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We describe a numerical approach to the solution of two-delay Volterra integral
equations, and we carry out a nonlinear stability analysis on an interesting test
equation by means of a parallel investigation both on the continuous and the
discrete problem.

1. Introduction

Messina et al. [2008a] present a comparison between the analytical and the numer-
ical solution of the following Volterra integral equation (VIE) with two constant
delays:

y(t)=
∫ t−τ1

t−τ2

k(t − τ)g(y(τ ))dτ t ∈ [τ2, T ], (1)

with y(t)= ϕ(t), t ∈ [0, τ2], where ϕ(t) is a known function such that

ϕ(τ2)=

∫ τ2−τ1

0
k(τ2− τ)g(ϕ(τ ))dτ . (2)

The interest of (1) in the applications is mainly in the modeling of age-structured
population dynamics, as described in [Messina et al. 2008a] and the references
therein. Here, we continue those investigations with the aim of providing a more
complete analysis of the dynamics of the solutions. In particular, we add some new
results on the global asymptotic behavior of solutions and simplify some already
known proofs. In Section 2, the properties of the continuous solution are summa-
rized and a new result on global asymptotic stability of the nontrivial equilibrium
is proved. In Section 3, we consider a numerical method of direct quadrature type
and look for conditions on the step size h of a direct quadrature method that lead
to a numerical solution which mimics the behavior of the continuous one. The
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main novelty of this paper with respect to [Messina et al. 2008a] is the compact
form that we use to represent the method: this new form allows us to obtain some
new results in the discrete case equivalent to those valid for the continuous case,
and so to complete the parallelism between the behaviors of the analytical and the
numerical solution. Finally, in Section 4 we report some numerical examples that
show the nature of these behaviors.

2. The continuous equation

In this section we provide a summary of the theory related to the stability of equi-
libria of (1) already developed in [Messina et al. 2008a] and we prove a new result
on the global asymptotic stability of the nontrivial equilibrium (Theorem 2.6).

As in that paper, we make certain assumptions on the functions ϕ, g and k of
problem (1):

(a) ϕ(t)≥ 0, for all t ∈ [0, τ2];

(b) k(t) not identically zero and k(t)≥ 0, for all t ∈ [τ1, τ2];

(c) g ∈ C1([0,+∞)), g(x)≥ 0, for all x ≥ 0 and g(0)= 0, g′(0) > 0;

(d) g(x)− xg′(x)≥ 0, for all x ≥ 0;

(e) 1/g′(0)≤ x/g(x), for all x > 0.

These assumptions include some that are significant from a biological point of
view (see [Messina et al. 2008a] and the bibliography therein) and guarantee that
the solution y(t) is nonnegative for all t ≥ τ2. Define the positive function

a(x)=
{

x/g(x) if x > 0,
1/g′(0) if x = 0.

By hypotheses (d) and (e), a(x) is an increasing function for all x ≥0. In particular,
it is strictly increasing for all x ≥ 0, if g(x) is a nonlinear function, while it is
constant otherwise. From now on, we assume that g(x) is nonlinear, hence (d) and
(e) are meant as strict inequalities and, in analogy with [Messina et al. 2008a], we
consider the following alternative formulation of (1):

y(t)= ρg(y(t − ξ(t))), ξ(t) ∈ [τ1, τ2], (3)

where

ρ =

∫ τ2

τ1

k(x) dx, (4)

which is more appropriate for our analysis. Obviously, (1) has at least the trivial
solution y∗ = 0. The following theorem shows that this equilibrium is unique
for ρ0 < 1/g′(0), then the value ρ0 = 1/g′(0) represents a bifurcation point for the
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variable ρ; as a matter of fact, when ρ >ρ0, the trivial solution is no longer unique,
and another nontrivial equilibrium y∗ = a−1(ρ) appears. Let a∗ = limx→+∞ a(x).

Theorem 2.1 [Iannelli 1994; Messina et al. 2008a]. Let ρ be defined as in (4).

