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The Szegő kernel serves as one of the canonical functions associated to a region
in the complex plane, and from it one can compute the Riemann (or Ahlfors)
map, the essentially unique conformal transformation of the region to the unit
disc. We provide an elementary description of the method that Kerzman and
Stein used to compute the Szegő kernel, and subsequently, the Riemann and
Ahlfors maps. A description, too, is provided for a new tool that generates visual
representations of these functions and is included with the open-source computer
algebra system Sage.

1. Introduction

In his Ph.D. thesis in 1851, Bernhard Riemann stated a theorem that has come to
be regarded as one of the most important results in complex analysis. It says that
no matter how pathological the boundary of a simply connected (open) region, one
can map the region to the unit disc in such a way that angles are preserved.

Theorem 1 (Riemann mapping theorem). Let� be a (nonempty) simply connected
region in the complex plane that is not the entire plane. Then, for any z0 ∈�, there
exists a bianalytic map f from� to the unit disc such that f (z0)=0 and f ′(z0)>0.

To illustrate the result, Figure 1 shows a map for a triangular region, using
colors and contour lines to identify the corresponding points of the transformation.
(The colors are visible in the electronic version of this paper.) In this example the
orthocenter is mapped to the origin without rotation at this point. We generated
these images using a new tool, Riemann_Map(), that the third author developed
to accompany Sage, a freely available, open-source computer algebra system. The
tool is now included in the core Sage library, and using a web browser, one can
generate similar pictures on any computer that has an internet connection.
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Figure 1. Left: color plot and overlay for the Riemann map of a
triangular region. Right: the color scheme for the unit disc.

Although Riemann stated his result in 1851, the first rigorous proof came much
later and is due to Carathéodory in 1912. Other proofs have appeared since then,
but not all of them provide an easy way to compute the Riemann map. For a proof
that is related to the methods used in this paper, see [Garabedian 1991].

The purpose of this paper is threefold. First, we provide a simple description
of the method that Kerzman and Stein [1978] used to compute the Riemann map
which is based on the Szegő kernel. Next, we provide adaptations of the theory
in order to accommodate the case of a multiply connected region and to permit
more accurate calculations near the corners of a simply connected region whose
boundary is piecewise differentiable. Finally, we describe the numerical implemen-
tation of the method and the key features of the tool Riemann_Map(), including
an adaptation for generating images of the Ahlfors map for a general multiply
connected region.

Our implementation of the Nyström method for solving the Kerzman–Stein in-
tegral equation is like that used in [Kerzman and Trummer 1986]. Subsequently,
that method was modified in [Trummer 1986; O’Donnell and Rokhlin 1989; Murid
et al. 1998]. To visualize the Riemann map and Ahlfors map, we use a method
devised by Frank Farris [1998] that he calls domain coloring and which uses a
color’s brightness and hue to indicate the value of a complex function. We mention

Figure 2. The Ahlfors map for a 2-connected region without a
contour overlay. (Color scheme is the same as that of Figure 1.)
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that Riemann_Map() accepts as data the boundary of a region, given either as a
parametrized curve or as a set of boundary points to be interpolated. Using a
personal machine, the tool can generate accurate pictures in just seconds.

For ease of presentation, we limit the discussion to regions whose boundary
is infinitely differentiable. This means that the boundary curves have a curvature
function that is infinitely differentiable with respect to the arc length parameter. The
ideas are essentially the same for a twice differentiable region, and many of the
results apply even in a still more general context. In particular, Riemann_Map()
works for domains with piecewise smooth boundary. For a justification of this
point, see [Thomas 1996].

The reader who wishes to know more about complex variables than is presented
here is encouraged to refer to [Bell 1992; Boas 2010; D’Angelo 2010]. (Bell [1992]
offers a completely rigorous treatment of complex analysis in the manner of Kerz-
man and Stein.) The reader, though, who already has a good grasp of the subject
can skip to the last section for an abbreviated users manual for Riemann_Map().
We encourage other faculty and student researchers to consider disseminating their
work via a platform like Sage. Indeed, we found the review process to be a support-
ive one, and we were able to get started with relatively little experience working
with the programming language Python.

