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Maximality of the Bernstein polynomials
Christopher Frayer and Christopher Shafhauser

(Communicated by Martin Bohner)

For fixed a and b, let Qn be the family of polynomials q(x) all of whose roots are
real numbers in [a, b] (possibly repeated), and such that q(a)= q(b)= 0. Since
an element of Qn is completely determined by it roots (with multiplicity), we
may ask how the polynomial is sensitive to changes in the location of its roots. It
has been shown that one of the Bernstein polynomials bi (x)= (x−a)n−i (x−b)i ,
i = 1, . . . , n − 1, is the member of Qn with largest supremum norm in [a, b].
Here we show that for p ≥ 1, b1(x) and bn−1(x) are the members of Qn that
maximize the L p norm in [a, b]. We then find the associated maximum values.

1. Introduction

A monic polynomial q(x) is completely determined by its roots (with multiplicity),
since it can be written as the product

q(x)=
n∏

i=1

(x − ri ),

where the ri are the roots. So it is a fair question to ask how the polynomial q is
sensitive to changes in the location of its roots. Boelkins, Miller and Vugteveen
[Boelkins et al. 2006] have shown that, among degree-n monic polynomials q(x)
all of whose roots are real, belong to [a, b], and include a and b, the value of the
supremum norm, max

a≤x≤b
q(x), is maximized by the polynomials

(x − a)n−1(x − b) and (x − a)(x − b)n−1.

So these are in some sense the “largest” polynomials in the class just described.
We will show that these are also the largest polynomials with respect to another

measure of size, namely, the L p norm for p≥ 1. (For p= 1 this is simply the area
enclosed by the graph between a and b.)

MSC2000: 30C15.
Keywords: polynomial root dragging, L p norm, Bernstein polynomial.
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308 CHRISTOPHER FRAYER AND CHRISTOPHER SHAFHAUSER

Throughout this paper we let q(x) be a monic polynomial of degree n all of
whose roots are real and lie in [a, b]; we assume further that q(a)= q(b)= 0. We
denote the family of all such polynomials by Qn . We show that given any q ∈ Qn ,∫ b

a
|q(x)| dx ≤ (b− a)n+1 1

n(n+ 1)
,

and for any p ∈ N∫ b

a
|q(x)|p dx ≤ (b− a)pn+1 1

pn+ 1

(
(pn− p)! p!

(pn)!

)
.

We then use these bounds to verify the results of [Boelkins et al. 2006]. That is,
for a < x < b,

|q(x)| ≤
(b− a)n

n

(
n− 1

n

)n−1

.

2. Preliminary information

We are interested in how “large” a polynomial in Qn can be and therefore need a
way to tell when one polynomial is larger than another. We will use the L p norms
to measure the size of a polynomial. Given a polynomial q we use the notation
‖q‖L p

[a,b]
to denote the L p norm of q:

‖q‖L p
[a,b]
=

(∫ b

a
|q(x)|p dx

)1/p

and

‖q‖L∞
[a,b]
= max

x∈[a,b]
|q(x)|.

In particular, the L1 norm of q,

‖q‖L1
[a,b]
=

∫ b

a
|q(x)| dx,

measures the area enclosed by q .
Our goal is to understand how the L p norm of q ∈ Qn is a function of the

location of its roots. Specifically, we would like to understand how the smallest
root of q which is greater than a will affect the L p norm of q . We let r0 = a and
r1 represent the smallest root greater than r0. With this in mind, we study how r1

affects the L p norm of polynomials of the form

q(x)= (x − r1)
ks(x)
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where s(x)= (x − r0)
l(x − r2)(x − r3) · · · (x − rm−1) and n = l+ k+m− 2. That

is, q is a degree n polynomial with roots

r0 = a < r1 < r2 ≤ r3 · · · ≤ rm−1 = b,

which takes into account having possibly repeated roots at r0 and r1. To understand
how r1 affects the L p norm of q we study the function

Ap(q)(r1)= ‖q‖
p
L p
[a,b]
=

∫ r1

a
(r1− x)kp

|s(x)|p dx +
∫ b

r1

(x − r1)
kp
|s(x)|p dx,

where we allow r1 ∈ [r0, r2].
The following two basic results of calculus will be used later, when we optimize

the L p norm.

Lemma 2.1. If f (x) is twice differentiable and concave up on [a, b], then

max{ f (a), f (b)}> f (x)

for all x ∈ (a, b).

Lemma 2.2 (Leibniz’s formula). If F(x, y) and Fx(x, y) are continuous in both x
and y in some region of the xy-plane including a ≤ y ≤ x and u(x) is a continuous
function of x , then

d
dx

∫ u(x)

a
F(x, y) dy = F(x, u(x))

d
dx

u(x)+
∫ u(x)

a
Fx(x, y) dy.

3. Maximizing the enclosed area

We are now ready to find the member of Qn that encloses the largest area. In order
to do so we show that A1(q)(r1) is concave up on [r0, r2].

Theorem 3.1. If q(x)= (x−r1)
ks(x), where s(x)= (x−r0)

l(x−r2) · · · (x−rm−1)

and r0 < r1 < r2 ≤ r3 ≤ · · · ≤ rm−1, then

d2

dr2
1

A1(q)(r1) > 0 on [r0, r2].

Proof. Let F(r1, x) = (x − r1)
ks(x), and observe that F(r1, r1) = 0. Applying

Leibniz’s formula to each term in d A1(q)(r1)/dr1, we have

d
dr1

∫ r1

a
(r1− x)k |s(x)| dx = k

∫ r1

a
(r1− x)k−1

|s(x)| dx

and
d

dr1

∫ b

r1

(x − r1)
k
|s(x)| dx =−k

∫ b

r1

(x − r1)
k−1
|s(x)| dx .



