that x ∈ X is a point at which F is equicontinuous.
If x ∈ ω(y) then F is equicontinuous at y ∈ X.

Proof. Let F be equicontinuous at x ∈ X and suppose x ∈ ω(y). But

x ∈ ω(y)⊆ cl
( ⋃

n≥0
{ f n(y)}

)
,

so F is equicontinuous at x . �

The previous theorems have shown how chaos can be recast in terms of equicon-
tinuity. This is possible because of the intimate connection between chaos and
equicontinuity as the following theorem and its corollaries show.
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Theorem 4.12. Let X be a metric space, f : X→ X be a continuous function, and
F= { f n

| n ∈N}. Suppose there exists a point x ∈ X such that F is equicontinuous
at x. If ω(y)= X , then F is equicontinuous on { f n(y) | n ∈ Z+}.

Proof. If ω(y)= X , then x ∈ω(y). Since x is a point at which F is equicontinuous,
y must also be a point at which F is equicontinuous. But notice that for any n ∈N,
ω( f n(y)) = ω(y) = X . So for all n ∈ N, f n(y) is also a point at which F is
equicontinuous. Therefore, F is equicontinuous on { f n(y) | n ∈ Z+}. �

Corollary 4.13 [Kolyada 2004]. Let X be a metric space, f : X→ X be a contin-
uous onto function, and F= { f n

| n ∈ Z+}. Suppose that there exists a point x ∈ X
such that ω(x)= X. Then F is equicontinuous on a dense subset of X , if and only
if f is not chaotic on X.

Proof. First suppose that f is not chaotic on X . Since ω(x)= X , f is topologically
transitive on X . Thus f must not have sensitive dependence on initial conditions
on X . Hence there exists a point at which F is equicontinuous. Since ω(x) = X ,
F is equicontinuous on { f n(x) | n ∈ Z+}. But { f n(x) | n ∈ Z+} is dense in X .

Now suppose that F is not equicontinuous on a dense subset of X . Since ω(x)=
X , there are no points in X at which F is equicontinuous. Thus f has sensitive
dependence on initial conditions on X . Therefore f is chaotic on X . �

Definition 4.14 (Minimal Set [Robinson 1999]). A set S is a minimal set for f pro-
vided (i) S is a closed, nonempty, invariant set and (ii) if B is a closed, nonempty,
invariant subset of S, then B = S.

Lemma 4.15 [Robinson 1999]. Let X be a metric space, f : X→ X a continuous
map, and S ⊆ X a nonempty compact subset. Then, S is a minimal set if and only
if ω(x)= S for all x ∈ S.

Corollary 4.16 [Kolyada 2004]. Let X be a metric space, f : X→ X be a continu-
ous function, S be a nonempty compact minimal subset of X , and F={ f n

| n ∈N}.
Then either f is chaotic on S or F is equicontinuous on S.

Proof. First suppose that there is a point x ∈ S such that F is equicontinuous at x .
Then since S is minimal, x ∈ ω(y) for all y ∈ S. Thus F is equicontinuous on S.
But if there are no points in S at which F is equicontinuous, then f is chaotic
on S. �

5. Conclusion

Many definitions have been used to describe when a continuous function will be
chaotic. Since we are relating chaos to equicontinuity, we propose to define chaos
in terms of a family of continuous functions. Abstracting the connections from the
previous section, we offer the following definition of a chaotic family of continuous
functions.
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Definition 5.1. Let (Y, d) be a metric space. Let F be a subset of the function
space C(X, Y ). Then F is chaotic if there exists x ∈ X such that { f (x) | f ∈F} is
dense in Y and F is not equicontinuous at x .

Now suppose that we let X be a metric space, f : X → X be a continuous
function, and F = { f n

| n ∈ N}. Then the definition of f being chaotic with our
first definition of chaos is equivalent to F being chaotic with this definition.

It is our belief that chaos terminology should be unified. We have displayed the
intrinsic relations of the classical concept of equicontinuity and the modern idea
of chaos, hoping to help unify the definitions within chaos theory.

Acknowledgments

I thank my mentor, Dr. Don Reynolds, for his guidance, wisdom, and support. I
also thank the Office of Research and Sponsored Programs from the University of
Wisconsin – Eau Claire for providing financial support.

