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We introduce the notion of the rank gradient function of a descending chain of
subgroups of finite index and show that the lamplighter group Z2 oZ has uncount-
ably many 2-chains (that is, chains in which each subsequent group has index 2
in the previous group) with pairwise different rank gradient functions. In doing
so, we obtain some information on subgroups of finite index in the lamplighter
group.

1. Introduction

The lamplighter group, by which we mean the wreath product of the group of
order 2 with the infinite cyclic group, denoted L = Z2 o Z, is a popular object in
group theory and its applications. Just two illustrations of this are Chapter 6 in
[Meier 2008] and some select sections in [Lubotzky and Segal 2003]. It is a 2-step
solvable group (i.e., metabelian) of exponential growth, infinitely presented and
scale invariant [Grigorchuk and Żuk 2001; Nekrashevych and Pete 2011], which
is the cornerstone in all known results about the range of L2-Betti numbers of
groups on compact manifolds. In particular, Atiyah’s problem about the existence
of closed manifolds with noninteger and even irrational L2-Betti numbers was com-
pletely solved on a base of considerations related to L [Grigorchuk and Żuk 2001;
Grabowski 2010; Grigorchuk et al. 2000].

Lackenby [2005] introduced an interesting group-theoretical notion, the rank
gradient, which happens to be useful in topology, the theory of countable equiv-
alence relations, the study of amenable groups and other areas. Given a group G
and a descending sequence {Hn}

∞

n=1 of subgroups of finite index one can define

RG(G, {Hn})= lim
n→∞

d(Hn)− 1
[G : Hn]

to be the rank gradient of the sequence {Hn} with respect to G where d(H) denotes
the minimal number of generators of a group H .
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Amenable groups were introduced by J. von Neumann in 1929 and play an im-
portant role in many areas of mathematics [Nekrashevych and Pete 2011]. There
are a number of results due to Lackenby, M. Abért, A. Jaikin-Zapirain and N.
Nikolov showing that amenability of G or of certain normal subgroups of G usu-
ally implies vanishing of the rank gradient. For instance, finitely generated infinite
amenable groups have RG = 0 with respect to any normal chain with trivial inter-
section; see [Abért et al. 2011, Theorem 5].

It is reasonable to study the rank gradient for sequences {Hn} with trivial core
(i.e., no nontrivial normal subgroups in the intersection

⋂
n Hn). Indeed,

RG(G, {Hn})= RG(G/N , {Hn/N })

if N GG, N <
⋂

n Hn. The most attention is given to the case when
⋂

n Hn ={1}. One
of the remaining open questions is this:

Question 1.1 [Abért et al. 2011]. Let G be a finitely generated infinite amenable
group. Is it true that RG(G, {Hn})= 0 for any chain with trivial intersection?

If
⋂
∞

n=1 Hn = H then H is a closed subgroup with respect to the profinite topol-
ogy and RG(G, {Hn}) is a characteristic of the pair (G, H) which in some sit-
uations may characterize the pair (G, H) up to isomorphism. We say two pairs
(G, H), (P, Q) are isomorphic if there is an isomorphism φ : G → P such that
φ(H)= Q.

If RG(G, {Hn})= 0 then one may be interested in the decay of the function of
the natural argument n ∈ N given by

rg(n)= rg(G,{Hn})
(n)=

d(Hn)− 1
[G : Hn]

which we call the rank gradient function. We may omit (G, {Hn}) if the group
and chain in consideration are understood. Again, the rate of decay of rg(n) may
be an invariant of the pair (G, H) and may characterize the way H lies in G as
a subgroup. Note that the same subgroup can be obtained as the intersection of
distinct chains: one can delete certain elements in Hn thereby allowing rg(n) to
decay as fast as one would like and indeed this is not the only way to get different
chains with the same intersection. Thus, we restrict our definition to the case when
for some prime p, we have [Hn+1 : Hn]= p and in this case we say the chain is a p-
chain. Our main result shows that rg(n) may be used to show that the lamplighter
group contains 2-chains with distinct rates of decay of the rank gradient function.

Theorem 1.2. The group L has uncountably many 2-chains with pairwise distinct
rank gradient functions.

This result is obtained by explicitly describing subgroups of index 2 in the
“higher rank” lamplighter groups Ln = Zn

2 oZ.
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Theorem 1.3. For any 2-chain {Hn} in L each member Hn is isomorphic to Li =

Zi
2 oZ for some i ≤ n.

This is a corollary of Theorem 2.1 below.