2. Analytic functions and the Cauchy integral formula

The Riemann map and Ahlfors map are examples of analytic functions. For a
region �⊂ C, there are three equivalent formulations for what this means.

The simplest formulation says that a function f : �→ C is analytic provided
that near any point z0 ∈�, it can be expressed as the sum of a power series

f (z)=
∞∑
j=0

a j (z− z0)
j .

In fact, when this is the case, the coefficients a j are the Taylor coefficients for f
and are related to the derivatives of f via a j = f ( j)(z0)/j ! . The second formulation
says that f is analytic provided its real and imaginary parts, u=Re f and v= Im f ,
satisfy the partial differential equations,

∂u
∂x
=
∂v

∂y
and

∂u
∂y
=−

∂v

∂x
,

which are known as the Cauchy–Riemann equations. This formulation permits an
easy demonstration that the real and imaginary parts of an analytic function are
harmonic, that is,

4u def
= uxx + u yy = 0 and 4v

def
= vxx + vyy = 0.
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The third formulation is familiar from calculus. In this case f is analytic if it is
everywhere differentiable, that is,

f ′(z0)
def
= lim

h→0

f (z0+ h)− f (z0)

h

exists at each z0 ∈�, where it is important to note that h is assumed complex. Of
course it is easy to see from this formulation that polynomials with variable z are
analytic—one proceeds in the same way as one would compute f ′ in calculus. We
leave for the reader the additional exercise that f (z) = |z|2 = zz is not analytic
according to this formulation.

Essential to the Kerzman and Stein method is the Cauchy integral formula, one
of the most basic results in complex analysis. It says that an analytic function can
be expressed as an average of its values along a bounding curve.

Theorem 2 (Cauchy integral formula). Let f be analytic in a simply connected
region � ⊂ C and let γ be a simple closed positively oriented curve in �. If z0 is
a point that lies interior to γ , then

f (z0)=
1

2π i

∫
w∈γ

f (w) dw
w− z0

.

We mention that the equivalence of the second and third formulations of analyt-
icity requires only a small amount of multivariable calculus. To see that a function
which is analytic by the first formulation is analytic by the third formulation, one
differentiates term-by-term using the standard results about power series. To see
that a function which is analytic by the second formulation is analytic by the first
formulation, one uses the Cauchy integral formula. The argument needed for this
will be apparent after reading the next section.

3. The Cauchy projector

The Kerzman and Stein method begins with the observation that for a general
function f defined on the boundary of a region, the Cauchy integral defines an
analytic function C f inside the region. In particular, if one defines

C f (z)=
1

2π i

∫
w∈∂�

f (w) dw
w− z

for z ∈�,

then C f is analytic inside �. To see this, one expands (w− z)−1 in a small disc
centered at any z0 ∈� using the geometric series,

1
w− z

=
1

w− z0

[
1+

z− z0

w− z0
+

( z− z0

w− z0

)2
+

(
z− z0

w− z0

)3

+ · · ·

]
.
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The coefficients of the power series for C f , centered at z0, are then obtained by
integration,

a j =
1

2π i

∫
w∈∂�

f (w) dw
(w− z0) j+1 .

For a function f that is integrable on ∂�, the series is sure to converge in any disc
small enough to fit inside�, i.e., small enough for the geometric series to converge
for every w ∈ ∂�.

It follows, too, from the Cauchy integral formula, that if f begins as the bound-
ary values of a function that is analytic inside �, then the Cauchy integral repro-
duces the values of that analytic function.

