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We examine the stability properties of a predictor-corrector implementation of
a class of implicit linear multistep methods. The method has recently been de-
scribed in the literature as suitable for the efficient integration of stiff systems
and as having stability regions similar to well known implicit methods. A more
detailed analysis reveals that this is not the case.

1. Introduction

In an undergraduate research project that started as a senior capstone project,
Meador [2009] became aware of an explicit ODE method that claimed to have
desirable stability properties that are usually only enjoyed by implicit methods.
The little known method seemed too good to be true. If it had the claimed stability
properties, it deserved to be better known and more widely used in applications.
In this work we describe what a more careful study of the method revealed. We
calculate the correct stability regions of the methods and verify our claims with
numerical experiments.

2. Linear multistep methods

A general s-step linear multistep method (LMM) for the numerical solution of the
autonomous ordinary differential equation (ODE) initial value problem (IVP)

y′ = F(y), y(0)= y0 (1)

is of the form
s∑

m=0

αm yn+m
=1t

s∑
m=0

βm F(yn+m), n = 0, 1, . . . , (2)
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where αm and βm are given constants. It is conventional to normalize (2) by setting
αs = 1. When βs = 0 the method is explicit. Otherwise, it is implicit. In order
to start multistep methods, the first s − 1 time levels have to be calculated by a
one-step method such as a Runge–Kutta method. Many of the properties of the
method (2) can be described in terms of the characteristic polynomials

ρ(ω)=

s∑
m=0

αmω
s and σ(ω)=

s∑
m=0

βmω
s . (3)

The linear stability region of a numerical ODE method is determined by apply-
ing the method to the scalar linear equation

y′ = λy, y(0)= 1, (4)

where λ is a complex number. The exact solution of (4) is y(t) = eλt , which
approaches zero as t →∞ if and only if the real part of λ is negative. The set of
all numbers z =1tλ such that limn→∞ yn

= 0 is called the linear stability region
of the method. For z in the stability domain, the numerical method exhibits the
same asymptotic behavior as (4). For stability, all the scaled eigenvalues of the
coefficient matrix of a linear system of ODEs must lie in the stability region. For
nonlinear systems, the scaled eigenvalues of the Jacobian matrix of the system must
lie within the stability region. A numerical ODE method is A-stable if its region
of absolute stability contains the entire left half-plane (Re(1tλ) < 0).

For LMMs, the boundary of the stability region is found by the boundary locus
method which plots the parametric curve of the function

r(θ)=
ρ(eiθ )

σ (eiθ )
, 0≤ θ ≤ 2π, (5)

that is, the ratio of the method’s characteristic polynomials (3). Standard references
on numerical ODEs can be consulted for more details [Butcher 2003; Hairer et al.
2000; Hairer and Wanner 2000; Iserles 1996; Lambert 1973]

3. Implicit LIL linear multistep methods

In this work we consider a class of LMM that has been referred to as local iter-
ative linearization (LIL) in the literature. The s-stage implicit LIL method also
has accuracy of order s. The LIL method has been applied to chaotic dynamical
systems in [Danca and Chen 2004; Luo et al. 2007]. The convergence, accuracy,
and stability properties of the LIL methods were examined in [Danca 2006].

In [Danca and Chen 2004; Danca 2006; Luo et al. 2007], both the implicit
and predictor-corrector versions are referred to as LIL methods. However, the
stability properties of the methods are very different and we distinguish between
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the methods by calling the implicit method ILIL, and the predictor-corrector im-
plementation PCLIL.

Using the notation f n
= F(yn), the first four ILIL formulas follow. The s = 1

ILIL formula
yn+1
− yn
=1t f n+1 (6)

coincides with the implicit Euler method. For s = 2 the ILIL algorithm is

yn+2
−

4
3

yn+1
+

1
3

yn
=1t

(
25
36

f n+2
−

1
18

f n+1
+

1
36

f n
)
; (7)

for s = 3,

yn+3
−

5
3

yn+2
+

13
15

yn+1
−

1
5

yn

=1t
(

26
45

f n+3
−

1
9

f n+2
+

4
45

f n+1
−

1
45

f n
)
; (8)

and for s = 4,

yn+4
− 2yn+3

+
8
5

yn+2
−

26
35

yn+1
+

1
7

yn

=1t
(

6463
12600

f n+4
−

523
3150

f n+3
+

383
2100

f n+2
−

283
3150

f n+1
+

223
12600

f n
)
. (9)