310 CHRISTOPHER FRAYER AND CHRISTOPHER SHAFHAUSER

If k = 1, the fundamental theorem of Calculus implies that

d2

dr2
1

∫ r1

a
(r1− x)|s(x)| dx = |s(r1)| and

d2

dr2
1

∫ b

r1

(x − r1)|s(x)| dx = |s(r1)|.

Since r1 is not a root of s(x), it follows that

d2

dr2
1

A1(q)(r1)= 2|s(r1)|> 0.

If k ≥ 2, then

d2

dr2
1

∫ r1

a
(r1− x)k |s(x)| dx = k(k− 1)

∫ r1

a
(r1− x)k−2

|s(x)| dx

and
d2

dr2
1

∫ b

r1

(x − r1)
k
|s(x)| dx = k(k− 1)

∫ b

r1

(x − r1)
k−2
|s(x)| dx .

Therefore,

d2

dr2
1

A1(q)(r1)= k(k− 1)
∫ b

a
|(x − r1)

k−2s(x)| dx > 0

and A1(q)(r1) is concave up on [r0, r2]. �

Corollary 3.2. One of the Bernstein polynomials

bi (x)= (x − a)n−i (x − b)i , i = 1, . . . , n− 1,

is the member of Qn that encloses the largest area on [a, b].

Theorem 3.1, along with Lemma 2.1, tells us that we can always find a polyno-
mial in Qn with a larger L1 norm by “dragging” r1 to either r0 or r2. Playing this
game a finite number of times leaves us a polynomial with roots only at a and b.
So, one of the Bernstein polynomials,

bi (x)= (x − a)n−i (x − b)i , i = 1, . . . , n− 1,

will be the member of Qn that encloses the largest area.

4. Other values of p

We now extend the method of the previous section to values of p > 1. Let

q(x)= (x − r1)
ks(x),

where
s(x)= (x − r0)

l(x − r2) · · · (x − rm−1)
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with r0 < r1 < r2 ≤ r3 ≤ · · · ≤ rm−1, and consider

Ap(q)(r1)=

∫ r1

a
(r1− x)kp

|s(x)|p dx +
∫ b

r1

(x − r1)
kp
|s(x)|p dx . (1)

If we can show that Ap(q)(r1) is concave up on [r0, r2], then one of the Bernstein
polynomials will be the member of Qn with the largest L p norm. Using the same
argument as the p = 1 case, two applications of Leibniz’s formula yields

d2

dr2
1

Ap(q)(r1)= kp(kp− 1)
∫ b

a
|(x − r1)

kp−2
||s(x)|p dx > 0,

and Ap(q)(r1) is concave up on the interval [r0, r2] when p > 1.
In the above calculation, we have to be careful when kp−2<0. Since kp−1>0

(k ≥ 1 and p > 1) the hypothesis of Leibniz’s formula are satisfied for the first
application with

d
dr1

Ap(q)(r1)=kp
∫ r1

a
(r1−x)kp−1

|s(x)|p dx−kp
∫ b

r1

(x−r1)
kp−1
|s(x)|p dx . (2)

When applying Leibniz’s formula to the first term on the right-hand side, we need

∂

∂r1
(r1− x)kp−1

|s(x)|p

to be continuous in both x and r1 in some region including a ≤ x ≤ r1. Although
this may not be true at x = r1, we can still justify the application of Leibniz’s
formula by considering the interval [a, r1− ε] and letting ε→ 0+. That is,

d2

dr2
1

∫ r1

a
(r1− x)kp

|s(x)|p dx = lim
ε→0+

(
d

dr1
kp
∫ r1−ε

a
(r1− x)kp−1

|s(x)|p dx
)
.

Because the integrand is positive, the result will follow if the limit exists.
The polynomial s(x) does not change sign on the interval (a, r2), so we may

assume without loss of generality that s(x) ≥ 0 on [a, r1− ε], with s(x)= 0 only
at x = a. Applying Leibniz’s formula on [a, r1− ε] yields

lim
ε→0+

(
d

dr1
kp
∫ r1−ε

a
(r1− x)kp−1s(x)p dx

)
= lim
ε→0+

kp(kp− 1)
∫ r1−ε

a
(r1− x)kp−2s(x)p dx + lim

ε→0+
(ε)kp−1s(r1− ε)

p

= lim
ε→0+

kp(kp− 1)
∫ r1−ε

a
(r1− x)kp−2s(x)p dx .
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In order to see that this limit exists, we integrate by parts to get

kp(kp−1) lim
ε→0+

(
−s(r1−ε)

p (ε)
kp−1

kp− 1
+

p
kp− 1

∫ r1−ε

a
(r1−x)kp−1s(x)p−1s ′(x) dx

)
= kp2

∫ r1

a
(r1− x)kp−1s(x)p−1s ′(x) dx,

where equality follows as kp−1> 0 and the integrand is a continuous function of
x on [a, r1]. Hence the limit exists and is positive from an earlier observation. A
similar argument applied to the second term on the right in (2) shows that

d2

dr2
1

∫ b

r1

(x − r1)
kp
|s(x)|p dx = lim

ε→0+

d
dr1

(
−kp

∫ b

r1+ε

(x − r1)
kp−1
|s(x)|p dx

)

exists and is positive. Therefore, d2

dr2
1

Ap(q)(r1) > 0.

From an argument similar to Theorem 3.1, we have the following result:

Theorem 4.1. If p≥ 1, one of the Bernstein polynomials is the member of Qn that
has the largest L p norm on [a, b].