By finally calling on some approximation theory, we are then able to identify a
context in which the Cauchy integral behaves as a projection operator. The theory
shows that if f begins as an infinitely differentiable function on the boundary,
then the function C f , at first defined inside the region, extends continuously and
infinitely differentiably on the closure of the region. For the proof of this fact we
refer to the first chapter of [Bell 1992].

To help summarize our observations, let C∞(∂�) denote the space of func-
tions that are infinitely differentiable on the boundary and let A∞(∂�) denote the
subspace of functions that extend continuously and analytically inside the region.
These are vector spaces over C and A∞(∂�) is a subspace of C∞(∂�). We have
then established that the Cauchy integral maps C∞(∂�) to A∞(∂�), and it acts
identically on A∞(∂�). Although one might argue that there is an abuse of nota-
tion, we will write C : C∞(∂�)→ A∞(∂�) for this projection operator.

To illustrate the construction, we give a direct calculation for the unit disc. We
begin with a general function f , defined on the unit circle, that can be expressed
as a Fourier series

f (ei t)=
∞∑

j=−∞
a j ei j t

=
∑
j≥0

a j ei j t
+
∑
j<0

a j ei j t .

Using the boundary parametrization, w(t)= ei t for 0≤ t < 2π , and expressing in
polar form, z= reis for 0≤ r < 1 and 0≤ s < 2π , we evaluate the Cauchy integral
by expanding the kernel in a geometric series,

C f (reis)=
1

2π i

∫ 2π

0

f (ei t) iei t dt
ei t − reis =

1
2π

∫ 2π

0

∞∑
k=0

r keik(s−t)
∞∑

j=−∞
a j ei j t dt

=
∑
j≥0

a j r j ei js .

(The last step uses the fact that
∫ 2π

0 eint dt = 2π if n = 0; the integral is zero
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otherwise.) We conclude that C f (z)=
∑
j≥0

a j z j . Then letting r ↑ 1 gives

C f (ei t)=
∑
j≥0

a j ei j t .

For reference, we mention that the situation should be reminiscent of linear al-
gebra, where projection operators map finite dimensional spaces onto lower dimen-
sional subspaces. To illustrate, identify points with position vectors and consider
the operator that is represented using the standard basis by the matrix

( 0
0

2
1

)
. This

operator maps points in R2 to points on the line x−2y= 0, and it does so in such a
way that points on the line are preserved. We leave these easy facts for the reader
to check, and we return to the example in the next section.

Like the example from linear algebra, we mention that the Cauchy projector is
linear, since integration is a linear process. In particular, C( f + λg) = C f + λCg
for λ ∈ C. A fundamental difference, though, is the fact that the Cauchy projector
acts between infinite dimensional spaces, as is evident in the example of the unit
disc. As will be seen in the next section, however, its skew-hermitian part behaves
like its finite dimensional counterpart.

4. The Szegő projector and the Kerzman–Stein equation

We saw in Section 3 that the Cauchy integral provides a projection from C∞(∂�)
to A∞(∂�). But the projection is not generally orthogonal. To illustrate, Figure 3
shows two projections from R2 onto the line x−2y = 0. The first is the projection
described at the end of the last section, and the second is the orthogonal (shortest
distance) projection of R2 onto the same line.

To make sense of this one needs a notion of distance. In the linear algebra
example, distance is measured in the Euclidean way, and this distance arises from
the standard dot product. The analogous inner product for functions is given by

( f, g)=
∫
∂�

f g ds,

where ds indicates that integration is done with respect to arc length. The norm
of a function is then given by ‖ f ‖ =

√
( f, f ) and the distance between functions

x − 2y = 0

(x, y)

x − 2y = 0

(x, y)

Figure 3. Nonorthogonal and orthogonal projections to x − 2y = 0.
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is the norm of their difference. Finally, the Szegő projector can be defined as the
orthogonal projection,

S : C∞(∂�)
⊥
→ A∞(∂�).

