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Kyle Kitzmiller and Matt Rathbun

(Communicated by Kenneth S. Berenhaut)

We introduce ideas from geometric group theory related to boundaries of groups.
We consider the visual boundary of a free abelian group, and show that it is an
uncountable set with the trivial topology.

1. Introduction

The study of a metric space can often be facilitated by considering it in the large
scale, or by studying asymptotic phenomena. For instance, adding a boundary to
compactify (or, more generally, “bordify”) a metric space is a key tool in under-
standing the space and its isometry group. A classical example is the hyperbolic
space Hn , with its boundary sphere at infinity. Isometries of Hn extend to home-
omorphisms of the boundary, and can be classified by their fixed points on the
boundary. More generally, any Gromov hyperbolic space (that is, a space with
large-scale negative curvature) has such a naturally defined boundary at infinity
[Bridson and Haefliger 1999].

In trying to understand the geometry of groups, it is often useful to regard the
group as a metric space by choosing a generating set, and forming the associated
Cayley graph, which will be defined below. The metric induced by declaring all
edges in the Cayley graph to have length one is called the word metric on the
group. It would seem quite natural to define a boundary for groups directly from
the word metric, and this works well if the group is Gromov hyperbolic. In general,
however, there are obstructions to the usefulness of this boundary, as we will see
below. This note explores properties of the visual boundary for groups, introducing
the needed definitions along the way. The main result is that the visual boundary of
Z2 (denoted ∂∞(Z2)) with the standard generating set possesses the trivial topology
on an uncountable set. Indeed, there are many groups which have so called “quasi-
flats”, or quasi-isometric embeddings of Z2. We will see that the boundary of any
such group will inherit the unpleasant properties of ∂∞(Z2).
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The exposition is intended to be readable for a student who has had a first course
in topology and metric spaces, and who is familiar with the definition and the most
basic examples of groups. (We also mention the axiom of choice.) On the other
hand, we hope that the paper will be a nontrivial read for working mathematicians
in other areas.

2. Background

Metric notions. We review here some useful definitions from metric geometry.

Definition 2.1.

• A geodesic segment, ray, or line in a metric space X is an isometric embedding
of [0, a], [0,∞), or R into X . Thus, for instance, a geodesic line is a map
f : R→ X such that dX ( f (t1), f (t2)) = |t1− t2| for all t1, t2 ∈ R. We say a
geodesic ray is from x0 or based at x0 if f (0)= x0.

• A metric space is called a geodesic space if any two points in the space can
be joined by a geodesic segment.

• Suppose (X, d) is a metric space, and Y ⊂ X is connected. There are two
natural ways to metrize Y . The subspace metric is dY : Y → R≥0 defined
by dY (y1, y2) = d(y1, y2). Alternatively, the path metric is dpath : Y → R≥0

defined by

dpath(y1, y2)= inf
{
length(γ ) | γ is a path in Y connecting y1 to y2

}
.

• A geodesic space is called (geodesically) complete if every geodesic segment
can be extended infinitely in both directions.

• A metric space is called proper if closed balls are compact. (This is needed
for certain kinds of limiting arguments.)

Example 2.2. Consider the (half-)cone

X =
{
(x, y, z) | x2

+ y2
=

1
25 z2, z ≥ 0

}
,

0

a b

a portion of which is shown in the figure. We claim that X
is not geodesically complete, when considered with the path
metric. Indeed, take a geodesic segment from the point a =
(−1, 0, 5) to the origin (0, 0, 0); this coincides with a straight-
line segment in space. Trying to extend this geodesic to b =
(1, 0, 5) presents a problem. The length of the two segments
would be 2

√
26, whereas the distance between the two points

a and b is at most π , because we can go from one point to the other along the circle
{z = 5} ∩ X , which has radius 1. Certainly, if we try to extend the geodesic to any
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other point on X , we will face the same difficulty: there is a shorter path “around”
the cone, rather than going through the cone point.

Example 2.3. Let X be an infinite-dimensional Hilbert space. Then X is not
proper, because the closed unit ball is not compact. To see this, take an orthonormal
basis, {vα} for X . Then any countably infinite sequence of the {vα} is a sequence
with no convergent subsequence, since the distance between any two elements is

‖vα − vβ‖ =
√
〈vα, vα〉+ 〈vβ, vβ〉− 〈vα, vβ〉− 〈vβ, vα〉 =

√
‖vα‖+‖vβ‖ =

√
2.