(i) Equation (1) has one and only one nontrivial equilibrium y∗ = a−1(ρ) if and
only if 1/g′(0) < ρ < a∗.

(ii) Equation (1) has only the trivial equilibrium if ρ ≤ 1/g′(0).

To analyze the nature of these equilibria we recall the following definitions.

Definition 2.1. Let y∗ be an equilibrium point for (1). Then y∗ is said to be:

• stable if, for all ε > 0, there exists δ > 0 such that

|ϕ(t)− y∗|< δ, ∀t ≥ τ2 H⇒ |y(t)− y∗|< ε, ∀t ∈ [τ2, T ];

• locally attractive if there exists δ > 0 such that

|ϕ(t)− y∗|< δ, ∀t ∈ [0, τ2] H⇒ lim
t→+∞

|y(t)− y∗| = 0;

• globally attractive if, for all ϕ(t) > 0,

lim
t→+∞

|y(t)− y∗| = 0;

• locally asymptotically stable if it is stable and locally attractive;

• globally asymptotically stable if it is stable and globally attractive.

We now quote some propositions proved in earlier papers, and we prove Theo-
rem 2.6, which assures the global asymptotic stability of the solution y(t) of (1).

Theorem 2.2 [Iannelli 1994; Messina et al. 2010]. Let y∗ be an equilibrium point
for (1).

(i) If ρ|g′(y∗)|< 1, then y∗ is locally asymptotically stable;

(ii) If ρ|g′(y∗)|> 1, then y∗ is unstable.

Theorem 2.3 [Messina et al. 2008a]. If g(x) is nondecreasing, then the nontrivial
equilibrium y∗ is locally asymptotically stable.

Theorem 2.4 [Iannelli 1994]. If ρg′(0)< 1, then the trivial equilibrium is globally
asymptotically stable.

We recall that, from the biological point of view, the threshold value ρg′(0)
plays the role of the basic reproduction number.1 Furthermore, while it is known

1In population dynamics, the basic reproduction number represents the average number of off-
spring produced over the lifetime of an individual under ideal conditions. In epidemiological models,
it represents the mean number of secondary cases that a single infected case causes in a population
with no immunity.
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in [Messina et al. 2008a] that the global attractivity of y∗ = 0 implies ρ ≤ 1/g′(0),
a result on the behavior of y∗ = 0, when ρ = 1/g′(0) is still missing.

Since in many examples of applications the form of the nonlinearity in (1) is of
unimodal type (e.g., g(x) = xe−x ; see for instance [Breda et al. 2007, Section 6;
Iannelli 1994, page 81 (5.19)], where, as we explain in the introduction of [Messina
et al. 2008a],8(x)= (g(x))/x), we assume, from now on, that g(x) is an unimodal
function with mode y.

Theorem 2.5 [Messina et al. 2008a]. Let g(x) in (1) be unimodal and let

1
g′(0)

≤ ρ ≤
y

g(y)
.

Then
lim

t→+∞
y(t)= a−1(ρ), for all ϕ(t)≥ 0.

Thanks to these results we can prove the following theorem on the global as-
ymptotic stability of the nontrivial equilibrium.

Theorem 2.6. Let g(x) in (1) be an unimodal function with mode y. If

1
g′(0)

≤ ρ ≤
y

g(y)
,

then y∗ is globally asymptotically stable.

Proof. If y(t) is a solution of (1), then

y(t)= ρg(y(t − ξ(t)))≤ ρg(y)≤ y.