2. Subgroups of index 2 in Ln

Let Ln=Zn
2 oZ=

⊕
Z Zn

2oZ (by Z2 we mean the group of order 2 and the generator
of Z acts by shifting in the direct sum) and let An =

⊕
Z Zn

2 be the base group of
Ln . Observe that Ln is generated by the elements ai , i = 1, 2, . . . , n and t where
t is a generator of the infinite multiplicative cyclic group which we nevertheless
denote in the additive way Z, and ai ∈ An, i = 1, 2, . . . , n are elements given
by an n ×∞ matrix with all entries zero except one located in the i-th row and
column at position 0 (we assume that the columns are enumerated by the elements
of Z). So Ln = 〈a1, . . . , an, t〉. We will use similar notation for generation in the
remainder of the paper. Observe that if we identify elements of the base group An

with two sided infinite (bi-infinite) sequences of columns of dimension n over Z2

then conjugation by t acts on them as a shift τ in the set of sequences. We will use
this fact later.

Theorem 2.1. Let H < Ln be a subgroup of index 2. Then either H ' Ln or
H ' L2n . There are 2n+1

− 2 subgroups of the first type and 1 subgroup of the
second type.

In the proof, we use the following well known result.

Lemma 2.2. Let M =Zp⊕· · ·⊕Zp⊕· · · be a finite or infinite direct sum of cyclic
groups Zp with p a prime. Then every subgroup P < M is a direct summand:
M = P ⊕ Q for some Q. (See [Kargapolov and Merzljakov 1977, Chapter 10].)

We will often interpret Zn
p as a vector space of dimension n over the prime field

Fp ' Zp. Before we present a proof of Theorem 2.1, we will need the following
lemma.

Lemma 2.3. Let M=Zn
p. Every subgroup P<M of index p has a unique “orthog-

onal” complement Q < M such that M = P⊕Q. The group Q is generated by the
element ā = (a1, . . . , an) which is determined by P. Then P consists of elements
x̄ = (x1, . . . , xn) whose coordinates satisfy the “orthogonality” condition

a1x1+ · · ·+ anxn ≡ 0 (mod p).

Proof. Let [M : P]= p. Consider the subgroup P as a subspace of the vector space
M = Zn

p. Choose a basis of P consisting of elements b̄1, . . . , b̄n−1

b̄1 = (b1,1, . . . , b1,n), . . . , b̄n−1 = (bn−1,1, . . . , bn−1,n),
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with bi, j ∈Zp. Now define the (n−1)×n matrix B = (bi j ), which has rank n−1,
and consider the system of equations

b1,1x1+ · · ·+ b1,nxn = 0
...

bn−1,1x1+ · · ·+ bn−1,nxn = 0.

This system has the nontrivial solution ā= (a1, . . . , an) and every other solution is
some constant multiple of ā. It is then easy to see that M = P⊕〈ā〉. It is also clear
that given some ā ∈ M with ā 6= 0, the set of solutions of a1x1 + · · · + anxn ≡ 0
(mod p) yields a subgroup P of index p in M . �

Although we do not this, observe that by using tools from linear algebra, the
notion of orthogonal complement can be defined in a similar way as we did for
a subgroup of index p in an elementary p-group of finite rank. We will use the
notation H⊥ to denote the orthogonal complement of a subgroup H < M in M .

Corollary 2.4. There is a bijection between subgroups of index p in M = Zn
p and

subgroups of order p given by
H → H⊥.

We now restrict our attention to the case when p = 2.

Proof of Theorem 2.1. Observe that the abelianization A := (Ln)ab is isomorphic
to Zn

2×Z. Define A2 < A to be the subgroup generated by the squares of elements
in A. Then, A/A2

' Zn+1
2 = 〈ā1, . . . , ān, t̄〉 where as before Z = 〈t〉 denotes the

multiplicative infinite cyclic group generated by t , and a bar over some generator,
āi or t̄ for example, denotes that we are considering the element corresponding to
ai or t of Ln as an element of the quotient group Ln/[Ln,Ln]L

2
n ' Zn+1

2 . If we
consider ai as an n×∞ matrix, then it is of the form

· · · 0 0 0 · · ·
...

...
...

· · · 0 1 0 · · ·
...

...
...

· · · 0 0 0 · · ·

 ,

where the 1 is in the i-th row and the 0-th column. Recall that each ai is the i-th
generator of A0

n , where we define

An =
⊕

Z

Zn
2 =

⊕
j∈Z

A j
n.

The number of subgroups of index 2 in Ln is equal to the number of epimorphisms
Ln → Z2 which is equal to the number of subgroups of index 2 in Zn+1

2 which
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is equal to 2n+1
− 1 since the kernel of any such epimorphism is an orthogonal

complement to a subgroup of order 2 generated by some nonidentity element. We
have a short exact sequence

1→An→ Ln
φ
→ 〈t〉 → 1

where φ is the natural projection onto Z = 〈t〉. Let H < Ln be of index 2. Then
H is normal in Ln and therefore shift invariant.

There are two cases: either φ[H ] = 〈t2
〉 or φ[H ] = 〈t〉.

