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For θ ∈ [0, 2π) and λ > 1, consider the matrix h =
(
λ

0
0
0

)
and the rotation matrix

Rθ . Let Wn(θ) denote some product of m instances of Rθ and n of h, with the
condition m ≤ εn (0< ε < 1). We analyze the measure of the set of θ for which
‖Wn(θ)‖ ≥ λ

δn (0 < δ < 1). This can be regarded as a model problem for the
Bochi–Fayad conjecture.

1. Introduction

Avila and Roblin [2009] considered the following problem. Take the two matrices

H =
(
λ 0
0 λ−1

)
(1)

and

Rθ =
(

cos θ −sin θ
sin θ cos θ

)
, θ ∈ [0, 2π).

Fix λ > 1 and let m, n ∈ N. Consider words of the form

Wn(θ)= H i1 R j1
θ . . . H ik R jk

θ ,

where k is arbitrary and i1, . . . , ik, j1, . . . , jk ∈ N∪ {0} are such that

i1+ · · ·+ ik = n, j1+ · · ·+ jk = m.

Assume that m is much smaller than n and take a “generic” angle θ . It is not
unreasonable to conjecture that ‖Wn‖ grows geometrically with n regardless of the
combinatorics of the word. Avila and Roblin proved the following theorem, where
the norm is given by ‖W‖ = |a| + |b| + |c| + |d| if W =

(a
c

b
d

)
.
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Theorem 1. Assume that 0< δ < 1 is fixed. Then there is an n-independent set �
such that |�| = 2π and for any θ ∈� there is ε > 0 so that

min
Wn
‖Wn(θ)‖> λ

δn

provided m < εn(ln n ln ln n)−1.

Here the minimum is over all words Wn for n fixed and m as given. This theorem
improved earlier results by Fayad and Krikorian [2008]. The special case of the
Bochi–Fayad conjecture [Avila and Roblin 2009; Fayad and Krikorian 2008] deals
with the similar situation when m < εn and ε is small. One might expect that
|�|→ 2π as ε→ 0 in this case. Proving it seems to be quite hard. We investigate
a simpler case. In (1), consider the matrix H when λ is large. Then λ−1

→ 0 as
λ→∞ and one might wonder what happens if λ−1 is dropped. Thus we consider
h =

(
λ
0

0
0

)
/∈ SL(2,R) instead of H . It turns out that a very precise analysis can

be performed for this simpler model problem, as we shall see in the next section.
Section 3 provides some numerical evidence and comparison of the model case
with the real problem.

2. The model problem

In the previous setting, take h =
(
λ 0
0 0

)
instead of H and fix ε ∈ (0, 1). Given n,

set
fn(θ)=min

Wn
‖Wn(θ)‖,

where the norm is again given by the sum of absolute values of matrix entries and
the minimum is taken over all Wn with m≤ εn. Note that we can take the minimum
because for a given n there are only finitely many possibilities for Wn .

Finally, we fix 0<δ< 1 and define the resonant set R thus: θ ∈R if there exists
some n such that fn(θ) < λ

δn . We claim that |R| < Cλ−(1−δ)/ε , where C is some
constant that can be explicitly computed and |R| denotes the Lebesgue measure of
the set R.

We now make the convention that there are no zero exponents in the expression
of Wn(θ). Then, for words having precisely k blocks of rotation matrices, there are
four possibilities, differing in which matrix (h or Rθ ) begins the word and which
matrix ends it:

Wn(θ)= hi1 R j1
θ · · · h

ik R jk
θ , (2)

Wn(θ)= R j1
θ hi1 · · · R jk

θ hik , (3)

Wn(θ)= R j1
θ hi1 · · · R jk−1

θ hik−1 R jk
θ , (4)

Wn(θ)= hi1 R j1
θ · · · h

ik R jk
θ hik+1 . (5)
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For the word in (2), the product has this explicit form:

Wn(θ)= hi1 R j1
θ · · · h

ik R jk
θ

=

(
λi1 0
0 0

)(
cos j1θ −sin j1θ
sin j1θ cos j1θ

)
· · ·

(
λik 0
0 0

)(
cos jkθ −sin jkθ
sin jkθ cos jkθ

)
=

(
λi1 cos j1θ −λi1 sin j1θ

0 0

)
· · ·

(
λik cos jkθ −λik sin jkθ

0 0

)
=

(
λn cos j1θ · · · cos jkθ λn cos j1θ · · · cos jk−1θ sin jkθ

0 0

)
. (6)