References

[Arzelà 1895] C. Arzelà, “Sulle funzioni di linee”, Mem. Accad. Sci. Bologna (5) 5 (1895), 225–244.
JFM 26.0454.01

[Ascoli 1884] G. Ascoli, “Le curve limite di una varietà data di curve”, Atti R. Accad. Lincei Cl.
Mem. Sci. Fis. Mat. Nat. 3 (1884), 521–586. JFM 16.0342.02

[Devaney 1986] R. L. Devaney, An introduction to chaotic dynamical systems, Benjamin/Cummings,
Menlo Park, CA, 1986. MR 87e:58142 Zbl 0632.58005

[Henry and Trapp 1998] M. Henry and G. Trapp, “Equicontinuity: from stable points to chaotic
functions”, pp. 471–475 in Proc. IASTED Conference on Modelling and Simulation (Pittsburgh,
PA), edited by M. H. Hamza, IASTED/ACTA Press, Anaheim, CA, 1998.

[Kolyada 2004] S. F. Kolyada, “Li–Yorke sensitivity and other concepts of chaos”, Ukrain. Math. J.
56:8 (2004), 1242–1257. MR 2005k:37028 Zbl 1075.37500

[Li and Yorke 1975] T. Y. Li and J. A. Yorke, “Period three implies chaos”, Amer. Math. Monthly
82:10 (1975), 985–992. MR 52 #5898 Zbl 0351.92021

[Martelli 1999] M. Martelli, Introduction to discrete dynamical systems and chaos, Interscience
Series in Discrete Mathematics and Optimization, Wiley, New York, 1999. MR 2001k:37002
Zbl 1127.37300

[Robinson 1999] C. Robinson, Dynamical systems: Stability, symbolic dynamics, and chaos, 2nd
ed., Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1999. MR 2001k:37003
Zbl 0914.58021

[Robinson 2004] R. C. Robinson, An introduction to dynamical systems: continuous and discrete,
Prentice-Hall, Upper Saddle River, NJ, 2004. MR 2005k:37001 Zbl 1073.37001

Received: 2009-12-07 Accepted: 2010-11-12

larsonj@uwec.edu Department of Mathematics, 508 Hibbard Humanities Hall,
University of Wisconsin, Eau Claire, WI 54702-4004,
United States

mathematical sciences publishers msp

http://msp.org/idx/jfm/26.0454.01
http://msp.org/idx/jfm/16.0342.02
http://msp.org/idx/mr/87e:58142
http://msp.org/idx/zbl/0632.58005
http://dx.doi.org/10.1007/s11253-005-0055-4
http://msp.org/idx/mr/2005k:37028
http://msp.org/idx/zbl/1075.37500
http://dx.doi.org/10.2307/2318254
http://msp.org/idx/mr/52:5898
http://msp.org/idx/zbl/0351.92021
http://msp.org/idx/mr/2001k:37002
http://msp.org/idx/zbl/1127.37300
http://msp.org/idx/mr/2001k:37003
http://msp.org/idx/zbl/0914.58021
http://msp.org/idx/mr/2005k:37001
http://msp.org/idx/zbl/1073.37001
mailto:larsonj@uwec.edu
http://msp.org


involve
pjm.math.berkeley.edu/involve

EDITORS
MANAGING EDITOR

Kenneth S. Berenhaut, Wake Forest University, USA, berenhks@wfu.edu

BOARD OF EDITORS

John V. Baxley Wake Forest University, NC, USA
baxley@wfu.edu

Arthur T. Benjamin Harvey Mudd College, USA
benjamin@hmc.edu

Martin Bohner Missouri U of Science and Technology, USA
bohner@mst.edu

Nigel Boston University of Wisconsin, USA
boston@math.wisc.edu

Amarjit S. Budhiraja U of North Carolina, Chapel Hill, USA
budhiraj@email.unc.edu

Pietro Cerone Victoria University, Australia
pietro.cerone@vu.edu.au

Scott Chapman Sam Houston State University, USA
scott.chapman@shsu.edu

Jem N. Corcoran University of Colorado, USA
corcoran@colorado.edu

Michael Dorff Brigham Young University, USA
mdorff@math.byu.edu

Sever S. Dragomir Victoria University, Australia
sever@matilda.vu.edu.au

Behrouz Emamizadeh The Petroleum Institute, UAE
bemamizadeh@pi.ac.ae

Errin W. Fulp Wake Forest University, USA
fulp@wfu.edu

Andrew Granville Université Montréal, Canada
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