Cayley graphs. The construction of a Cayley graph is a central tool in geomet-
ric group theory, allowing us to associate a metric space to a group with a given
presentation.

Definition 2.4. Let G = 〈S | R〉 be a group with generating set S and relations
R. We define a graph Cay(G, S) whose vertices correspond to elements of G, and
with edges between g, h ∈G if there exists s ∈ S∪S−1 so that g= h ·s. We give the
resulting graph the graph metric, whereby each edge has length 1, and the distance
between vertices is the length of the shortest path between them.

Remark 2.5. For any two elements g, h∈G, the distance from g to h in Cay(G, S)
is just the length of the shortest word w in S ∪ S−1 such that g = h ·w.

Example 2.6. Cay(Z2, {(1, 0), (0, 1)}) is just the integer grid. Consider a path
from the origin to any other point (m, n) of Z2. This path
consists of a union of horizontal and vertical segments
between the integer coordinate points of the graph, the
vertices (see figure). There are some crucial differences
from familiar metric spaces like R2 with the Euclidean
metric: there is more than one path of minimum length
between the origin and (m, n) unless m = 0 or n = 0, and
there is no unique prolongation of geodesic segments to
rays.

The distance from (m, n) to (k, l) is |m − k| + |n− l| (the `1 distance). Notice
that (m, n) = (k, l)± |m − k|(1, 0)± |n− l|(0, 1), so the distance is the length of
the smallest word s composed of letters from {±(0, 1),±(1, 0)} such that (m, n)=
(k, l)+ s.

Alternatively, one could consider embedding the integer grid into R2, and take
the metric on Z2 to be the path metric induced by this inclusion.

Remark 2.7. This graph is not determined by a group, but clearly depends on the
choice of a generating set S. To accommodate this, in the next section we introduce
the notion of quasi-isometry.
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Quasi-isometries. Often, we want to say that two spaces share some of the same
large-scale geometric features, even when they are not isometric. To this end, we
introduce the concept of quasi-isometry. This is like isometry, but allows for some
bounded error in the form of a multiplicative and an additive factor. We will find
that many notions about metric spaces can be “quasified”.

Definition 2.8.

• We say a map between two metric spaces, f : (X, dX )→ (Y, dY ) is a quasi-
isometric embedding for some k ≥ 1, c ≥ 0, if for every x1, x2 ∈ X ,

1
k

dX (x1, x2)− c ≤ dY ( f (x1), f (x2))≤ kdX (x1, x2)+ c.

• We say that a quasi-isometric embedding, f : (X, dX )→ (Y, dY ), is a quasi-
surjection if there exists a D > 0 such that for every y ∈ Y , there is an x ∈ X
such that dY (y, f (x)) < D.

If f : (X, dX ) → (Y, dY ) is a quasi-isometric embedding which is also
a quasi-surjection, then we say that f is a quasi-isometry and we say that
(X, dX ) and (Y, dY ) are quasi-isometric.

In particular, a quasi-isometry admits a quasi-inverse. When we compose
a quasi-isometry with a quasi-inverse, we almost get the identity. But, as with
most things “quasi”, we might be off by a multiplicative and additive constant.

• If f : (X, dX ) → (Y, dY ) is a quasi-isometry, a quasi-inverse is a quasi-
isometric embedding g : (Y, dY )→ (X, dX ) so that for some k ≥ 1, c ≥ 0, for
all x1, x2 ∈ X ,

1
k

dX (x1, x2)− c ≤ dX (g ◦ f (x1), g ◦ f (x2))≤ kdX (x1, x2)+ c,

and for all y1, y2 ∈ Y ,

1
k

dY (y1, y2)− c ≤ dY ( f ◦ g(y1), f ◦ g(y2))≤ kdY (y1, y2)+ c.

Example 2.9. R is (1, 1)-quasi-isometric to Z. Consider f : R→ Z, defined by
f (x)= bxc, the floor function. Then for all x, y ∈ R,

|x − y| − 1≤
∣∣bxc− byc∣∣≤ |x − y| + 1.