Likewise, for (3), we obtain

Wn(θ)= R j1
θ hi1 · · · R jk

θ hik

=

(
cos j1θ −sin j1θ
sin j1θ cos j1θ

)(
λi1 0
0 0

)
· · ·

(
cos jkθ −sin jkθ
sin jkθ cos jkθ

)(
λik 0
0 0

)
=

(
λi1 cos j1θ 0
λi1 sin j1θ 0

)
· · ·

(
λik cos jkθ 0
λik sin jkθ 0

)
=

(
λn cos j1θ · · · cos jkθ 0

λn sin j1θ cos j2θ · · · cos jkθ 0

)
. (7)

Using the result in (7), we get for the word (4)

Wn(θ)

= (R j1
θ hi1 · · · R jk−1

θ hik−1)R jk
θ

=

(
λi1+···+ik−1 cos j1θ cos j2θ · · · cos jk−1θ 0
λi1+···+ik−1 sin j1θ cos j2θ · · · cos jk−1θ 0

)(
cos jkθ −sin jkθ
sin jkθ cos jkθ

)
=

(
λn cos j1θ cos j2θ · · · cos jkθ −λn cos j1θ cos j2θ · · · cos jk−1θ sin jkθ
λn sin j1θ cos j2θ · · · cos jkθ −λn sin j1θ cos j2θ · · · cos jk−1θ sin jkθ

)
. (8)

Finally, using (6), we get for the word (5) simply

Wn(θ)= (hi1 R j1
θ · · · h

ik−1 R jk−1
θ hik R jk

θ )h
ik+1

=

(
λi1+···+ik cos j1θ · · · cos jkθ λi1+···+ik cos j1θ · · · cos jk−1θ sin jkθ

0 0

)
×

(
λik+1 0

0 0

)
=

(
λn cos j1θ · · · cos jkθ 0

0 0

)
. (9)
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Therefore ‖Wn(θ)‖ is given by

λn
|cos j1θ · · · cos jk−1θ |

(
|cos jkθ | + |sin jkθ |

)
for Wn of type (2),

λn
|cos j2θ · · · cos jkθ |

(
|cos j1θ | + |sin j1θ |

)
for Wn of type (3),

λn
|cos j2θ · · · cos jk−1θ |

(
|cos j1θ | + |sin j1θ |

)
×
(
|cos jkθ | + |sin jkθ |

)
for Wn of type (4),

λn
|cos j1θ · · · cos jkθ | for Wn of type (5).

Remark. This shows that, among words with k rotation blocks, min
Wn
‖Wn(θ)‖ is

reached by words of type (5).

Theorem 2. Let

Sα =
{
θ ∈ [0, 2π)

∣∣ |cosαθ |< λ−(1−δ)α/ε−1},
S̃α =

{
θ ∈ [0, 2π)

∣∣ |cosαθ |< λ−(1−δ)α/ε
}
.

Then the resonant set R satisfies⋃
α∈N

Sα ⊆R⊆
⋃
α∈N

S̃α.

Proof. Suppose θ ∈
⋃
α∈N Sα. Then θ ∈ Sα for some α ∈ N and

|cosαθ |< λ−(1−δ)α/ε−1.

Let n = [α/ε] + 1. Then, n − 1 ≤ α/ε < n and α < εn. Consider the word
ωn(θ)= hi1 Rαθ hi2 where i1+ i2 = n. Since m = α, we have m ≤ εn. Then

fn(θ)= min
Wn(θ)
‖Wn(θ)‖ ≤ ‖ωn(θ)‖ = λ

n
|cosαθ |< λn

· λ−(1−δ)α/ε−1
≤ λδn.

Therefore θ ∈R.
Now suppose θ /∈

⋃
α∈N S̃α. Then |cosαθ | ≥ λ−(1−δ)α/ε for all α ∈ N. Choose

an arbitrary n ∈ N. Then

fn(θ)= min
Wn(θ)
‖Wn(θ)‖ = ‖ωn(θ)‖ (for some word ωn(θ))

= λn
|cos j1θ · · · cos jkθ | (by the remark above)