Finally, we consider the case p =∞. Since [a, b] has finite measure,

lim
p→∞
‖ f (x)‖L p

[a,b]
= ‖ f (x)‖L∞

[a,b]
; (3)

see [Wheeden and Zygmund 1977, p. 126].

Corollary 4.2. One of the Bernstein polynomials is the member of Qn that has the
largest L∞ norm on [a, b].

Proof. Let m(x) ∈ Qn with m(x) 6= bi (x) for i = 1, . . . , n− 1. If we restrict p to
the positive integers, it follows from (3) that the sequences{

‖m(x)‖L p
[a,b]

}
p→‖m(x)‖L∞

[a,b]
and

{
‖bi (x)‖L p

[a,b]

}
p→‖bi (x)‖L∞

[a,b]

as p→∞. Theorem 4.1 implies that for each p ∈ N

‖m(x)‖L p
[a,b]
≤ ‖bi (x)‖L p

[a,b]
,

so that

lim
p→∞
‖m(x)‖L p

[a,b]
≤ lim

p→∞
‖bi (x)‖L p

[a,b]
.

Therefore ‖m(x)‖L∞
[a,b]
≤ ‖bi (x)‖L∞

[a,b]
and we have the desired result. �
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5. Evaluating the maximum

The process of increasing the L p norm lead us to a finite class of polynomials that
must contain the “largest” polynomial in Qn . Specifically, we arrived at the class
of Bernstein polynomials

bi (x)= (x − a)n−i (x − b)i , i = 1, . . . , n− 1.

We would like to determine which of these polynomials will maximize the L p

norm. To do so, we recall (from [Dennery and Krzywicki 1996, pp. 94–98], for
example) the beta function, defined by

B(x, y)=
∫ 1

0
t x−1(1− t)y−1dt =

0(x)0(y)
0(x + y)

,

where 0(x)=
∫
∞

0 t x−1e−t dt satisfies the property 0(n+ 1)= n!.
Initially, we answer the question when a = 0 and b = 1, and then translate the

result back to general a and b by the appropriate substitution. We observe that∫ 1

0
xn−i (x − 1)i dx = (−1)i B(n− i + 1, i + 1)= (−1)i

0(n− i + 1)0(i + 1)
0(n+ 2)

.

Since the polynomials bi (x) are either entirely positive or entirely negative on
[0, 1], we have

‖bi (x)‖L1
[0,1]
=

∣∣∣∣∫ 1

0
xn−i (x − 1)i dx

∣∣∣∣= 0(n− i + 1)0(i + 1)
0(n+ 2)

=
1

n+ 1
i ! (n− i)!

n!
.

Note that
i ! (n− i)!

n!
is the reciprocal of the binomial coefficient

(
n
i

)
. Since n

is fixed, we need to pick the value of i that minimizes this binomial coefficient.
Clearly this happens when i = 1 or i = n − 1. Therefore, the maximum value of
the norm is obtained for b1(x) and bn−1(x):

‖b1(x)‖L1
[0,1]
= ‖bn−1(x)‖L1

[0,1]
=

1
n+ 1

(
n
1

)−1

=
1

n(n+ 1)
. (4)

This can be generalized to the interval [a, b] by using the substitution u = (x−
a)/(b− a); for any monic degree-n polynomial q(x) with all real zeros in [a, b]
such that q(x) has roots at a and b, we have

‖q(x)‖L1
[a,b]
≤ (b− a)n+1 1

n(n+ 1)
.
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If p ∈N, the same method can be used to evaluate the L p norm of the Bernstein
polynomials. We have

‖bi (x)‖
p
L p
[0,1]
=

[
0(pn−pi+1)0(pi+1)

0(pn+ 2)

]1/p

=

[
1

pn+1
(pn−pi)! (pi)!

(pn)!

]1/p

. (5)

The maximum value is still achieved by b1(x) and bn−1(x). Inequality (5) can be
generalized to the interval [a, b] by using the substitution u = (x−a)/(b−a); for
any monic degree-n polynomial q(x) with all real zeros in [a, b] such that q(x)
has roots at a and b,

‖q(x)‖L p
[a,b]
≤

[
(b− a)pn+1 1

pn+ 1
(pn− pi)! (pi)!

(pn)!

]1/p

.

If p is not a natural number, the first equality in (5) is still valid, though we can
no longer express the result in terms of factorials. Therefore (again passing to the
case of [a, b]) we can write

‖bi (x)‖L p
[a,b]
=

[
(b− a)pn+10(pn− pi + 1)0(pi + 1)

0(pn+ 2)

]1/p

. (6)

To find the values of i that maximize this expression, we can differentiate it with
respect to i . (Although only integer values of i make sense in our context, the
quotient in (6) makes sense for all real i in the range of interest, 1≤ i ≤ n−1. The
domain of definition and differentiability of the gamma function includes (0,∞).)
The derivative of the gamma function involves another transcendental function,
known as polygamma. The upshot is that the quotient in (6) has only one critical
point in the interval 1≤ i ≤ n− 1, and it is a minimum rather than a maximum. It
follows that, once more, the local maxima in this interval must be at the endpoints
of the interval, that is, i = 1 and i = n− 1.

6. Recovering the supremum norm

As mentioned in the introduction, it was established in [Boelkins et al. 2006] that
the Bernstein polynomials b1(x) and bn−1(x) are the members of Qn with the
largest L∞ norm on [a, b]. In fact, they found that

‖b1(x)‖L∞
[a,b]
=
(b− a)n

n

(
n− 1

n

)n−1

,

a result that we now reproduce as a consequence of the work in the previous section.
We have seen that, for p ∈ N,

‖b1(x)‖L p
[a,b]
=

[
(b− a)pn+1

pn+ 1

(
(pn− p)! p!