This map is clearly surjective.
Further, the inclusion g : Z ↪→ R is a quasi-inverse, since f ◦ g(n) = n for any

n ∈ Z and g ◦ f (x)= bxc for any x ∈ R. So, if m, n ∈ Z,

|m− n| = | f ◦ g(m)− f ◦ g(n)| = |m− n|,
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and if x, y ∈ R,

|x − y| − 1≤ |g ◦ f (x)− g ◦ f (y)| ≤ |x − y| + 1.

Example 2.10. R2 is (2, 2)-quasi-isometric to Z2. We will go through the calcu-
lation, but the idea is simple: rounding points in the plane down to points in the
integer grid never distorts distances by too much, even when you change from `2

to `1 distance. Consider f : R2
→ Z2, defined by f (x, y)= (bxc, byc). Then, for

any (a, b), (x, y) ∈ R2,

dZ2( f (a, b), f (x, y))=
∣∣bxc− bac∣∣+ ∣∣byc− bbc∣∣
≤ (|x − a| + 1)+ (|y− b| + 1) (as above)

≤ 2 max{|x − a|, |y− b|} + 2

≤ 2
√
(max{|x − a|, |y− b|})2+ 2

≤ 2
√
(x − a)2+ (y− b)2+ 2

= 2dR2((a, b), (x, y))+ 2,

and

dZ2( f (a, b), f (x, y))=
∣∣bxc− bac∣∣+ ∣∣byc− bbc∣∣
≥ (|x − a| − 1)+ (|y− b| − 1) (also as above)

≥ dR2((a, b), (x, y))− 2 (by the triangle inequality)

≥
1
2 dR2((a, b), (x, y))− 2.

It is easy to see that the inclusion g : Z2 ↪→ R2 is a quasi-inverse; the composition
g ◦ f : R2

→ R2 moves points no more than
√

2.

Remark 2.11. Above, we used quasi-isometry constants k = 2, c = 2. It is a nice
exercise to show that k =

√
2, c = 2 are actually the best constants possible. But

often we will not care what the constants actually are — only that they exist.

Definition 2.12. A quasi-geodesic is a quasi-isometric embedding of the real line
into a space. That is, a map f : R→ X such that for some k ≥ 1, c ≥ 0, for all
t1, t2 ∈ R,

1
k
|t1− t2| − c ≤ dX ( f (t1), f (t2))≤ k|t1− t2| + c.

Quasi-geodesics are useful, for instance, in discrete spaces: they can sit still for
a bounded period of time, and can make jumps of bounded size, but in the large
scale they proceed with distance roughly equal to time elapsed.
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Example 2.13. Denote by rθ the real ray in R2 from the origin that makes an
angle of θ with the positive x-axis. Then we can consider the image of rθ under
the quasi-isometry f :R2

→Z2 from Example 2.10. The result is a (disconnected)
quasi-geodesic in Cay(Z2, {(1, 0), (0, 1)}).

In this case, if we connect successive lattice points of f ◦ rθ with geodesic
segments, the result is a geodesic ray in Cay(Z2, {(1, 0), (0, 1)}), as in the figure.
Call this ray Qθ .

Next, as promised, we confirm that the word metric is independent of the choice
of generating set, up to quasi-isometry.

Proposition 2.14. If G is a finitely generated group with two (finite) generating
sets S and S′, then Cay(G, S) is quasi-isometric to Cay(G, S′).

Proof. The identity map will be shown to be a quasi-isometry. Say |S| = k, |S′| = l,
let dS be the distance function in Cay(G, S), and dS′ in Cay(G, S′). Then, since S
and S′ are finite, let m = max{dS′(s, e) | s ∈ S}, and n = max{dS(s ′, e) | s ′ ∈ S′},
where e ∈ G is the identity element.

Then, every element g ∈ G can be written as a word in S′. And each of those
generators can be written as words of S, each of length at most n. So

dS(g, e)≤ n · dS′(g, e).

To get the second inequality, the argument is reversed: dS′(g, e)≤m ·dS(g, e). So
letting k =max{m, n} yields the quasi-isometry inequality.

The argument is completed by noting that for any g, h ∈ G,

d(g, h)= d(h−1g, e). �

Now we can speak unambiguously about the large-scale geometry of groups —
those properties of groups that are invariant under quasi-isometry.

The visual boundary.