= λn
|cosα1θ

m1 · · · cosαlθ
ml |,

where α1 < · · ·< αl and m1α1+ · · ·+mlαl = m ≤ εn. Then

fn(θ)= λ
n
|cosα1θ

m1 · · · cosαlθ
ml |

≥ λn
· λ−(1−δ)(m1α1+···+mlαl )/ε = λn

· λ−m(1−δ)/ε
≥ λδn,

and therefore θ /∈R. �
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We claim that R is a dense open set. To show that R is open, we show that for
each n, fn is continuous. For each n,

Rn = {θ ∈ [0, 2π) | fn(θ) < λ
δn
} = f −1

n ((−∞, λδn)),

which is open as the preimage of a continuous function of an open set. Note that
R=

⋃
∞

n=1 Rn , a union of open sets, so R is open.
To show that fn is continuous, we note that fn is the minimum of a finite number

of continuous functions (the norms of a finite number of words). Denote these
functions by F1, F2, . . . , FM , M ∈ N. Fix arbitrary θ ∈ [0, 2π), fix ζ > 0, and let
η > 0 be such that whenever |θ− θ̃ |<η, |Fk(θ)−Fk(θ̃)|< ζ for all k = 1, . . . ,M .
Consider arbitrary θ̃ ∈ (θ − η, θ + η). For some i, j ,

fn(θ)= Fi (θ) and fn(θ̃)= F j (θ̃).

By the definition of fn ,

Fi (θ)≤ F j (θ) and F j (θ̃)≤ Fi (θ̃).

Notice that if Fi (θ)= F j (θ̃), then | fn(θ)− fn(θ̃)|=0<ζ and we are done. Suppose
that Fi (θ) > F j (θ̃). Then | fn(θ)− fn(θ̃)| = Fi (θ)− F j (θ̃) ≤ F j (θ)− F j (θ̃) < ζ .
Otherwise, if Fi (θ) < F j (θ̃), then

| fn(θ)− fn(θ̃)| = F j (θ̃)− Fi (θ)≤ Fi (θ̃)− Fi (θ) < ζ.

To see that R is dense, let I be any open interval in [0, 2π). The collection
of points Rα = {π/2α + (π/α)k : k ∈ {1, . . . , 2α − 1}} is in Sα; indeed, for any
φ ∈ Rα, cosαφ = 0 < λ−(1−δ)α/ε−1. If we choose α > |I |/π , then there must be
some element φ of Rα in I . Since φ ∈

⋃
α∈N Sα ⊆R⊆

⋃
α∈N S̃α, we see that every

open interval in [0, 2π) contains a point in R.
Now we are ready to estimate the size of R. Consider S̃α for arbitrary α ∈ N.

The measure of this set is

|S̃α| = 4α
( π

2α
−

1
α

cos−1(λ−(1−δ)α/ε)
)

= 2π − 4 cos−1(λ−(1−δ)α/ε)

≈ 2π − 2π + 4λ−(1−δ)α/ε

= 4λ−(1−δ)α/ε .

Then our estimate for the size of R is

|R| ≤

∣∣∣∣⋃
α∈N

S̃α

∣∣∣∣≤ ∞∑
α=1

|S̃α| ≈ 4
∞∑
α=1

λ−(1−δ)α/ε =
4λ−(1−δ)/ε

1− λ−(1−δ)/ε
≈ 4λ−(1−δ)/ε,

as ε ∼ 0 and λ, δ are fixed.
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3. Some numerical evidence

We provide some numerical and graphical evidence of what was proved. We see
how the graphs of the model case and the real case compare for fixed n and m.
In addition, it is shown graphically that changing the multiplicities of H affects
the word’s norm, but in the model case the word’s norm is invariant under these
changes. The graphs in this section were plotted with Maple 14.

Based on the similarities between the pictures of the real case and the model
case, we conjecture that the resonant set in the model case is, in some sense, the
limiting set of the resonant set in the real case as λ grows large, since the λ−1 term
goes to 0 as λ goes to infinity. Of course, since here we take λ relatively small
(λ = 2) for graphing convenience, this is a rough conjecture; in fact, proving it
seems to be rather difficult.

Figure 1 shows a red curve and a blue curve. The blue curve is the graph of
‖hi1 R2

θhi2 R3
θhi3‖where i1, i2, i3∈N and i1+i2+i3=15. Recall that h is the matrix

we use in the model case, where λ−1 is replaced by 0. With these combinatorics,
varying i1, i2, i3 does not change the graph, as long as their sum is 15. Specifically,
Figure 1 is the model case of n = 15, m = 5 ( j1 = 2, j2 = 3), and λ= 2.