This means that each y(t) which is a solution of (1) falls in the interval [0, y]
where g(y) is increasing; in particular g′(y∗) > 0. Since also ρ is positive, then
ρ|g′(y∗)| = ρg′(y∗). What is more, thanks to hypothesis (d), g(y∗)− y∗g′(y∗) > 0
and thus ρg′(y∗)< 1 (this last inequality holds since ρ= y∗/g(y∗)). Hence, we are
in the hypotheses of Theorem 2.2 and so y∗ is locally asymptotically stable. Since
g(x) is an unimodal function, we are in the hypotheses of Theorem 2.5. Hence,
y∗ = a−1(ρ) is a globally attractive equilibrium. �

The hypothesis ρ ≤ (y)/g(y) plays a crucial role in the proof because it implies
that each y(t) which is a solution of (1) falls in the interval where g(x) in increas-
ing. As a consequence, the previous results on unimodal functions can be extended
to increasing functions g(x). In particular, the following theorem holds.

Theorem 2.7. Let g(x) in (1) be an increasing function. If ρ ≥ 1/g′(0), then y∗ is
globally asymptotically stable.

Theorem 2.8 [Messina et al. 2008a]. Let g(x) in (1) be unimodal with mode y.
Assume ρ > y/g(y) and let k ′(x) be constant in sign for all x ∈ [τ1, τ2]. Then the
nonequilibrium solutions of (1) cannot be definitively monotone.
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3. The discrete equation

Let a partition of the interval [0, T ] be given by

5N = {tn : 0= t0 < t1 < · · ·< tN = T },

where tn+1− tn = h, n = 0, . . . , N , for some fixed h, called the step size. Assume

h =
τ1

r1
=
τ2

r2
, (5)

with r1, r2 positive integers. In [Messina et al. 2009] the following direct quadra-
ture method [Brunner and van der Houwen 1986; Linz 1985], adapted to the form
of (1), is proposed:

yn = h
r2∑

j=r1

w j k( jh)g(yn− j ), n > r2, (6)

where yn ' y(tn) and yl = ϕ(lh), l = 0, 1, . . . , r2, for ϕ(t) is a known function
satisfying condition (2). In [Messina et al. 2008a; 2008b; 2009] some conditions on
the step size h were derived for which the numerical solution mimics the behavior
of the continuous one. Now, with the help of a new reformulation of (6) we are
able to complete such analysis by deriving the discrete version of Theorems 2.2 and
2.3 (Theorems 3.3 and 3.4 respectively) and a new result on the global asymptotic
stability of the nontrivial equilibrium (Theorem 3.8).

In order to write (6) as the discrete analogous of (3), we will make use of the
discrete mean value theorem that we report and prove here for the sake of com-
pleteness.

Theorem 3.1. Assume f ∈C([a, b]), with −∞< a < b<∞ and let x1, . . . , xn ∈

[a, b]. If α1, . . . , αn are n real numbers, all of the same sign, there exists ξ ∈ (a, b)
such that

n∑
i=1

αi f (xi )= f (ξ)
n∑

i=1

αi .

Proof. Let m = minx∈[a,b] f (x) and M = maxx∈[a,b] f (x) and assume α j ≥ 0, for
all j = 1, . . . , n. Then,

m
n∑

j=1

α j ≤

n∑
j=1

α j f (x j )≤ M
n∑

j=1

α j

and hence,

m ≤

∑n
j=1 α j f (x j )∑n

j=1 α j
≤ M.
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Since f (x) takes on all values between m and M (intermediate value theorem),
there exists a point ξ ∈ (a, b) such that

f (ξ) =

∑n
j=1 α j f (x j )∑n

j=1 α j
. �

Now, define the quantity

ρh = h
r2∑

j=r1

w j k( jh). (7)

Observe that k( jh)w j is constant in sign for all j = r1, . . . , r2. By Theorem 3.1,
then, there exists ξn ∈

[
minn−r2≤ j≤n−r1 y j ,maxn−r2≤ j≤n−r1 y j

]
such that

yn = hg(ξn)

r2∑
j=r1

w j k( jh).

Thus, (6) can be formulated, in analogy with the continuous case, in the form

yn = ρhg(ξn), with ξn ∈
[

min
n−r2≤ j≤n−r1

y j , max
n−r2≤ j≤n−r1

y j
]
. (8)

As for the continuous case, hypotheses (a), (b) and (c) and the positiveness of
weights w j guarantee that the discrete solution yn is nonnegative for all n ≥ 0.
With regard to the existence of equilibrium solutions, we have:

Theorem 3.2 [Messina et al. 2008a]. Let ρh be defined by (7).