At first it may not be obvious that A∞(∂�) ⊂ C∞(∂�) is a closed subspace — a
nontrivial fact since both spaces are infinite dimensional. In particular, it may not
be obvious that the Szegő projector maps an infinitely differentiable function to
an infinitely differentiable function. These properties, however, can be shown to
follow as consequences of the Kerzman and Stein theory. We again refer to [Bell
1992] for a treatment of these delicate facts.

The key insight behind the Kerzman and Stein theory can be described now as
follows. The Cauchy integral provides an explicitly computable, though generally
nonorthogonal, projection C:C∞(∂�)→ A∞(∂�). Meanwhile, the Szegő projec-
tor represents the uniquely orthogonal, though initially noncomputable, projection
S : C∞(∂�)→ A∞(∂�). The projections are related by the equation,

S(I+A)= C, (1)

where I is the identity operator and A = C− C∗ is the Kerzman–Stein operator.
In the next section we will see how this leads to a simple way for computing the
Riemann map and Ahlfors map.

The effectiveness of the Kerzman–Stein equation balances on the fact that the
Kerzman–Stein operator is an integral operator with a well behaved kernel

A(z, w)=
1

2π i

( T (w)
w− z

−
T (z)
w− z

)
forw, z ∈ ∂�. Here, T (w) is the unit tangent vector atw∈ ∂�, so dw= T (w) dsw.
In particular, the singularities at w= z cancel each other and the kernel is infinitely
differentiable on ∂�×∂�. The significance of this fact is that the Kerzman–Stein
operator for a region with finite boundary is compact; that is, it can be approximated
in norm by finite rank operators. For details on this point, we direct the reader to
any functional analysis text. See, for instance, [Zimmer 1990, Chapter 3].

We leave for the reader to check the claim that the singularities in A(z, w) in
fact do cancel. This can be done using a Taylor expansion involving an arc length
parametrization of the boundary. (One then makes replacements w = z(s) and
z= z(t), so that also T (w)= z′(s) and T (z)= z′(t).) By carrying the expansions a
few steps further, one can see additionally that the kernel vanishes precisely when
the boundary has constant curvature. It follows that precisely when the region is a
disc or half plane, the Cauchy and Szegő projectors are the same.

We also leave for the reader to check the analogue of the Kerzman–Stein equa-
tion for the example from linear algebra. In this case, the orthogonal projector is
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represented by the matrix (
4
5

2
5

2
5

1
5

)
and the adjoint operator, needed for the computation of A = C−C∗, is gotten by
taking the transpose of the matrix.

5. Relationship to the Riemann map and Ahlfors map

As described in the introduction, the Riemann map is the essentially unique con-
formal map from a simply connected region to the unit disc; the Ahlfors map is
the essentially unique such conformal map for a multiply connected region. These
maps can be expressed as analytic functions with nonvanishing derivatives. In
particular, by manipulating the Cauchy–Riemann equations, one can show that at
an arbitrary point z0 ∈�, an analytic function f accomplishes a rotation by angle
arg f ′(z0). This rotation is paired with a uniform dilation at z0 by factor | f ′(z0)|.

A fundamental relationship between the Riemann map or Ahlfors map and the
Szegő projector can be derived using a transformation law for the Szegő kernel.
Indeed, the Szegő projector is an integral operator whose kernel can be represented
in terms of an orthonormal basis for A∞(∂�). If {φ j } j∈N is such a basis, then

S(z, w)=
∑
j∈N

φ j (z)φ j (w),

and for a general function f ,

S f (z)=
∫
w∈∂�

S(z, w) f (w) dsw.

From the work of Kerzman and Stein, it follows that the Szegő kernel is the solution
to the integral equation

S(z, z0)−

∫
w∈∂�

A(z, w) S(w, z0) dsw =
1

2π i
T (z)
z0−z

for z ∈ ∂�, z0 ∈�. (2)

This equation can be seen to follow from (1). In particular, by taking adjoints of
(1) one obtains (I−A)S = C∗, and following this, one utilizes an approximate
identity to obtain (2).

