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(Communicated by Michael Dorff)

The celebrated Gauss–Bonnet formula has a nice generalization to surfaces with
densities, in which both arclength and area are weighted by positive functions.
Surfaces with densities, especially when arclength and area are weighted by the
same factor, appear throughout mathematics, including probability theory and
Perelman’s recent proof of the Poincaré conjecture.

A classic, if somewhat anthropomorphic, question in mathematics is whether an
ant moving on a curve embedded in R3 or in a surface can measure the curvature
κ of the curve or say anything about how the curve is embedded in space. The
answer, no, stems from the fact that the ant can only measure distance along the
curve and has no way to determine changes in direction. Curvature is extrinsic to
a curve and must be measured from outside the curve.

Following this one might then ask whether a person moving in a surface em-
bedded in R3 has any chance of saying something about the surface’s curvature in
R3. Whereas the ant could only measure distance along the curve, a person on a
surface has the ability to measure both length and area on the surface. Does this
change things?

The answer is yes. Gauss’s Theorem Egregium declares that a certain measure of
surface curvature now known as the Gauss curvature G turns out to be an intrinsic
quantity, measurable from within the surface. This is not at all apparent from its
definition. G is defined as the product of the principal curvatures κ1, κ2, the largest
and smallest (or most positive and most negative) curvatures of one-dimensional
slices by planes orthogonal to the surface. For a plane, G = 0. For a sphere of
radius a, we have G = 1/a2. For the hyperbolic paraboloid {z= 1

2(x
2
− y2)}, at the

origin G equals−1: negative because the surface is curving up in one direction and
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down in the other direction; as you move farther out in the surface, G approaches
0 as the surface flattens out.

The fact that the Gauss curvature is actually intrinsic is a consequence of the
celebrated Gauss–Bonnet formula (for a general reference see [do Carmo 1976;
Morgan 1998]). Gauss–Bonnet relates the integral of the Gauss curvature over a
smooth topological disc D in a surface to the integral over the boundary ∂D of the
curvature κ of the boundary: ∫

∂D
κ +

∫
D

G = 2π.

For example, for a smooth closed curve C in the plane, where G = 0,∫
C
κ = 2π,

that is, the total curvature of an embedded planar curve is 2π . For a smooth closed
curve C enclosing area A on the unit sphere, where G = 1,∫

C
κ + A = 2π.

For example, the equator, with curvature κ = 0, encloses area 2π . Note that we
are using the intrinsic or “geodesic” curvature κ , not the curvature of the curve in
R3 if the surface is embedded in R3.

Gauss–Bonnet has extensive applications throughout geometry and topology. It
can be used to classify two-dimensional surfaces by genus and to solve isoperi-
metric problems [Howards et al. 1999; Morgan 1998, Section 9.12]. The Gauss–
Bonnet formula provides an intrinsic definition of the Gauss curvature G of a
surface at a point p by considering ε-balls Bε of area A about p and taking a
limit as ε approaches 0:

G(p)=
1
A

∫
Bε

G = lim
1
A

(
2π −

∫
∂Bε

κ
)
.

This article considers what happens to the Gauss–Bonnet formula under some
simple intrinsic alterations of the surface. The most common alteration, called a
conformal change of metric, scales distance by a variable factor λ, so that ds =
λ ds0 and d A = λ2 d A0; that is, arc length is weighted by λ and area is weighted
by λ2. More generally, one can weight arc length and area by unrelated densities:

ds = δ1ds0, d A = δ2 d A0.

If the two densities are equal, δ1 = δ2 = 9, the result is simply called a surface
with density 9. Surfaces with density appear throughout mathematics, including
probability theory and Perelman’s recent proof of the Poincaré conjecture [Morgan
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2009, Chapter 18]. Important examples include quotients of Riemannian manifolds
by symmetries and Gauss space, defined as Rn with Gaussian density c exp(−r2).

Perelman’s paper and many other applications require generalizations of cur-
vature to general dimensional surfaces with densities. In higher dimensions, the
important intrinsic curvature is the so-called Ricci curvature, for which many gen-
eralizations have been proposed, each for its own purpose, one particular choice
employed by Perelman (see [Morgan 2009, Section 18.3] and references therein).
Corwin et al. [2006, Section 5] proposed a generalization of Gauss curvature and
the Gauss–Bonnet formula to surfaces with density9. In principle, their definition
generalizes to surfaces with length density δ1 and area density δ2 by a conformal
change of metric. The following proposition gives a simple, direct presentation of
that generalization. The generalized Gauss curvature G ′ is given by

G ′ = G−1 log δ1.

An intriguing feature is that G ′ depends only on the length density δ1, not on the
area density δ2. For a conformal change of metric (δ1 = λ, δ2 = λ

2), (1) below
agrees with the standard Gauss–Bonnet formula (and gives an easy proof): the
first integrand becomes κλds0 = κds and the second integrand becomes the new
Gauss curvature G ′λ2d A0=G ′d A because G ′= (G−1 log λ)/λ2 [Dubrovin et al.
1992, Theorem 13.1.3].

For a disc with density (the case δ2= δ1), (1) agrees with the formula in [Corwin
et al. 2006, Proposition 5.2]. For a disc with area density (the case δ1 = 1), (1)
agrees with the formula in [Carroll et al. 2008, Proposition 3.3].

There are other possible generalizations of Gauss curvature to surfaces with
density, for example, coming from the power series expansions for the area and
perimeter of geodesic balls [Corwin et al. 2006, Propositions 5.8 and 5.9].

Proposition. Consider a smooth Riemannian disc D with Gauss curvature G,
length density δ1, area density δ2, classical boundary curvature κ0 (inward nor-
mal), and hence generalized boundary curvature

κ = (δ1/δ2)κ0− (1/δ2)∂δ1/∂n.

Then ∫
δD

(δ2/δ1)κds0+

∫
D
(G−1 log δ1) d A0 = 2π. (1)

Proof. We begin by explaining the formula for κ . The geometric interpretation of
curvature is minus the rate of change of length per change in enclosed area as you
deform the curve normal to itself [Corwin et al. 2006, Proposition 3.2]. First of all,
the densities weight this effect by δ1/δ2. There is a second effect due to the rate of
change ∂δ1/∂n of the length density in the normal direction, divided again by the
area density δ2.
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To prove (1), first consider the conformal metric ds = δ1ds0, with area density
δ2

1 and curvature
κ ′ = (1/δ1)κ0− (1/δ2

1)∂δ1/∂n.

Multiplying the area density by µ= δ2/δ
2
1 multiplies the curvature by 1/µ= δ2

1/δ2:

κ = (δ1/δ2)κ0− (1/δ2)∂δ1/∂n.

Hence by substitution, by the classical Gauss–Bonnet Theorem and the divergence
theorem, and by trivial algebra,∫

∂D
(δ2/δ1)κds0 =

∫
∂D
κ0ds0−

∫
∂D
∂ log δ1/∂n ds0

= 2π −
∫

D
Gd A0+

∫
D
1 log δ1 d A0

= 2π −
∫

D
(G−1 log δ1) d A0,

as desired. �
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