Case 1. Assume φ[H ]= 〈t2
〉. In this case H∩An =An , since otherwise we would

have [Ln : H ] ≥ 4 and there is only one subgroup H of index 2 in Ln with this
property. Furthermore, t2

∈ H and H =An o 〈t2
〉.

Let D0 < An, D0 ' Z2n
2 be a subgroup of n × ∞ matrices where the only

nonzero entries belong to columns with position 0 and 1. Define D j = t−2 j D0t2 j .
Then notice Di ∩ D j = 0 for i 6= j and An =

⊕
j∈Z D j . The element t2 acts by

conjugation on
⊕

j∈Z D j as a one-step shift. This implies H ' L2n .

Case 2. Now we assume φ[H ] = 〈t〉. We have 2n+1
−2 such subgroups H . In this

case, H∩An = P is a shift invariant subgroup of index 2 in An . Because P is shift
invariant, there must be some x ∈ An whose matrix representation has only one
nonzero column, namely the column with position 0, such that x /∈ P . Let q ∈ Zn

2
be the vector with coordinates the same as x . That is, we consider x as an n × 1
vector and relabel it q for clarity. Then let Q0 be the orthogonal complement to
〈q〉:

A0
n = 〈q〉⊕ Q0,

where as before we have An =
⊕

i∈Z Ai
n . Note that we are considering Q0 and 〈q〉

as subgroups of A0
n and so Q0 is a subgroup of H since otherwise we would have

[L : H ] ≥ 4. Define

Q =
⊕
i∈Z

Qi , where Qi
= t−i Q0t i .

Let R=Z2[t, t−1
] be the ring of Laurent polynomials in Z2. It is isomorphic to

the group ring Z2[Z]where as before Z is the additive notation for the multiplicative
infinite cyclic group generated by t . The group An can be converted into an R-
module Mn by agreeing that the generator t acts on An as the previously defined
right-shifting element τ (remember that elements of An can be considered as bi-
infinite sequences of columns representing the elements of Zn

2). Moreover, An

is the additive group of this module, Mn is a free R-module of rank n and is
isomorphic to Rn .

Observe that Q is a shift invariant subgroup of H . Because of Lemma 2.2 there
is a subgroup S < P such that the decomposition P = Q ⊕ S holds. Note that



302 DEREK J. ALLUMS AND ROSTISLAV I. GRIGORCHUK

S is also a shift invariant subgroup of P and therefore can be interpreted as an
R-module. Therefore P, Q and S can be considered as submodules of Mn and the
decomposition of modules P = Q⊕ S holds (we will not change the notation for
P, Q, S when considering them as modules or vise versa since it will be clear by
the context if we are considering these objects as abelian groups or as R-modules).

We will need the following lemma. Any graduate level textbook in Algebra
will contain the fact that a ring of polynomials with coefficients in some field is
a principal ideal domain. The ring R is the localization of the polynomial ring in
the multiplicative set consisting of the nonnegative powers of t [Reid 1988]. Many
properties of the Laurent polynomial ring follow from the general properties of
localization as well as the next one which is a well known fact. However, we were
unable to find a suitable reference for this so we add a proof of it below.

Lemma 2.5. The ring R is a principal ideal domain.

Proof. Let I be an ideal in R. Then I ∩Z2[t] is an ideal in Z2[t] and since the ring
of polynomials over a field is a principal ideal domain, I ∩Z2[t] = ( f ) for some
f ∈ Z2[t]. Then R f ⊂ I . For h ∈ I , h = t−k g for some k ∈ N and g ∈ Z2[t].
Thus g ∈ I ∩ Z2[t] = ( f ), and so h = t−k f a ∈ R f for some a in R. Therefore
R f = I . �

Since they are submodules of a finitely generated free module Mn 'Rn over a
principal ideal domain R, the modules P, Q and S are also free. As P is a subgroup
of index 2 in An , the module P is free of rank n, Q is free of rank n− 1 and S is
free of rank 1. Thus the Rn-module P , when considered as a group generated by
the additive group P and the element t which acts by conjugation on P as the shift
element τ , becomes isomorphic to Rn o Z' Ln .