Notation 2.15. Let X be a geodesic space. For x0 ∈ X , we define

Gx0(X)= {unit speed geodesic rays from x0}.

We will suppress X from the notation and simply write Gx0 .
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We want to think of light traveling along geodesics in the space X . So we think
of the visual boundary as the set of all points one can “see” at infinity, standing at
the point x0.

We give Gx0 the topology of uniform convergence on compact sets. Recall:

Definition 2.16. Let (X, d) be a metric space and Y a topological space. Given
a fixed element f ∈ XY

= {functions g : Y → X}, a compact set K of Y and a
number ε > 0, we let

BK ( f, ε) =
{
g ∈ XY

∣∣ d( f (y), g(y)) < ε for all y ∈ K
}
.

The sets BK ( f, ε) form a basis for the topology of uniform convergence on com-
pact sets on XY .

So Gx0 ⊂ XR inherits the subspace topology. Roughly, if the images of two rays
are “close” on large compact sets, then the rays are “close”. And a sequence of
rays converges to a limiting ray if the rays of the sequence agree with the limit on
larger and larger compact sets.

Sometimes, however, if we “look” in different directions, we see the same point
at infinity. To make this precise:

Definition 2.17. We say that two geodesic rays, g and f , are asymptotic if there
exists an M ∈ R such that d( f (t), g(t)) ≤ M for all t . This is an equivalence
relation on rays. We will write f ∼ g, and denote the equivalence class of a ray
f ∈ Gx0 by [ f ], so [ f ] = {g | f ∼ g}.

Definition 2.18. The visual boundary of a geodesic space X at a point x0, denoted
∂∞(X, x0), is defined to be Gx0/ ∼, with the quotient topology. Let πx0 : Gx0 →

∂∞(X, x0) be the natural projection map.

Example 2.19. The visual boundary of R2 at (0, 0) is homeomorphic to the unit
circle, S1.

Again, the idea is simple: every geodesic ray from the origin corresponds to
exactly one point on the unit circle, and exactly one point at infinity.

Proof. Define a function H : S1
→ ∂∞(R

2, (0, 0)) by H(θ)=π(rθ ), where rθ is the
straight line ray from the origin through the point on the unit circle
corresponding to θ (see figure).

To show that this map is a bijection, note that given any
two distinct points on the circle, θ and φ, the geodesic rays
rθ and rφ diverge. That is, given any M , there exists some
T such that d(rθ (t), rφ(t)) > M for all t > T . Further, H is
clearly surjective, as the only geodesic rays in R2 are straight
line rays.
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To show that the map is continuous, we will examine open balls about arbitrary
points. Used implicitly in the remainder of the proof is the fact that H and π are
bijections.

Assume V is open in ∂∞(R2, (0, 0)). Then H−1(V ) = {r(1) | r ∈ π−1(V )}.
Now, consider an arbitrary point, r∗(1) ∈ H−1(V )⊂ S1. We know what the basis
of open sets in G looks like: it consists of the BK ( f, ε). So there exists an ε∗ and
a compact set K = {1} such that the ball B{1}(r∗, ε∗) is in π−1(V ), because π(r∗)
is in V and π−1(V ) is open. Then,

H−1(π(B{1}(r∗, ε∗)))= H−1(π({r | d(r(t), r∗(t)) < ε∗, t ∈ {1}}
))

= H−1(π({r | d(r(1), r∗(1)) < ε∗}))
= {r(1) | d(r(1), r∗(1)) < ε∗} = B(r∗, ε∗)⊂ S1.

Now, assume W is open in S1. We want to show that H(W ) is open. Consider
any ray r∗ such that π(r∗) ∈ H(W ). Then we know there exists an ε∗ such that
B(r∗(1), ε∗)= {r(1) | d(r(1), r∗(1)) < ε∗} ⊂W . Then,

H(B(r∗(1), ε∗))=
{
π(r) | d(r(1), r∗(1)) < ε∗

}
=
{
π(r) | d(r(t), r∗(t)) < ε∗, t ∈ {1}

}
= π(B{1}(r∗, ε∗)).

Since, in this case, π−1(π(B{1}(r∗, ε∗))) = B{1}(r∗, ε∗) is open, so is its image.
Thus, given any point π(r∗) in H(W ), there is an open set around this point
contained in H(W ). We conclude that H(W ) is open, and ultimately that H is
a homeomorphism between ∂∞(R2, (0, 0)) and S1. �

We would like a way to talk about the visual boundary of a metric space, without
reference to a specified basepoint. Unfortunately, there are many cases when the
visual boundary changes if we use a different basepoint.