(pn)!

)]1/p

.
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Applying Sterling’s approximation, lim
n→∞

(
n! −
√

2πn
(n

e

)n)
= 0, we obtain

‖b1(x)‖L∞
[a,b]
= lim

p→∞
‖b1(x)‖L p

[a,b]

= lim
p→∞

[
(b− a)pn+1

pn+ 1
(pn− p)! p!

(pn)!

]1/p

= lim
p→∞

[
(b− a)pn+1

pn+ 1

√
2πp(n− 1)

( p(n−1)
e

)p(n−1)√2πp
( p

e

)p

√
2πpn

( pn
e

)pn

]1/p

.

After simplification, this becomes

‖b1(x)‖L∞
[a,b]
=
(b− a)n

n

(
n− 1

n

)n−1

lim
p→∞

[
(b− a)
pn+ 1

(√
2πp(n− 1)
√

n

)]1/p

=
(b− a)n

n

(
n− 1

n

)n−1

lim
p→∞

(
b− a
√

n

)1/p

lim
p→∞

(√
2πp(n− 1)

pn+ 1

)1/p

=
(b− a)n

n

(
n− 1

n

)n−1

lim
p→∞

(√
2πp(n− 1)

pn+ 1

)1/p

.

L’Hopital’s rule implies

lim
p→∞

(√
2πp(n− 1)

pn+ 1

)1/p

= 1

and it follows that

‖b1(x)‖L∞
[a,b]
=
(b− a)n

n

(
n− 1

n

)n−1

.

We can now reasonably claim that the Bernstein polynomials are the largest monic
polynomials with all real roots in [a, b] in the full sense of all possible L p norms.
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The family of ternary cyclotomic polynomials
with one free prime

Yves Gallot, Pieter Moree and Robert Wilms

(Communicated by Kenneth S. Berenhaut)

A cyclotomic polynomial 8n(x) is said to be ternary if n = pqr , with p, q and
r distinct odd primes. Ternary cyclotomic polynomials are the simplest ones for
which the behavior of the coefficients is not completely understood. Here we
establish some results and formulate some conjectures regarding the coefficients
appearing in the polynomial family 8pqr (x) with p < q < r , p and q fixed and
r a free prime.

1. Introduction

The n-th cyclotomic polynomial 8n(x) is defined by

8n(x)=
∏

1≤ j≤n
( j,n)=1

(x − ζ j
n )=

∞∑
k=0

an(k)xk,

with ζn a n-th primitive root of unity (one can take ζn = e2π i/n). It has degree
ϕ(n), with ϕ Euler’s totient function. We write A(n) = max{|an(k)| : k ≥ 0}, and
this quantity is called the height of 8n(x). It is easy to see that A(n) = A(N ),
with N =

∏
p|n, p>2 p the odd squarefree kernel. In deriving this, one uses the

observation that if n is odd, then A(2n)= A(n). If n has at most two distinct odd
prime factors, then A(n) = 1. If A(n) > 1, then we necessarily must have that n
has at least three distinct odd prime factors. In particular for n < 105= 3 ·5 ·7 we
have A(n) = 1. It turns out that A(105) = 2 with a105(7) = −2. Thus the easiest
case where we can expect nontrivial behavior of the coefficients of 8n(x) is the
ternary case, where n = pqr , with 2< p< q < r odd primes. In this paper we are
concerned with the family of ternary cyclotomic polynomials

{8pqr (x) : r > q}, (1)

MSC2000: primary 11C08; secondary 11B83.
Keywords: ternary cyclotomic polynomial, coefficient.
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where 2 < p < q are fixed primes and r is a “free prime”. Up to now in the
literature the above family was considered, but with also q free. The maximum
coefficient (in absolute value) that occurs in that family will be denoted by M(p),
thus M(p) = max{A(pqr) : p < q < r}, with p > 2 fixed. Similarly we define
M(p; q) to be the maximum coefficient (in absolute value) that occurs in the family
(1), thus M(p; q)=max{A(pqr) : r > q}, with 2< p < q fixed primes.

Example. Bang [1895] proved that M(p)≤ p− 1. Since a3·5·7(7)=−2 we infer
that M(3)= 2. Using a105(7)=−2 and M(3)= 2, we infer that M(3; 5)= 2.

Let A(p; q) = {apqr (k) : r > q, k ≥ 0} be the set of coefficients occurring in
the polynomial family (1).

Proposition 1. A(p; q)= [−M(p; q),M(p; q)] ∩Z.

This shows the relevance of understanding M(p; q). Let us first recall some
known results concerning the related function M(p). Here we know thanks to
Bachman [2003], who very slightly improved on an earlier result in [Beiter 1971],
that M(p) ≤ 3p/4. It was conjectured by Sister Marion Beiter [1968] (see also
[Beiter 1971]) that M(p)≤ (p+1)/2. She proved it for p≤5. Since Möller [1971]
proved that M(p)≥ (p+1)/2 for p> 2, her conjecture actually would imply that
M(p) = (p + 1)/2 for p > 2. The first to show that Beiter’s conjecture is false
seems to have been Eli Leher (in his PhD thesis), who gave the counterexample
a17·29·41(4801) = −10, showing that M(17) ≥ 10 > 9 = (17+ 1)/2. Gallot and
Moree [2009b] provided for each p≥11 infinitely many infinitely many counterex-
amples p · q j · r j with q j strictly increasing with j . Moreover, they have shown
that for every ε > 0 and p sufficiently large M(p) > (2

3−ε)p. They also proposed
the corrected Beiter conjecture: M(p)≤ 2p/3. The implications of their work for
M(p; q) are described in Section 4.