The characteristic polynomial coefficients of the ILIL methods are listed in
Table 1. The stability regions of the ILIL methods of orders 1 through 4 are shown
in Figure 1 (left). The stability regions are exterior to the curves. The innermost
curve is associated with the first-order method and the stability region shrinks as the
order of the method increases. The first- and second-order methods are A-stable,
while the third and fourth-order methods do not include all of the left half-plane. It
is well known that the order of an A-stable LMM cannot exceed 2 [Lambert 1973].

s = 1 s = 2 s = 3 s = 4

α0/β0 −1/0 1
3/

1
36

−1
5 /
−1
45

1
7/

223
12600

α1/β1 1/1 −4
3 /
−1
18

13
15/

4
45

−26
35 /

−283
3150

α2/β2 - 1/ 25
36

−5
3 /
−1
9

8
5/

383
2100

α3/β3 - - 1/ 26
45 −2/−523

3150

α4/β4 - - - 1/ 6463
12600

Table 1. Coefficients of the characteristic polynomials (3) for the
ILIL algorithms.
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Figure 1. Left: Implicit LIL methods have stability regions con-
sisting of the exterior of the plotted curves. Right: Predictor-
corrector implemented LIL methods have bounded stability re-
gions in the interior of the plotted curves.

4. LIL predictor-corrector

Two types of methods that are commonly used to solve the nonlinear difference
equations of implicit methods are functional iteration and Newton’s method. A
third approach, which does not involve solving nonlinear equations, that can be
used to implement an implicit ODE method is a predictor-corrector approach. An
explicit formula, the predictor, is used to get a preliminary approximation ŷn+s of
yn+s . Then the corrector step uses formulas like the implicit LIL methods (6)–(9),
with ŷn+s in place of yn+s when calculating f n+s , to get a more accurate approx-
imation of yn+s . The predictor-corrector approach turns the implicit method into
one that is implemented in the manner of an explicit method. However, the stability
properties of the predictor-corrector method will be inferior to those of the original
implicit method. The predictors for the PCLIL methods are listed in Table 2.

s order s LIL predictor

1 ŷn+1
= yn

2 ŷn+2
= 2yn+1

− yn

3 ŷn+3
= 3yn+2

− 3yn+1
+ yn

4 ŷn+4
= 4yn+3

− 6yn+2
+ 4yn+1

− yn

Table 2. The predictor stages for the predictor-corrector LIL algorithms.
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Applying the PCLIL methods to the stability test problem (4) reveals that the α
coefficients of the characteristic polynomial (3) remain the same as the implicit LIL
methods. However, the β coefficients are modified to be β̂ which lead to different
stability regions. The β̂ coefficients for the PCLIL methods are listed in Table 3.
The details of finding the β̂ coefficients are illustrated with the second-order PCLIL
method:

α2 yn+2
+α1 yn+1

+α0 yn
=1t

(
β2 f n+2

+β1 f n+1
+β0 f n)

=1t
(
β2λ(2yn+1

− yn)+β1λyn+1
+β0λyn)

=1t
(
(β1+ 2β2)λyn+1

+ (β0−β2)λyn)
=1t

(
β̂1 f n+1

+ β̂0 f n).
The stability regions for the PCLIL methods of orders 1 through 4 are shown in

the right image of Figure 1. Since the stability regions consist of the regions that
are interior to the curves, PCLIL methods are not A-stable. It is well known that
A-stable explicit LMMs do not exist [Nevanlinna and Sipilä 1974].

5. Numerical examples

Many problems arising from various fields result in systems of ODEs that have
a property called stiffness. A formal definition can be formulated (see [Lambert
1973], for example), but the essence of a stiff problem can be explained by the fact
the coefficient matrix of a linear ODE system (or Jacobian matrix of a nonlinear
ODE system) has some eigenvalues with large negative real parts. Thus, explicit
methods with their bounded stability regions may be required to take much smaller
time steps for stability than are necessary for accuracy. Implicit methods, particu-
larly A-stable methods, with their unbounded stability regions are well suited for
stiff problems.