As will be needed, for the case of the unit disc, 1, one can use a basis {φ j } j∈N

where φ j (z)= z j−1/
√

2π in order to see that

S(z, w)=
1

2π
∑
j∈N

z j−1w j−1
=

1
2π

1
1− zw

.

This is consistent with the earlier observation for the disc that the Szegő projector
and Cauchy projector are the same. Indeed, the Cauchy projector for the disc has



VISUALIZION OF THE RIEMANN AND AHLFORS MAPS VIA KERZMAN–STEIN 413

kernel

C(z, w)=
1

2π i
T (w)
w− z

=
1

2π i
iw
w− z

=
1

2π
1

1− zw
.

In the remainder of this section we derive the relationship between the Szegő
kernel and Riemann map for a simply connected region. The derivation for the
Ahlfors map is handled differently, although the implementation will be the same.
This is discussed in the next section. In the next section we also provide details for
the numerical solution of (2).

Assuming then that f : �1 → �2 is bianalytic, that is, analytic with an ana-
lytic inverse, one can show that the operator 3 : C∞(∂�2)→ C∞(∂�1) defined
according to 3φ = (φ ◦ f ) ·

√
f ′ sends an orthonormal basis for A∞(∂�2) to an

orthonormal basis for A∞(∂�1). It follows that

S1(z, w)= S2( f (z), f (w)) f ′(z)1/2 f ′(w)1/2

where S1, S2 are the Szegő kernels for�1, �2, respectively. Applying this result to
the case of the Riemann map f :�→1 normalized for z0 ∈� so that f (z0)= 0
and f ′(z0) > 0, one finds that

S(z, z0)=
f ′(z)1/2 f ′(z0)

1/2

2π
.

From this it follows that

f ′(z)=
2π S(z, z0)

2

S(z0, z0)
, (3)

where the relationship holds first for z ∈ �, and then by continuity, it holds for
z ∈ �. There is a simple equation for relating the boundary values of f to those
of f ′. So provided with an efficient algorithm for computing the Szegő kernel, we
will have an efficient method for computing the Riemann map.

6. Numerical implementation

We now begin with a region� that can be described as the interior of n finite curves
that are parametrized by smooth functions z = z j (t) defined for 0 ≤ t ≤ ` j such
that z j (` j )= z j (0) and z′j (t) is nonvanishing, 1≤ j ≤ n. Of course, if the region is
simply connected, then n = 1 and one can drop the subscripts. It is not necessary
that the parametrizations be given according to arc length, but it is necessary that
the curves are oriented positively with respect to �. We further specify a point
z0 ∈� that we anticipate having mapped to the origin without rotation.
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We first adapt the method used in [Kerzman and Trummer 1986] to compute the
Szegő kernel. In particular, after making the replacements

φ j (t)= |z′j (t)|
1/2 (2π i)−1 (z′j (t)/|z

′

j (t)|) (z0− z j (t))−1,

a j,k(t, s)= |z′j (t)|
1/2
|z′k(s)|

1/2 A(z j (t), zk(s)),

ψ j (t)= |z′j (t)|
1/2 S(z j (t), z0),

Equation (2) becomes

ψ j (t)−
n∑

k=1

∫ `k

0
a j,k(t, s)ψk(s) ds = φ j (t) (4)

for 0≤ t ≤ ` j and 1≤ j ≤ n. With parametrizations provided, the functions φ j and
a j,k are explicitly computable. We wish to solve these equations for the functions
ψ j (t) in order to have the Szegő kernel.