10
20
30
40

Figure 1. Graphs of the functions ‖H 5 R2
θ H 5 R3

θ H 5
‖ (red curve)

and ‖h5 R2
θh5 R3

θh5
‖ (blue curve) when λ = 2. (The curves have

been slightly offset horizontally; otherwise they would coincide at
this resolution.) The thin black curve on the bottom right is the
difference between the first and second functions, with the y-axis
expanded 1000 times.
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Figure 2. Graphs of the functions ‖H 5 R2
θ H 9 R3

θ H 1
‖ (red curve)

and ‖h5 R2
θh9 R3

θh1
‖ (blue curve) when λ= 2.

The red curve in Figure 1 shows the case where we replace h with H and set
i1 = i2 = i3 = 5. Explicitly, we are graphing ‖H 5 R2

θ H 5 R3
θ H 5
‖.

In Figure 2 we change only two parameters relative to Figure 1: the lengths of
the last two blocks of H ’s (or h’s) are now i2 = 9, and i3 = 1. As already seen,
the h curve (blue) remains the same, but the H curve (red) — that is, the graph of
the function ‖H 5 R2

θ H 9 R3
θ H 1
‖— changes significantly as a result of changing the

order of multiplication in the word.
By comparing the red curves in Figures 1 and 2, we observe that a greater

disparity between the multiplicities of H (the ik’s) is correlated with a smaller
resonant set (the set of points θ between 0 and 2π such that the norm of the word
is within a certain distance of zero). The slope of the word’s norm is steeper in
Figure 2 than it is in Figure 1 and the peaks in Figure 2 are associated with larger
values of the word’s norm than in the case depicted by Figure 1. Both conditions
lead to fewer points θ that are mapped to a norm of the word that is close to
zero.

Figure 3 shows the graph of ‖H 1 R2
θ H 1 R3

θ H 13
‖. Comparing this graph with

Figure 2 provides further evidence that a greater disparity between the multiplicities
of H results in a smaller resonant set.

To further justify our use of the model case, consider the Figure 4, which treats
the case of a word of the form (4). Specifically, the blue curve shows the function
‖Rθhi1 Rθhi2 Rθ‖, where i1+i2=15 and λ=2. We take i1=7 and i2=8 and replace
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Figure 3. Graphs of the functions ‖H 1 R2
θ H 1 R3

θ H 13
‖ (red curve)

and ‖h1 R2
θh1 R3

θh13
‖ (blue curve) when λ= 2.

h by H to obtain the red curve. As in Figure 1, the two curves are indistinguishable
to within the plot’s resolution.

Note that the blue curve in Figure 4 is not comparable to that of Figures 1–3.
Both show the model case, but with different combinatorics on the word: expres-
sion (5) for the earlier figures, and (4) for Figure 4. Both graphs still have a small
resonant set.

Figure 5 shows the graphs of ‖Rθ H 14 Rθ H Rθ‖ (red) and of ‖Rθh14 Rθh Rθ‖
(blue); the latter of course is the same as the blue curve of Figure 4. Comparing
Figure 4 with Figure 5, again we see that a greater disparity between the multiplic-
ities of H results in a smaller resonant set.

4. Conclusion

We hope that our model problem is a viable approximation for what happens when
the matrix H is used. The next step might be to express the the Bochi–Fayad
problem in terms of the model problem. One way to do this might be to write
H = h+ e, where e is the matrix

e =
(

0 0
0 λ−1

)
,

and then express a product of H ’s and Rθ’s in terms of a product of h’s and Rθ’s, and
some other, hopefully small, error terms. The numerical evidence above suggests
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−2
−1

1
2

Figure 4. Graphs of the functions ‖Rθ H 7 Rθ H 8 Rθ‖ (red curve)
and ‖Rθh7 Rθh8 Rθ‖ (blue curve) when λ = 2. (The curves have
been slightly offset horizontally; otherwise they would coincide at
this resolution.) The thin black curve on the bottom right is the
difference between the first and second functions, with the y-axis
expanded 2500 times.

Figure 5. Graphs of ‖Rθh14 Rθh Rθ‖ and ‖Rθ H 14 Rθ H Rθ‖ when
λ= 2.
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that the resonant set for words using the matrix H would actually be smaller than
that for words using the matrix h, especially if the distribution of H ’s is in some
sense irregular. This behavior might become more apparent when λ is taken much
larger, and ε much smaller, than in the experiments above.
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