s = 1 s = 2 s = 3 s = 4

β̂0 1 −
2
3

5
9 β0−β4

β̂1 0 4
3 −

74
45 β1+ 4β4

β̂2 - 0 73
45 β2− 6β4

β̂3 - - 0 β3+ 4β4

β̂4 - - - 0

Table 3. Modified β coefficients of the characteristic polynomials
(3) for the LIL algorithms implemented as predictor-correctors.
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Linear example. We consider the linear ODE system

y′1 =−21y1+ 19y2− 20y3, y1(0)= 1,

y′2 = 19y1− 21y2+ 20y3, y2(0)= 0,

y′3 = 40y1− 40y2− 40y3, y3(0)=−1,

(10)

which may be considered stiff. The coefficient matrix

A =


−21 19 −20

19 −21 20

40 −40 −40

 (11)

has eigenvalues λ1 =−2, λ2 =−40+ 40i , and λ3 =−40− 40i .
In Figure 2 the stability region of the third-order ILIL is the outside of the dashed

curve and the stability region of the third-order PCLIL is the interior of solid curve.
The eigenvalues of the linear ODE system (10) scaled by 1t = 0.017 are in the
left image and scaled by 1t = 0.012 in the right image.

The unstable PCLIL solution of the y1(t) component of the system using 1t =
0.017 is shown in the left image in Figure 3 and the stable solution using1t=0.012
is shown on the right. The system can be integrated with the implicit LIL methods
with any size time step and the method will remain stable.

Note that for linear problems it is possible to derive an explicit expression from
the implicit LIL formulas and that an iterative method is not required. For example,
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Figure 2. Color dots indicate the eigenvalues of the linear ODE
system (10) scaled by 1t = 0.017 (left) and 1t = 0.012 (right).
The third-order ILIL is stable for eigenvalues outside the dashed
curve, and the third-order PCLIL for those inside the solid curve.
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Figure 3. Left: unstable PCLIL solution of the y1(t) component
of the system (10) using 1t = 0.017. Right: stable solution using
1t = 0.012.

the second-order implicit LIL method applied to the linear ODE system (10) can
be evaluated as

yn+1
=

(
I −

251t
36

A
)−1(4

3
I −

1t
18

A
)

yn
+

(
I −

251t
36

A
)−1(−1

3
I −

1t
36

A
)

yn−1,

where I is the 3× 3 identity matrix.

Nonlinear example. We consider the Rabinovich–Fabrikant (RF) equations, a set
of differential equations in three variables with two constant parameters a and b:

x ′ = y(z− 1+ y2)+ ax,

y′ = x(3z+ 1− x2)+ ay,

z′ = − 2z(b+ xy).

PCLIL methods have been used extensively in the study of this system [Danca and
Chen 2004; Luo et al. 2007; Danca 2006].

In our numerical work, we encountered severe stability issues while using the
PCLIL methods with certain settings of the parameters. For instance, with a=0.33
and b = 0.5, a very small step size of 1t = 0.0001 was needed to stably integrate
the system to t = 200 with the fourth-order PCLIL method. The resulting attractor
is shown in Figure 4. The fourth-order ILIL method was implemented and was an
improvement in many cases. However, due to the method not being A-stable, we
still had stability problems for some parameter settings.
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Figure 4. Phase plots of the Rabinovich–Fabrikant equations for
parameter settings a = 0.33 and b = 0.5.

We note that the most efficient method that we found for our numerical ex-
ploration of the RF system was an implicit Runge–Kutta method. Using the 4-
stage, eighth-order accurate, A-stable Gauss method [Butcher 1964; Ehle 1968;
Hairer and Wanner 2000; Sanz-Serna and Calvo 1994], we were able to accurately
approximate the attractor in Figure 4 with a step size as large as 1t = 0.2.

6. Conclusions

Previously, the predictor-corrector implementation of the LIL method has been
analyzed in [Danca 2006] where of the PCLIL method it was said that “The time
stability of LIL method is more efficient than that of other known algorithms and is
comparable with time stability of the Gear’s algorithm” and that the LIL method is
suitable for stiff problems. Additionally, in [Danca and Chen 2004; Luo et al. 2007]
the PCLIL was applied to chaotic dynamical systems that had stiff characteristics
and was presented as a method well suited to this type of problem. As we have
shown here, this is not the case. The PCLIL methods are explicit and have bounded
stability regions that decrease in area as the order of the method increases. The
PCLIL methods are not well suited for stiff problems as they will require very small
time steps in order to remain stable. It is possible that in the previous application to
nonlinear chaotic systems that very small time steps were always used for accuracy
purposes and thus stability issues were not encountered.
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