Perhaps the easiest way to solve (4) is via the Nyström method. For m > 0 one
partitions the intervals [0, ` j ] using 0= s j

0 < s j
1 < s j

2 < · · ·< s j
m = ` j and replaces

(4) by its approximation

ψ j (t)−
n∑

k=1

m∑
l=1

a j,k(t, sk
l )ψk(sk

l )1sk
l = φ j (t). (5)

Here, 1sk
l

def
= sk

l − sk
l−1 = `k/m. This equation is next solved explicitly for ψ j (t)

when t = s j
i . Indeed, after replacing t = s j

i , this is tantamount to solving a system
of nm linear equations in nm complex unknowns,

(I − B)x = y,

where the skew-hermitian matrix B has entry a j,k(s
j

i , sk
l ) in its (n( j − 1)+ i)-th

row and (n(k − 1)+ l)-th column. With this setup, the (n(k − 1)+ l)-th entry in
column vector x is ψk(sk

l ) and the (n( j − 1)+ i)-th entry in column vector y is
φ j (s

j
i ).

With values for ψ j (s
j

i ) now determined, the general values for ψ j (t) can be
recovered from (5). In particular, we set

ψ j (t)= φ j (t)+
n∑

k=1

m∑
l=1

a j,k(t, sk
l )ψk(sk

l )1sk
l , (6)

where on the right side we use the valuesψk(sk
l ) already determined. It may appear

that with this formula we are redefining ψ j (t) for t = s j
i , when in fact we are not,

since (6) is identical with (5).
Alternatively, we have found it to be effective to replace this last step with a sim-

ple linear interpolation of the values ψ j (s
j

i ) for 1≤ i ≤m. In our implementation
this helps to prevent the repeated evaluations of φ j and a j,k that otherwise would
be needed. (The evaluations may have complicated expressions embedded in the
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parametrizations.) To be sure, Riemann_Map() seems most effective without the
additional evaluations—with linear interpolation one can rather increase m for a
finer partition, and as a result, obtain better image resolution.

With values of the Szegő kernel S(z, z0) now known for a designated z0 ∈ �

and for z ∈ ∂�, we look to recover values for the Riemann map and Ahlfors map.
We introduce boundary correspondence functions θ j = θ j (t) defined for 0≤ t ≤ ` j

by
f (z j (t))= eiθ j (t),

where f :�→1 is the Riemann map or Ahlfors map. Of course, the θ j are real
and unique only to a multiple of 2π . Differentiating this equation gives

f ′(z j (t)) z′j (t)= iθ ′j (t) eiθ j (t) = iθ ′j (t) f (z j (t)),

so that in the simply connected case, we obtain from (3) that

f (z j (t))=
f ′(z j (t))z′j (t)

iθ ′j (t)
=

z′j (t)

iθ ′j (t)
2π S(z j (t), z0)

2

S(z0, z0)

=
2π

iθ ′j (t)

z′j (t)

|z′j (t)|
ψ j (t)2

S(z0, z0)
. (7)

Many factors in this equation are positive, so taking arguments yields simply

θ j (t)= arg(−i z′j (t)ψ j (t)2). (8)

With the boundary values of the Riemann map now determined, one can obtain the
interior values via the Cauchy integral formula, where the integrals can be evaluated
using the same Riemann sum approximations used earlier in this section.

We mention that there is another way to recover the boundary correspondence
function that is better suited for regions with corners. In particular, by taking the
modulus of both sides of (7), we obtain

θ ′j (t)=
2π |ψ j (t)|2

S(z0, z0)
, where S(z0, z0)=

n∑
k=1

∫ `k

0
|ψk(t)|2dt. (9)

The correspondence functions can be obtained via integration, using initial condi-
tions derived using (8). This method results in correspondence functions that are
continuous at the corners, as they should be, avoiding errors caused by taking the
argument of the tangent vector.