Example 2.20 [Papadopoulos 2005]. Consider the set

R = {(x, y, z) | x = 1, y = 0, z ≥ 0} ∪ {(x, y, z) | y = 0, z = 5x − 5, 0≤ x ≤ 1}.

Rotate it around the z-axis to obtain a pencil-shaped surface X ,
considered with the path metric. If we take our basepoint to be
(0, 0,−5), then R is a geodesic ray from the basepoint, as is
any rotation of R about the z-axis. So G(0,0,−5) is a circle’s
worth of rays. If we take our basepoint to be (1, 0, 0), on the
other hand, the only geodesic ray from the basepoint is the ray
{(x, y, z) | x = 1, y = 0, z ≥ 0}. So G(1,0,0) has a single ray.

Notice, however, that all the rays in G(0,0,−5) are asymptotic,
since the distance between any two is bounded by π (in the path
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metric). So, when we take the quotient, we get

∂∞(X, (0, 0,−5))∼= ∂∞(X, (1, 0, 0))∼= {point}.

In this example, G depended on choice of basepoint, but the topological space
∂∞(X) did not. In some spaces, however, even the visual boundary will change
with the basepoint.

Example 2.21. Consider X = R2
\ {(1, 0), (−1, 0)}. Then if we choose the base-

point (0, 0), there is a geodesic ray in every direction except along the positive
and negative x-axes. So ∂∞(X, (0, 0))∼= (0, π)∪ (π, 2π). However, if we choose
the basepoint (3, 0), there is a geodesic ray in every direction except towards the
negative x-axis. So ∂∞(X, (2, 0)) ∼= (−π, π) (see figure). This shows that the
visual boundary of a twice-punctured plane depends on the choice of basepoint.

Fortunately, all is not lost.

Proposition 2.22. Given two points x1 and x2 in a geodesic space X , let L : X→ X
be an isometry carrying x1 to x2. Then ∂∞(X, x1) is homeomorphic to ∂∞(X, x2).

Proof. Isometries preserve geodesicity, so Gx1
∼=GL(x1)=Gx2 . Further, the distance

between geodesic rays is preserved, so (Gx1/∼)
∼= (Gx2/∼). �

Remark 2.23. When the isometry group of a space acts transitively on the space,
as in the case of R2 or Z2, we can suppress the basepoint. So we will denote
∂∞(X, x0) as simply ∂∞(X), πx0 as π , and Gx0 as G, when convenient.

Example 2.24. In light of Remark 2.23, ∂∞(R2)∼= S1.

3. The case of Z2

Geodesic rays. We will henceforth abuse notation, and identify Z2 with its Cayley
graph with respect to the standard generating set, Cay(Z2, {(1, 0), (0, 1)}), the in-
teger grid (Example 2.6). We will also implicitly assume the basepoint to be (0, 0).
Geodesic paths consist of horizontal and vertical segments with no “backtracking”.
As noted above, geodesics are not unique. For example, there are twenty geodesic
paths between (0, 0) and (3, 3), all of length 6 (see figure in Example 2.6).
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It is clear, then, that for any ray f , the equivalence class [ f ] is “large”: there
are many geodesics g such that d( f, g) < M for all t .

Notation 3.1. An infinite ray in Z2, consisting of vertical and horizontal segments,
can be expressed as an infinite string of the digits corresponding to each segment.
Let 0, 1, 2, 3 and 4 represent east, north, west, south, and east respectively.
Then any infinite ray in Z2 can be written as an infinite string over the alpha-
bet {0, 1, 2, 3, 4}. (The redundant use of 0 and 4 for the eastward direction is to
simplify later notation.)

If a ray is in the first quadrant, it can be written as a string over {0, 1}; in the
second, {1, 2}; in the third, {2, 3}; and in the fourth, {3, 4}. To eliminate the only
ambiguity, we adopt the convention that the east-pointing ray will be represented
as the string (0̄)= (0, 0, 0, . . . ) of all zeros. Given a geodesic ray f ∈ Z2, we will
denote this expansion by f = ( f1, f2, f3, . . . ). Then if m( f )=minn{ fn}, we have
fn ∈ {m,m+ 1} for all n.