(i) Equation (6) has one and only one nontrivial equilibrium y∗(h) = a−1(ρh) if
and only if 1/g′(0) < ρh < a∗.

(ii) Equation (6) has only the trivial equilibrium if ρh ≤ 1/g′(0).

Now we can prove the following results.

Theorem 3.3. Let y∗(h) be an equilibrium point for (6).

(i) If ρh|g′(y∗(h))|< 1, then y∗(h) is locally asymptotically stable.

(ii) If ρh|g′(y∗(h))|> 1, then y∗(h) is unstable.

Proof. (1) Suppose ρh|g′(y∗(h))| < 1. To show that y∗(h) is stable, we fix ε > 0
and consider ϕ such that |ϕ j − y∗(h)|< δε , j = 0, . . . , r2, for some δε > 0. Let n
take values in {r2, . . . , r2+ r1}. From (8) we have yn = ρhg(ξn), with

ξn ∈
[

min
j=0...,r1

ϕ j , max
j=0...,r1

ϕ j
]
;

hence, |ξn − y∗(h)|< δε . For the difference yn − y∗(h), we have

yn − y∗(h)= ρh(g(ξn)− g(y∗))= ρhg′(θ)(ξn − y∗(h)),
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where θ ∈ [min {ξn, y∗(h)},max {ξn, y∗(h)}]; for this reason, |θ − y∗(h)| < δε .
Moreover, since g′(x) is a continuous function such that |ρhg′(y∗(h))| < 1, there
exists ỹ such that

|ρhg′(y)|< 1 for y ∈ [y∗(h)− ỹ, y∗(h)+ ỹ].

Thus, if we choose δε = min{ε, ỹ}, then |yn − y∗(h)| < ε, n = r2, . . . , r2 + r1.
Using this, we easily prove that |yn− y∗(h)|< ε also for n= r2+r1, . . . , r2+2r1,
and, in general for all n ≥ r2. Thus, stability is proved.

Local attractivity follows straightforwardly, by observing that there exists δ > 0
such that ρh|g′(y)| ≤ p < 1, for all y ∈ [y∗(h)− δ, y∗(h)+ δ]. Thus, by choosing

ϕ1, . . . , ϕr2 ∈ [y
∗(h)− δ, y∗(h)+ δ],

and proceeding step by step as n grows, we see that in the k-th interval

|yn − y∗(h)| ≤ pkδ, (9)

where k→+∞ for n→+∞. Therefore, limn→+∞ yn = y∗h .

(2) Consider ρh|g′(y∗(h))| > 1. To prove the instability of y∗(h) we must find ε0

such that
∀δ > 0, ∃n ∈ {0, . . . , r2} : |yn − y∗|< δ,

and
∃n > r2 : |yn − y∗(h)|> ε0.

By the continuity of the function g′, there exists d > 0 such that

|g′(y)| ≥ r > 1, ∀y ∈ [y∗(h)− d, y∗(h)+ d].

Take n ∈ {r2, . . . , r2+ r1}. In view of (8) there results

|yn − y∗(h)| = ρh|g(ξn)− g(y∗(h))| = ρh|g′(z)||ξn − y∗(h)|, (10)

with |z − y∗(h)| ≤ |ξn − y∗(h)|. Then, for all δ > 0, it is possible to choose
the starting values ϕl different from y∗(h), for all l = 0, . . . , r2 and such that
|ϕl − y∗(h)|<min {d, δ}, for all n = 0, . . . , r2. Thus,

|ξn − y∗(h)|< d, n = r2, . . . , r2+ r1

and, form (10), |y− y∗(h)|< d . This implies that ρh|g′(z)|> 1. Hence, choosing
ε0 =minn∈[0,r2] |yn − y∗(h)|, we have

|yn − y∗(h)|> |ξn − y∗(h)|, ∀n ∈ {r2, . . . , r2+ r1}. �

Now we prove the discrete counterpart of Theorem 2.3.