It takes us outside the scope of our discussion to establish these formulas for
multiply connected regions, but we mention that (8) remains valid for n > 1. This
follows from an argument based on the identity relating the Szegő and Garabedian
kernels [Bell 1992, page 24]. It is not clear to us if (9) remains valid for n > 1.
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7. The Sage package Riemann_Map()

Led by examples, we now give a brief description of the package, Riemann_Map(),
which was constructed using the methods of the previous sections. We encourage
those who are new to Sage to try the examples online by first setting up a free
account at http://www.sagemath.org. (We have published there a worksheet ‘Rie-
mann Map() illustrated’ that contains the examples.) For each case, we show both
the text to be entered in a cell of a worksheet and the Sage output that follows the
cell’s evaluation. As typical in Sage, one can find documentation for the package
by evaluating a cell that contains only the question Riemann_Map?.

Example 1: The Riemann map for an ellipse. To use Riemann_Map() for a
parametrized ellipse (Figure 4), one provides three variables: a function parametriz-
ing the boundary of the ellipse and whose domain is the interval [0, 2π ], the deriv-
ative of this function, and a complex number identifying the point inside the ellipse
that is to be mapped to the origin without rotation. To generate a representation
for the Riemann map, one subsequently applies the methods plot_colored()
and plot_spiderweb() in order to have a combined representation showing the
coloring of the region and the contour overlay. One obtains sharper resolution by
increasing the value of plot_points at the expense of increased processing time.

z(t) = exp(I*t) +.5*exp(-I*t) # Riemann map for an ellipse
zp(t) = I*exp(I*t) -.5*I*exp(-I*t)
m = Riemann_Map([z],[zp],0)
p = m.plot_colored(plot_points=500) +m.plot_spiderweb()
show(p,axes=false)

Figure 4. Color representation of the Riemann map for an ellipse.

Example 2: The Riemann map for a square. For a square (Figure 5), one can
proceed as for the ellipse using piecewise-defined functions for the parametrization
and its derivatives. Alternatively, one can utilize the polygon_spline() package
along with its methods value() and derivative() to get these functions more
quickly. It is worth noting that command syntax in Sage is shared with the pro-
gramming language Python, so there is carry-over to learning either of the two
languages. We also mention that in the contour overlay, we have increased the
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ps = polygon_spline([(-1,-1),(1,-1),(1,1),(-1,1)])
z = lambda t: ps.value(t) # Riemann map for a square
zp = lambda t: ps.derivative(t)
m = Riemann_Map([z],[zp],.3+.3*I)
p = m.plot_colored(plot_points=1000) +m.plot_spiderweb(pts=150)
show(p,axes=false)

Figure 5. Color representation of the Riemann map for a square.

number of points used to draw concentric rings and radial lines from the default 32
to 150. The extra precision was needed so that the radial lines appear perpendicular
to the boundary as they should be.

Example 3: The Ahlfors map for an annulus. For an annulus (Figure 6), one pro-
ceeds as in the case of an ellipse, using a parametrization for each of the boundary
components. We mention that when Riemann_Map() is called, it is necessary that

z1(t) = 2*exp(I*t) # Ahlfors map for an annulus
z1p(t) = 2*I*exp(I*t)
z2(t) = exp(-I*t); z2p(t) = -I*exp(-I*t)
m = Riemann_Map([z1,z2],[z1p,z2p],sqrt(2)*I)
p = m.plot_colored(plot_points=1000) +m.plot_boundaries()
show(p,axes=false)

Figure 6. Color representation of the Ahlfors map for an annulus.
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the outside curve is provided first in each list of functions. One also must be careful
to give parametrizations that are oriented positively with respect to the interior
region. Finally, we mention that the methods are not yet sufficiently developed to
provide contour overlays for regions with more than one boundary component.

Example 4: The Ahlfors map for a triply connected region. As one more example
that combines the elements of the previous examples, we draw the Ahlfors map
for a triply connected region composed of a rectangle with two discs removed; see
Figure 7. It should be apparent for this example that the Ahlfors map is 3-to-1. As
for the previous example, we overlaid the color plot with the region’s boundary —
this makes the boundary more pronounced and conceals the nearby graininess.