The topology on ∂∞(Z2).

Definition 3.2. We will say a ray g in Z2 has slope θ if g ∼ Qθ , where Qθ is the
image of the ray rθ in R2 under the quasi-isometry in Example 2.10.

Note that not every ray has a slope. However, a ray cannot have more than one
slope, because ∼ is transitive.

This sets us up to show that the visual boundary of Z2 is uncountable.

Proposition 3.3. |∂∞(Z2)| = c, the cardinality of the continuum.

In order to prove this, we will describe an injection from S1 into ∂∞(Z2), and an
injection from ∂∞(Z

2) into [0, 4), making use of the quinary expansions described
in the previous section.

Proof. The proof will proceed in two parts, exhibiting the two injections.
First, define the map I : S1

→ ∂∞(Z
2) to be given by I (θ)= π(Qθ ), where Qθ

is the quasi-isometric embedding of rθ , the ray that passes through the point θ on
the unit circle in R2. Then given any distinct θ, φ ∈ S1, we have already seen that
π(Qθ ) 6= π(Qφ). Thus I is an injection, and c≤ |∂∞(Z

2)|.
For the second injection, recall that any geodesic ray can travel in at most two

directions. Hence, each ray corresponds to an infinite binary expansion. Let these
binary strings be mapped to the interval [0, 4) in the following way:

Let B : {0, 1}N→[0, 1] be the standard map from a binary expansion to the real
number it represents. So

B((ε1, ε2, ε3, . . . ))=
∞∑

n=1

εn

2n , where εn ∈ {0, 1} for all n.
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Now, for a quinary expansion,

( f1, f2, f3, . . . ) ∈ {0, 1, 2, 3, 4}N,

let m( f )=minn{ fn} as before. Then define a map N : G(Z2)→ [0, 4) by

N (( f1, f2, f3, . . . ))= m+ B(( f1−m, f2−m, f3−m, . . . )).

So for instance, N (0̄)= 0 and

N ((2, 3, 2, 3, 2, 3, . . . ))= 2+ B((0, 1, 0, 1, 0, 1, . . . ))= 2+ 1
3 =

7
3 .

It is easy to see (by uniqueness of binary expansions for the fractional part) that
this map is injective from G(Z2)→ [0, 4). Thus |G(Z2)| ≤ c, so |∂∞(Z2)| ≤ c.

It follows that |∂∞(Z2)| = c. �

Proposition 3.4. ∂∞(Z2) possesses the trivial topology.

In other words, the only open sets in the visual boundary are the entire set and
the empty set.

Proof. By the quotient topology on G/∼, a set U ⊂ ∂∞(Z2) is open exactly when
its preimage π−1(U ) is open in G. Assume that U is some nonempty open set in
∂∞(Z

2). Then, W = π−1(U ) is also open and nonempty. We wish to show that U
is the entire set. It suffices to show that given any g ∈ G, π(g) ∈U .

As W is open and nonempty, there is some geodesic ray f in W . Consider any
ray g such that m(g)=m( f ). (This means that g and f are in the same quadrant.)
We will show that given any compact set K ⊂ [0,∞) and ε > 0, g has some
representative gs ∈ [g] such that gs ∈ BK ( f, ε)⊂W . It will follow that π(g) ∈U .

Let the compact set K = [a, b] and ε > 0 be given, and let s = dbe ∈ Z. Then
define the representative gs of g as follows:

gs(t)=
{

f (t) for t ≤ s,
f (s)+ g(t)− g(s) for t > s,

where the sum is group addition on Z2.
To clarify, consider the infinite binary expansion of gs . It is identical to that of f

for the first s steps, so d(gs(t), f (t))=0 for t≤ s; afterwards it is identical to that of
g, so gs∼ g. This gives a sequence of rays asymptotic to g, in a neighborhood of f :
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Clearly, gs ∈ BK ( f, ε), so π(gs) ∈ π(BK ( f, ε)). Then since BK ( f, ε) ⊂ W ,
π(gs) ∈ U . Finally, since gs ∼ g, π(gs) = π(g). We conclude that π(g) ∈ U and
g ∈W .