Theorem 3.4. If g(x) is a nondecreasing function, then the nontrivial equilibrium
y∗(h) is locally asymptotically stable.
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Proof. Let y∗(h) 6= 0, for hypothesis (d), g(x)− xg′(x) > 0, for all x > 0, then
g(y∗(h))− y∗(h)g′(y∗(h)) > 0; since y∗(h)= ρhg(y∗(h)), we have

ρhg′(y∗(h)) < 1,

that is, ρh|g′(y∗(h))|<1, since g′(x)≥0. The result follows from Theorem 3.3. �

The following theorem was proved in [Messina et al. 2008a], but here the proof
has been simplified by the new formulation (8) of (6).

Theorem 3.5. If ρhg′(0)<1, then the trivial equilibrium is globally asymptotically
stable.

Proof. We already know from Theorem 3.3 that y∗(h)= 0 is locally asymptotically
stable. Now we prove the global attractivity. Let r2 ≤ n ≤ r2+ r1 then, from (8),

yn = ρh[g(ξn)− g(0)] = ρhg′(ξn0)ξn, (11)

with 0≤ ξn0 ≤ ξn and ξn ∈ [0,max0≤ j≤r2 ϕ j ]. Thanks to hypotheses (d) and (e),

g′(ξn0) <
g(ξn0)

ξn0

< g′(0). (12)

From (11) and (12) we obtain yn<ρhg′(0)ξn≤ρhg′(0)φ, where φ=max0≤ j≤r2 ϕ j .
Let α = ρhg′(0). Then yn ≤ αφ, with α < 1.

By similar arguments, for n = r2+r1 . . . r2+2r1, we get yn <α
2φ, with α < 1.

The conclusion follows by iterating the same procedure in all the next intervals. �

In analogy with the continuous case we report the following result:

Theorem 3.6 [Messina et al. 2008a]. If y∗(h)= 0 is globally attractive, then

ρh ≤
1

g′(0)
.

Next we consider the special case where the function g(x) is unimodal.

Theorem 3.7 [Messina et al. 2008a]. Assume that g(x) in (1) is unimodal with
mode y. It 1/g′(0)≤ ρh ≤ y/g(y), then

lim
n→+∞

yn = a−1(ρh).

Now, we can prove the discrete version of Theorem 2.6.

Theorem 3.8. Assume that g(x) in (1) is an unimodal function with mode y. If
1/g′(0)≤ ρh ≤ y/g(y), then y∗(h) is globally asymptotically stable.
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Proof. If yn is a solution of (6), then

yn = ρhg(ξn)≤ ρhg(y)≤ y.

This means that each yn which is a solution of (6) falls in the interval [0, y],
where g(y) is increasing; in particular g′(y∗(h)) > 0. Since ρh is positive as
well, we have ρh|g′(y∗(h))| = ρhg′(y∗(h)). What is more, thanks to hypothesis
(d), g(y∗(h))− y∗(h)g′(y∗(h)) > 0 and thus ρhg′(y∗(h)) < 1 (this last inequality
holds since ρh = (y∗(h))/(g(y∗(h)))). Hence, for Theorem 3.3, y∗(h) is locally
asymptotically stable. Furthermore, y∗ = a−1(ρ) is globally attractive, because,
since g(x) is unimodal, we can apply the result in Theorem 3.7. So it is a globally
asymptotically stable equilibrium. �

In analogy with the continuous case the following result holds.

Theorem 3.9. Assume that g(x) is an increasing function. If

ρh ≥
1

g′(0)
,

then y∗(h) is globally asymptotically stable.

Now, we report a known result that characterize the behavior of the solutions of
(6) when the parameter ρh is greater than the threshold value y/g(y).