Proposition 1 together with Möller’s result quoted above gives a different proof
of the result, due to Bachman [2004], that {apqr (k) : p<q< r}=Z. For references
and further results in this direction (begun by I. Schur) see Fintzen [2011].

Jia Zhao and Xianke Zhang [2010] showed that M(7)= 4, thus establishing the
Beiter conjecture for p = 7. In a later paper they established the corrected Beiter
conjecture:

Theorem 2 [Zhao and Zhang 2009]. M(p)≤ 2p/3.

This result together with some computer computation allows one to extend the
list of exactly known values of M(p) (see Table 1).

It is not known whether there is a finite procedure to determine M(p). On the
other hand, it is not difficult to see that there is such a procedure for M(p; q).

Proposition 3. Given primes 2 < p < q, there is a finite procedure to determine
M(p; q).
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p M(p) smallest n

3 2 3 · 5 · 7
5 3 5 · 7 · 11
7 4 7 · 17 · 23

11 7 11 · 19 · 601
13 8 13 · 73 · 307
19 12 19 · 53 · 859

Table 1. Values of M(p). By “smallest n” we mean the smallest
integer n satisfying A(n)=M(p) and with p as its smallest prime
divisor.

Recall that a set S of primes is said to have natural density δ if

lim
x→∞

|{p ≤ x : p ∈ S}|
π(x)

= δ,

where π(x) is the number of primes p ≤ x . A further question that arises is how
often the maximum value M(p) is assumed. We have:

Theorem 4. Given primes 2< p< q , there exists a prime q0 with q0 ≡ q (mod p)
and an integer d such that M(p, q)≤M(p, q0)=M(p, q ′) for every prime q ′≥q0

satisfying q ′ ≡ q0 (mod d · p). In particular the set of primes q with M(p; q) =
M(p) has a subset having a positive natural density.

A weaker result in this direction, namely that for a fixed prime p ≥ 11, the set of
primes q such that M(p; q) > (p+ 1)/2 has a subset of positive natural density,
follows from [Gallot and Moree 2009b] (recall that M(p) > (p+1)/2 for p≥ 11).

Unfortunately, the proof of Theorem 4 gives a lower bound for the density that
seems to be far removed from the true value. In this paper we present some con-
structions that allow one to obtain much better bounds for the density for small p.
These results are subsumed in the following main result of the paper.

Theorem 5. Let 2< p≤ 19 be a prime with p 6= 17. Then the set of primes q such
that M(p; q)= M(p) has a subset having natural density δ(p) as follows:

p = 3 5 7 11 13 19
δ(p)= 1 1 1 2

5
1
12

1
9

Numerical experimentation suggests that the set of primes q such that M(p; q)=
M(p) has a natural density δ(p) as given in the above table, except when p = 13
in which case numerical experimentation suggests δ(13)= 1/3.

In order to prove Theorem 5, we will use the following theorem dealing with
2< p ≤ 7.



320 YVES GALLOT, PIETER MOREE AND ROBERT WILMS

Theorem 6. For 2< p≤ 7 and q > p we have M(p; q)= (p+1)/2, except in the
case p = 7, q = 13, where M(7; 13)= 3.

The fact that M(7; 13)= 3 can be explained. It turns out that if ap+bq = 1 for
integers a and b small in absolute value, then M(p; q) is small. For example:

Theorem 7. If p ≥ 5 and 2p− 1 is a prime, then M(p; 2p− 1)= 3.

This result and similar ones are established in Section 10.

Our main conjecture on M(p; q) is the following one.

Conjecture 8. Given a prime p, there exists an integer d and a function

g : (Z/dZ)∗→ Z>0

such that for some q0 > d we have for every prime q ≥ q0 that M(p; q) = g(q̄),
where 1 ≤ q̄ < d satisfies q ≡ q̄ (mod d). The function g is symmetric, that is we
have g(α)= g(d −α).

The smallest integer d with the above properties, if it exists, we call the ternary
conductor fp. The corresponding smallest choice of q0 (obtained on setting d= fp)
we call the ternary minimal prime. For p=7 we obtain, e.g., f7=1 and q0=17 (by
Theorem 6). Note that once we know q0 it is a finite computation to determine d
and the function g. Theorem 6 can be used to obtain the p≤ 7 part of the following
observation concerning the ternary conductor.

Proposition 9. If 2< p≤ 7, then the ternary conductor exists and we have fp = 1.
If p ≥ 11 and fp exists, then p|fp.

While Theorem 4 only says that the set of primes q with M(p; q)=M(p) has a
subset having a positive natural density, Conjecture 8 implies that the set actually
has a natural density in Q>0 which can be easily explicitly computed assuming we
know q0. In order to establish this implication one can invoke a quantitative form
of Dirichlet’s prime number theorem to the effect that, for (a, d)= 1, we have, as
x tends to infinity, ∑

p≤x
p≡a (mod d)

1∼
x

ϕ(d) log x
. (2)

This result implies that asymptotically the primes are equidistributed over the prim-
itive congruence classes modulo d . (Recall that Dirichlet’s prime number theorem,
Dirichlet’s theorem for short, says that each primitive residue class contains infin-
itely many primes.)

The main tool in this paper is Kaplan’s lemma, presented in Section 6. The
material in that section (except for Lemma 22, which is new) is taken from [Gallot
and Moree 2009a]. As a demonstration of working with Kaplan’s lemma two
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examples (with and without table) are given in Section 6.1. In [Gallot et al. 2010],
the full version of this paper, details of further proofs using Kaplan’s lemma can
be found. In the shorter version we have merely written “Apply Kaplan’s lemma”.