Recall that f and g are in the same quadrant because m( f ) = m(g) = m. In
particular, we see that the axis geodesic h = (m+ 1) ∈ BK ( f, ε), where we take
addition modulo 4.

We now take advantage of the fact that W is open. As h ∈ W , there must
exist some ε′ such that BK (h, ε′) ⊂ W . Then let j = (m+ 2) and let js be the
representative function as above, so that js ∈ BK (h, ε′). Therefore π( j) ∈ U .
Consequently, all axis directions are in U . By the same argument, then, we include
in the set U the images of all other nonaxis geodesic rays g for which m(g) 6=m( f ).
We can then conclude that given any geodesic ray g ∈ Z2, π(g) ∈U .

By assuming only that U was open and nonempty, we showed that U contains
all elements of ∂∞(Z2). We conclude that ∂∞(Z2) has the trivial topology. �

4. Further comments

Informally speaking, if we “zoom out” from Z2 by rescaling distances to be smaller
and smaller, we limit to R2 with the `1-norm. (Formally, this construction is called
the asymptotic cone, and Cone(Z2) = (R2, `1).) We expect the same method of
proof from above to show that the visual boundary of (R2, `1) is an uncountable
set with the trivial topology. And in fact, this is true.

Proposition 4.1. ∂∞((R2, `1)) has the cardinality c, and the trivial topology.

Proof. Geodesic rays are no longer restricted to vertical and horizontal segments,
but they have a similar property. Let us first discuss geodesic rays that enter the
interior of the first quadrant. Let f (t) = ( f1(t), f2(t)) be a geodesic ray from
the origin, passing through the point f (t0) = (x, y), with x, y > 0. Then for all
t > t0, f1(t) ≥ x , and f2(t) ≥ y. In other words, once a geodesic begins to move
in a north-westerly direction, it can never again move toward the south or east (see
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figure). A similar property, of course, also holds in the other quadrants.

There are more geodesic rays in this space than in Z2. But after we take the
quotient, we get the same boundary. We will appeal to the Axiom of Choice.
Certainly, |∂∞((R2, `1))| is at least c, since each geodesic ray in Z2 includes as
a geodesic ray into (R2, `1). Now, for each equivalence class of asymptotic rays
[ f ] ∈ ∂∞((R2, `1)), choose a representative geodesic ray, f . Then, as before,
consider the image of this ray under the quasi-isometry from R2 onto Z2, and
connect vertices by horizontal and vertical segments to get Q f , a geodesic ray
in Z2. Identifying Q f and Qg with their images in R2 by inclusion, we see that
f ∼ Q f and g∼ Qg, so the map from ∂∞((R

2, `1)) to ∂∞(Z2) is an injection. This
establishes that |∂∞((R2, `1))| = c.

Next, we use an identical construction to the one above to show that the topology
is trivial.

Let f, g be any arbitrary geodesic rays in the closure of quadrant I . We will
show that given any compact K ⊂ [0,∞) and ε > 0, g has a representative gb ∈ [g]
such that gb ∈ BK ( f, ε).

Let the compact set be K = [a, b] and ε > 0 be given. Then define the repre-
sentative gb of g as follows:

gb(t)=
{

f (t) for t ≤ b,
f (b)+ g(t)− g(b) for t > b.

where now the sum is component addition on R2.
Just as before, this argument establishes that any open set containing a single

ray in quadrant I contains all rays in quadrant I , and can be extended to show that
any nonempty open set contains every ray. �

What’s wrong with this state of affairs? This boundary completely fails to be
Hausdorff: we can’t separate any two directions at infinity. Convergence to a par-
ticular point in the boundary is meaningless.

To see some of the consequences of this finding, consider that a large class
of groups have an undistorted free abelian subgroup; that is, a quasi-isometric
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embedding of Z2 ∼= 〈a, b〉, called a quasi-flat. These arise whenever two elements
commute and there is no “shortcut” to words in those elements coming from a
relator. Besides the obvious extension of the same argument to Zn , quasi-flats
can also be found in right-angled Artin groups, as well as mapping class groups
of surfaces. Papasoglu [1998] shows that every semi-hyperbolic group which is
not hyperbolic contains such a quasi-flat. This includes fundamental groups of
compact manifolds of nonpositive curvature. So this note shows, in particular, that
any metric space containing a quasi-flat will have a bad boundary.
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