Theorem 3.10 [Messina et al. 2008a]. Assume g(x) in (6) is unimodal with mode
y and let ρh > y/g(y). Then the nonequilibrium solutions of (6) cannot be defini-
tively monotone.

4. A case study

All the previous analysis is well illustrated by means of the following problem of
the type (1):

y(t)= 8R0

∫ t−τ1

t−τ2

(
1−

1
τ2
(t − τ)

)
e−y(τ )y(τ ) dτ , t ∈ [τ2, T ]. (13)

This equation was considered in [Messina et al. 2008a], where the analytical prop-
erties of the solutions were listed and some plots of the numerical solution with
respect to time were reported. Here, we summarize the results in that paper and
show new ones using a different approach — namely, a comparison between the
bifurcation diagrams of the continuous and numerical solutions and plots of the
orbits of the numerical solution. Experiments of this kind are quite common for
describing the dynamics of population problems.

In (13), y(t) represents the number of adults in the population at time t , while τ1

is the maturation age, τ2 the maximum age, and R0 the basic reproduction number.
This equation represents an interesting case study because it includes the major
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Figure 1. Bifurcation diagram for the parameter R0 of (13).

features of more complicated models. In particular, k(t−s) is positive and g(x)=
xe−x is unimodal with mode y = 1. If we choose τ1 = 1/2 and τ2 = 1, then the
parameter ρ = R0 and the nontrivial equilibrium is y∗ = ln R0.

We underline that (13) corresponds to the partial derivative equation described
in [Breda et al. 2007, Section 6], modeling a juveniles-adult dynamic.

What makes this equation simple with respect to other problems is that the two
classes in which the population is divided (adult y(t) and juveniles x(t)) are de-
scribed by uncoupled equations. More precisely, the number of juveniles x(t) is
described by the following integral

x(t)= 8R0

∫ t

t−τ1

(
1−

1
τ2
(t − τ)

)
e−y(τ )y(τ ) dτ , t ∈ [τ2, T ]. (14)

Hence, the complete problem is represented by Equations (13)+(14), where y(t)
depends only on itself and x(t) is a function of y(t).

From the diagram in Figure 1, it is clear that, if R0 < 1 only the trivial equi-
librium exists and it is globally asymptotically stable, after this threshold value
it becomes unstable; as usual we don’t know what happens when R0 = 1. At
R0 = 1 the solution bifurcates giving rise to a new nontrivial equilibrium which is
globally asymptotically stable for all values of R0 ≤ e = y/g(y). When e < R0 ≤

e2
= 1/g′(ρ) the solution oscillates and then converges to y∗ = ln R0, while for

R0 > e2 the equilibrium becomes unstable.
In Figure 2 we report the bifurcation diagram related to the numerical solution

of the problem described in (13). From the figure it is clear that the dynamics of
the continuous and discrete solutions coincide. In particular, the threshold values
1, e, e2 are the same. What makes the difference is that the dynamic of y(t) is
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described by the parameter ρ given in (4) (that in our case corresponds to R0),
while the one of yn by the parameter ρh given in (7). However, since ρh→ ρ it is
always possible to find a sufficiently small step size h such that the two solutions
show the same asymptotic behavior.
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Figure 3. Orbits obtained by numerical computation of the solu-
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To complete our analysis of problem (13)+(14), we report, in Figure 3, some
numerical simulations that show the dynamics of the complete system (13)+(14)
for ρ > 1/g′(0) (that is, R0 > 1). In this case, there exists a unique nontrivial
equilibrium P∗ = (x∗, y∗)= (ln R0, 3 ln R0). In the first column of the figure, the
orbits of the numerical solution clearly show that, in accordance with our investi-
gations, for 1< R0 < e2 (R0 = 5 in the plot), P∗ is a stable equilibrium, while for
R0 > e2, P∗ becomes unstable. The two plots reported in the second column show
the corresponding time-dependent behaviors, where it is evident that the solution
tends to the equilibrium for R0 < e2 and presents nonstable oscillations after that.
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