The above summary of results makes clear how limited presently our knowledge
of M(p; q) is. For the benefit of the interested reader we present a list of open
problems in Section 11.

2. Proof of two propositions and Theorem 4

Proof of Proposition 1. By the definition of M(p; q) we have

A(p; q)⊆ [−M(p; q),M(p; q)] ∩Z.

Let r > q be a prime such that A(pqr) = M(p; q) and suppose, without loss
of generality, that apqr (k) = M(p; q). Gallot and Moree [2009a] showed that
|an(k) − an(k − 1)| ≤ 1 for ternary n (see [Bachman 2010; Bzdęga 2010] for
alternative proofs). Since apqr (k)= 0 for every k large enough, it then follows that
0, 1, . . . ,M(p; q) are in A(p; q). By a result of Kaplan [2007] (see [Zhao and
Zhang 2010] for a different proof), we can find a prime s ≡−r (mod pq) and an
integer k1 such that apqs(k1) = −M(p; q). By a similar arguments as above one
then infers that −M(p; q),−M(p; q)+ 1, . . . ,−1, 0 are all in A(p; q). �

Proof of Proposition 3. Let Rpq be a set of primes, all exceeding q such that every
primitive residue class modulo pq is represented. By [Kaplan 2007, Theorem 2]
we have A(pqr) = A(pqs) if s ≡ r (mod pq) with s, r both primes exceeding q
and hence

M(p; q)=max{A(pqr) : r ∈Rpq}.

Since the computation of Rpq and A(pqr) is a finite one, the computation of
M(p; q) is also finite. �

The remainder of the section is devoted to the proof of Theorem 4.
For coprime positive (not necessary prime) integers p, q, r we define

8′p,q,r (x)=
(x pqr

− 1)(x p
− 1)(xq

− 1)(xr
− 1)

(x − 1)(x pq − 1)(x pr − 1)(xqr − 1)
=

∞∑
k=0

a′p,q,r (k)x
k .

Here we do not assume p < q < r . Hence we have the symmetry 8′p,q,r (x) =
8′p,r,q(x). A routine application of the inclusion-exclusion principle to the roots
of the factors shows that 8′p,q,r (x) is a polynomial. It is referred to as a ternary
inclusion-exclusion polynomial. Inclusion-exclusion polynomials can be defined
in great generality, and the reader is referred to [Bachman 2010] for an introductory
discussion. He shows that such polynomials and thus 8′p,q,r (x) in particular, can
be written as products of cyclotomic polynomials (see Theorem 2 in that reference).
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Analogously to A(pqr) and M(p; q) we define

A′(p, q, r)=max{|a′p,q,r (k)| : k ≥ 0},

M ′(p; q)=max{A′(p, q, r) : r ≥ 1},

M ′(p)=max{M ′(p; q) : q ≥ 1}.

We have8pqr (x)=8′p,q,r (x) if p, q, r are distinct primes, so A(pqr)= A′(p, q, r)
in this case.

Lemma 10. For coprime positive (not necessary prime) integers p, q, r we have
A′(p, q, r1)≤ A′(p, q, r2)≤ A′(p, q, r1)+ 1 if r2 ≡ r1 (mod pq) and r2 > r1.

Proof. Note that r2 > max{p, q}. If r1 > max{p, q}, then Kaplan [2007, proof
of Theorem 2] showed that A′(p, q, r1) = A′(p, q, r2). In the remaining case
r1 < max{p, q}, we have A′(p, q, r1) ≤ A′(p, q, r2) ≤ A′(p, q, r1) + 1 by the
Theorem in [Bachman and Moree 2011]. �

In [Bachman and Moree 2011] it is remarked that A′(p, q, r2)= A′(p, q, r1)+1
can occur.

Lemma 11. If p is a prime, then M ′(p) = M(p). If q is also a prime with q > p
then M ′(p; q)= M(p; q).

Proof. Let p < q be primes. Assume M ′(p; q) = A′(p, q, r), where r is not
necessary a prime. By Dirichlet’s theorem we can find a prime r ′ satisfying

r ′ ≡ r(mod pq) and r ′ >max(q, r).

Therefore we have, by Lemma 10,

M ′(p; q)= A′(p, q, r)≤ A′(p, q, r ′)= A(p, q, r ′)≤ M(p; q).

Since obviously M(p; q)≤ M ′(p; q), we have M ′(p; q)= M(p; q).
Now let only p be a prime. Assume M ′(p) = A′(p, q, r), where q and r are

not necessary primes. Again by Dirichlet’s theorem we find a prime q ′ with q ′ ≡
q (mod pr) and q ′ >max(p, q). Using Lemma 10 we have

M ′(p)= A′(p, q, r)≤ A′(p, q ′, r)≤ M ′(p, q ′)= M(p, q ′)≤ M(p).