Example 5: The Riemann map for a general region. For our final example, il-
lustrated in Figure 8, we use the companion package complex_cubic_spline()
to show how to map regions whose boundary is provided by a set of points to be
interpolated. For this example, we generated three lists of points which sample
two line segments and a circular arc. The combined list of 600 points is suggestive
of the boundary of a region that is well-approximated by splines. The subsequent
methods value() and derivative() provide functions giving a parametrization
and its derivative for a cubic spline interpolant of the given list. It is worth noting
that it is not necessary for the points in the list to be equally spaced, just as it is
not necessary for parametrizations to have constant speed.

ps = polygon_spline([(-4,-2),(4,-2),(4,2),(-4,2)])
z1 = lambda t: ps.value(t); z1p = lambda t: ps.derivative(t)
z2(t) = -2+exp(-I*t); z2p(t) = -I*exp(-I*t)
z3(t) = 2+exp(-I*t); z3p(t) = -I*exp(-I*t)
m = Riemann_Map([z1,z2,z3],[z1p,z2p,z3p],0)
p = m.plot_colored(plot_points=1000) +m.plot_boundaries()
show(p,axes=false)

Figure 7. Representation of the Ahlfors map for a triply connec-
ted region.



VISUALIZION OF THE RIEMANN AND AHLFORS MAPS VIA KERZMAN–STEIN 419

li1 = [(sqrt(3)-I)*(t/200)-(3+I)*(1-t/200) for t in range(200)]
li2 = [2*exp(pi*I*(t-100)/600) for t in range(200)]
li3 = [(sqrt(3)+I)*(1-t/200)-(3+I)*(t/200) for t in range(200)]
cs = complex_cubic_spline(li1+li2+li3)
m = Riemann_Map([lambda x: cs.value(x)], \

[lambda x: cs.derivative(x)],1-.25*I)
p = m.plot_colored(plot_points=1000) +m.plot_spiderweb(pts=64)
show(p,axes=false)

Figure 8. Color representation of the Riemann map for a general region.
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andrew@dms.umontreal.ca

Jerrold Griggs University of South Carolina, USA
griggs@math.sc.edu

Ron Gould Emory University, USA
rg@mathcs.emory.edu

Sat Gupta U of North Carolina, Greensboro, USA
sngupta@uncg.edu

Jim Haglund University of Pennsylvania, USA
jhaglund@math.upenn.edu

Johnny Henderson Baylor University, USA
johnny henderson@baylor.edu

Natalia Hritonenko Prairie View A&M University, USA
nahritonenko@pvamu.edu

Charles R. Johnson College of William and Mary, USA
crjohnso@math.wm.edu

Karen Kafadar University of Colorado, USA
karen.kafadar@cudenver.edu

K. B. Kulasekera Clemson University, USA
kk@ces.clemson.edu

Gerry Ladas University of Rhode Island, USA
gladas@math.uri.edu

David Larson Texas A&M University, USA
larson@math.tamu.edu

Suzanne Lenhart University of Tennessee, USA
lenhart@math.utk.edu

Chi-Kwong Li College of William and Mary, USA
ckli@math.wm.edu

Robert B. Lund Clemson University, USA
lund@clemson.edu

Gaven J. Martin Massey University, New Zealand
g.j.martin@massey.ac.nz

Mary Meyer Colorado State University, USA
meyer@stat.colostate.edu

Emil Minchev Ruse, Bulgaria
eminchev@hotmail.com

Frank Morgan Williams College, USA
frank.morgan@williams.edu

Mohammad Sal Moslehian Ferdowsi University of Mashhad, Iran
moslehian@ferdowsi.um.ac.ir

Zuhair Nashed University of Central Florida, USA
znashed@mail.ucf.edu

Ken Ono University of Wisconsin, USA
ono@math.wisc.edu

Joseph O’Rourke Smith College, USA
orourke@cs.smith.edu

Yuval Peres Microsoft Research, USA
peres@microsoft.com
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