We have 2n+1
−2 subgroups H which can be obtained in the second case. Indeed,

there are 2n
− 1 choices for the vector q and therefore the subgroup Q. And to

each choice of Q we have two choices to construct H : either to assume that t ∈ H
or that t /∈ H . In this way, we get 2(2n

− 1) = 2n+1
− 2 subgroups corresponding

to Case 2. This finishes the proof of the first theorem. �

3. Construction of chains

Since Z2[x, x−1
] is a principal ideal domain by Lemma 2.5, a shift invariant sub-

group T of A1 =
⊕

Z Z2 corresponds to a principal ideal J such that

Z2[x, x−1
]/J' Z2

which is a field. This implies that J is a maximal ideal generated by some irre-
ducible polynomial of degree 1. Thus, J= 〈 f 〉 with deg( f )= 1 so f = x+1. The
corresponding element of T is then ξ = (. . . , 0, 1, 1, 0, . . .) where the 1’s are in
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the 0 and 1 place respectively. Additionally, ξ is a generator of T as an R-module.
One then concludes that T consists of sequences

(. . . , a−1, a0, a1, . . .),

where ∑
n

an ≡ 0 (mod 2). (1)

This observation gives an effective way to construct a subgroup H of index 2
in Ln with H ' Ln . Choose a basis E of Zn

2 and write elements of An as n×∞
matrices (where the columns are indexed by Z as usual) with respect to this basis
at position i ∈Z. Then take a subgroup of An consisting of elements which satisfy
the relation (1) in the first row. After this, choose t ∈ H or t /∈ H .

We know that L contains 3 subgroups of index 2, where 2 are isomorphic to L

and the other is isomorphic to L2. Furthermore, L2 has 7 subgroups of index 2,
where 1 is isomorphic to L4 and 6 are isomorphic to L2, etc. If we take a subgroup
H <L of index 2k obtained from L by taking a descending chain of subgroups of
index 2 in the previous member of the chain then we have H 'L2i for some i ≤ k.
We can then take a subgroup of index 2 isomorphic to L2i (call this choice type
0) or to L2i+1 (call this choice type 1). It is clear that d(Ln) = n + 1 (obviously
Ln is generated by n + 1 elements and the abelianization of Ln is Zn

2 × Z and is
(n + 1)-generated). Now let ω ∈ {0, 1}N be a sequence. Then these two types of
choices for subgroups of index 2 allow us to construct a chain {Hω

n } such that the
subgroup Hω

n is obtained from the previous subgroup Hω
n−1 by looking at the n-th

term in our sequence ω. That is, a 0 dictates we make a choice of type 0 and a
1 dictates we make a choice of type 1. It is clear that in such a way we obtain
uncountably many different chains {Hω

n } such that each of the functions rgω(n) are
distinct. This provides the proof of Theorem 1.2.

Remark. If rω = limn→∞ rgω(n) > 0 then rω = 2−k for some k and the rank
gradient of the chain {Hω

n } is positive where the number of 0’s in the sequence ω
is k. In this case, Hω

=
⋂

n Hω
n contains a nontrivial normal subgroup. In all other

cases the rank gradient of the 2-chain is 0.

4. Conclusion

It is clear that the same method used to construct uncountably many rank gradient
functions of 2-chains in L allows one to construct uncountably many 2-chains with
pairwise distinct types of decay of the rank gradient function. For instance, one
can consider a family of functions δα(n) = 2−nα with 0 < α < 1 where to each
such function we have a corresponding sequence ω with the property that the rank
gradient function rgω(n) is the best approximation of the function 2−nα . By “best
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approximation”, we mean the following. Starting with any subgroup H1 ' L2

of index 2 in L (which corresponds to the value ω1 = 1 of the sequence ω and
the value rgω(1) = 1 > 1

2 = δα(1)), one can make a choice of type 0 until the
rank gradient function becomes less than the value of the function δα(n) for the
corresponding value of the argument n. Then make the choice of type 1 until the
rank gradient function becomes greater or equal to δα(n) for the corresponding
value of n. Then again make the choice of type 0, etc. By continuing this process,
we construct a 2-chain that best approximates δα(n). Since the rates of decay of the
functions δα(n) are clearly different for different values of α, the (rates of decay
of the) corresponding rank gradient functions are also distinct.

Our study is the first step in understanding what types of decay of the rank gra-
dient function may arise in the case of finitely generated residually finite amenable
groups.

If {Hn}
∞

n=1 is a descending chain of subgroups of finite index in a residually
finite group G, then the intersection H∗ =

⋂
∞

n=1 Hn is a subgroup of G closed with
respect to the profinite topology and indeed any closed subgroup can be obtained
in this way. The rank gradient function of the chain {Hn}

∞

n=1 introduced by us
may serve as a certain characteristic of the subgroup H∗. Right now it is unclear
how rg(n) depends on the chain {Hn}

∞

n=1 with fixed intersection H∗. Even in the
case when H∗= {1}, it may be that different p-chains with trivial intersection have
different rates of decay of rg(n) but we do not have any examples of this. Of course,
it is reasonable to only consider chains with the property that Hn+1 is a maximal
subgroup in {Hn}. While we have considered the case of the lamplighter group, it
will also be interesting to study the decay of the rank gradient function with respect
to other amenable groups such as with respect to the 3-generated infinite torsion
2-group of intermediate growth constructed in [Grigorchuk 1980; 1984].
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