Since obviously M(p)≤ M ′(p), we have M ′(p)= M(p). �

Proof of Theorem 4. We set q1 := q. Let ri be a positive integer satisfying
M ′(p; qi )= A′(p, qi , ri ). Using Lemma 10 (note that A′(p, q, r) is invariant under
permutations of p, q and r ) we deduce

M ′(p; q1)= A′(p, q1, r1)≤ A′(p, q2, r1)≤ A′(p, q2, r2)= M ′(p, q2),
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where q2 = q1 + pr1. By the same argument the sequence q1, q2, q3, . . . with
qi+1 = qi + pri satisfies

M ′(p; q1)≤ M ′(p; q2)≤ M ′(p; q3)≤ · · ·

Since M ′(p; q)≤M ′(p)=M(p) and by, e.g., Lemma 18, M(p) is finite, there are
only finitely many different values for M ′(p; q). Hence there is an index k such
that M ′(p; qk)= M ′(p; qk+i ) for all i ≥ 0. That means

M ′(p; qk)= A′(p, qk, rk)= A′(p, qk+1, rk)= A′(p, qk+1, rk+1)= M ′(p, qk+1),

and by induction A′(p, qk+i , rk) = A′(p, qk+i , rk+i ). Therefore we can assume
rk+i = rk for i ≥ 0. Then we have qk+i = qk+ i · prk . We set q0 := qk and d := rk .
Certainly we have q0≡ q (mod p). Let q ′≥ q0 be a prime with q ′≡ q0 (mod d · p).
There must be an integer m such that q ′ = qk+m . Since M ′(p; q) = M(p; q) by
Lemma 11, we have

M(p; q1)≤ M(p; q0)= M(p; q ′).

Applying this to M(p; q1) with M(p; q1)= M(p), where we have chosen q1 such
that M(p; q1)= M(p), we get infinitely many primes of the form qi = q1+ i · pr1

satisfying M(p; qi ) = M(p). On invoking (2) with a = q1 and d = pr1 the proof
is then completed. �

3. The bounds of Bachman and Bzdęga

Let q∗ and r∗, 0< q∗, r∗< p be the inverses of q and r modulo p respectively. Set
a =min(q∗, r∗, p− q∗, p− r∗). Put b =max(min(q∗, p− q∗),min(r∗, p− r∗)).
In the sequel we will use repeatedly that b ≥ a. Bachman [2003] showed that

A(pqr)≤min
( p−1

2
+ a, p− b

)
. (3)

This was more recently improved by Bzdęga [Bzdęga 2010] who showed that

A(pqr)≤min(2a+ b, p− b). (4)

It is not difficult to show that min(2a + b, p − b) ≤ min( p−1
2 + a, p − b) and

thus Bzdęga’s bound is never worse than Bachman’s and in practice often strict
inequality holds.

Note that if q ≡±1 (mod p), then (3) implies that A(pqr)≤ (p+1)/2, a result
due to Beiter [1968] and, independently, Bloom [1968].

We remark that Bachman and Bzdęga define b as follows:

b =min(b1, p− b1), ab1qr ≡ 1 (mod p), 0< b1 < p.

It is an easy exercise to see that our definition is equivalent to this one.
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We will show that both (3) and (4) give rise to the same upper bound f (q∗) for
M(p; q). Write q∗ ≡ j (mod p), r∗ ≡ k (mod p) with 1 ≤ j, k ≤ p − 1. Thus
the right-hand sides of both (3) and (4) are functions of j and k, which we denote
respectively by GB( j, k) and BB( j, k). We have

BB( j, k)=min(2a+ b, p− b)≤min
(

p− 1
2
+ a, p− b

)
= GB( j, k),

with a =min( j, k, p− j, p− k) and b =max(min( j, p− j),min(k, p− k)).

Lemma 12. Let 1≤ j ≤ p− 1. Denote GB( j, j) by f ( j). We have

max
1≤k≤p−1

BB( j, k)= max
1≤k≤p−1

GB( j, k)= f ( j),

with

f ( j)=
{1

2(p− 1)+ j if j < p/4,
p− j if p/4< j ≤ 1

2(p− 1),

and f (p− j)= f ( j) if j > 1
2(p− 1).

Proof. Since the problem is symmetric under replacing j by p− j , without loss of
generality we may assume that j ≤ 1

2(p− 1). If j < p/4, then

GB( j, k)≤
p− 1

2
+ a ≤

p− 1
2
+ j = GB( j, j).

If j > p/4, then

GB( j, k)≤ p− b ≤ p− j = GB( j, j).

Note that

GB( j, j)=
{

BB
(

j, 1
2(p+ 1)− j

)
if j < p/4,

BB( j, j) if j > p/4.

For example, if j < p/4, then the choice q∗ = j , r∗ = 1
2(p+1)− j leads to a = j

and b = 1
2(p+ 1)− j and hence

BB
(

j, 1
2(p+ 1)− j

)
=min

( 1
2(p+ 1)+ j, 1

2(p− 1)+ j
)
= GB( j, j).

Since BB( j, k)≤ GB( j, k)≤ GB( j, j) we are done. �

Theorem 13. Let 2< p < q. Then M(p; q)≤ f (q∗).

Proof. By (4) and the definition of BB( j, k) we have

M(p; q)≤ max
1≤k≤p−1

BB(q∗, k)= f (q∗),

completing the proof. �
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Lemma 12 shows that using either (3) or (4), we cannot improve on the upper
bound given in Theorem 13. Since

max
1≤ j≤p−1

f ( j)= p− 1−
[ p

4

]
=

{3
4(p− 1) if p ≡ 1 (mod 4),
1
4(3p− 1) if p ≡ 3 (mod 4),

we infer that

M(p)≤ max
1≤ j≤p−1

max
1≤k≤p−1

GB( j, k)= max
1≤ j≤p−1

f ( j) < 3
4 p.

4. Earlier work on M( p; q)

Implicit in the literature are various results on M(p; q) (although we are the first
to explicitly study M(p; q)). Most of these are mentioned in the rest of this paper.
Here we rewrite the main result of [Gallot and Moree 2009b] in terms of M(p; q)
and use it for p = 11, to deal with q ≡ 4 (mod 11), and p = 13, to deal with
q ≡ 5 (mod 13).

Theorem 14. Let p ≥ 11 be a prime. Given any 1 ≤ β ≤ p− 1 we let β∗ be the
unique integer 1 ≤ β∗ ≤ p − 1 with ββ∗ ≡ 1 (mod p). Let B−(p) be the set of
integers satisfying

1≤ β ≤
p− 3

2
, p ≤ β + 2β∗+ 1, β > β∗.

Let B+(p) be the set of integers satisfying

1≤ β ≤
p− 3

2
, p ≤ β +β∗, β ≥ β∗/2.

Let B(p) be the union of these (disjoint) sets. As (p−3)/2∈B(p), it is nonempty.
Let q ≡ β (mod p) be a prime satisfying q > p. Suppose that the inequality
q > q−(p) := p(p−β∗)(p−β∗− 2)/(2β) holds if β ∈B−(p) and

q > q+(p) :=
p(p− 1−β)

γ (p− 1−β)− p+ 1+ 2β
,

with γ =min((p−β∗)/(p−β), (β∗−β)/β∗) if β ∈B+(p). Then

M(p; q)≥ p−β >
p+ 1

2

and hence M(p)≥ p−min{B(p)}.

We have B(11)= {4},B(13)= {5},B(17)= {7} and B(19)= {8}. In general one
can show [Cobeli et al. ≥ 2011] using Kloosterman sum techniques that∣∣∣|B(p)| − p

16

∣∣∣≤ 24p3/4 log p.
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The lower bound for M(p) resulting from this theorem, p − min{B(p)}, never
exceeds 2p/3 and this together with extensive numerical experimentation led in
[Gallot and Moree 2009b] to the proposal of a corrected Beiter conjecture, now
proved by Zhao and Zhang (Theorem 2).

Under the appropriate conditions on p and q , Theorem 14 says that M(p; q)≥
p − β, whereas Theorem 13 yields M(p; q) ≤ f (β∗). Thus studying the case
p−β = f (β∗) with β ∈B(p), leads to a small subset of cases where M(p; q) can
be exactly computed using Theorem 14.

Theorem 15. Let p ≥ 13 with p ≡ 1 (mod 4) be a prime. Let x0 be the smallest
positive integer such that x2

0 + 1 ≡ 0 (mod p). If x0 > p/3, q ≡ x0 (mod p) and
q ≥ q+(p) (with β = x0), then M(p; q)= p− x0.

Proof. Some easy computations show that if p − β = f (β∗) and β ∈ B(p), we
must have β ∈B+(p), 1

2(p− 1) < β∗ < 3
4 p and hence f (β∗)= β∗ and so

β ∈B+(p), 1≤β≤
p− 3

2
, β+β∗= p, β∗≤2β,

p− 1
2

<β∗<
3
4

p. (5)

Note that β + β∗ = p, p ≥ 13, has a solution with β < p/2 if and only if p ≡ 1
(mod 4) and β = x0 (and hence β∗ = p − x0) with x0 the smallest solution of
x2

0 + 1 ≡ 0 (mod p). If x0 > p/3, then β = x0 satisfies (5). Since by assumption
q ≥ q+(p) and q ≡ x0 (mod p), we have M(p; q)≥ p−x0 by Theorem 14. On the
other hand, by Theorem 13, we have M(p; q)≤ f (p− x0)= f (x0)= p− x0. �

Remark. The set of primes p satisfying p≡ 1 (mod 4) and x0> p/3 (which starts
{13, 29, 53, 73, 89, 173, . . . }) has natural density 1

6 . This follows on taking α2=
1
2

and α1=
1
3 in the result from [Duke et al. 1995] that if f is a quadratic polynomial

with complex roots and 0 ≤ α1 < α2 ≤ 1 are prescribed real numbers, then as x
tends to infinity,

#{(p, v) : p ≤ x, f (v)≡ 0 (mod p), α1 ≤ v/p < α2} ∼ (α2−α1)π(x).

5. Computation of M(3; q)

Note that for all primes q and r with 1 < q < r , there exists some unique h ≤
(q−1)/2 and k > 0 such that r = (kq+1)/h or r = (kq−1)/h. If n ≡ 0 (mod 3)
is ternary, then either A(n)= 1 or A(n)= 2 as M(3)= 2. The following result due
to Sister Beiter [Beiter 1978] allows one to compute A(n) in this case.

Theorem 16. Let n ≡ 0 (mod 3) be ternary.

• If h = 1, then A(n)= 1 if and only if k ≡ 0 (mod 3).

• If h > 1, then A(n)= 1 if and only if one of the following conditions holds:
(a) k ≡ 0 (mod 3) and h+ q ≡ 0 (mod 3).
(b) k ≡ 0 (mod 3) and h+ r ≡ 0 (mod 3).
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We have seen that M(3; 5)= 2. The next result extends this.

Theorem 17. Let q > 3 be a prime. We have M(3; q)= 2.

Proof. In case q ≡ 1 (mod 3), then let r be a prime such that r ≡ 1+ q (mod 3q).
Since (1+ q, 3q) = 1, Dirichlet’s theorem says there are in fact infinitely many
such primes. If q ≡ 2 (mod 3), let r be a prime such that r ≡ 1+ 2q (mod 3q).
Since (1+ 2q, 3q) = 1, there are infinitely many such primes. The prime r was
chosen so as to ensure that h = 1 and 3 - k. Using Theorem 16 it then follows that
A(3qr)= 2 and hence M(3; q)= 2. �

6. Kaplan’s lemma reconsidered

Our main tool will be the following result of Kaplan, the proof of which uses the
identity

8pqr (x)= (1+x pq
+x2pq

+· · · )(1+x+· · ·+x p−1
−xq
−· · ·−xq+p−1)8pq(xr ).

Lemma 18 [Kaplan 2007]. Let 2< p < q < r be primes and k ≥ 0 be an integer.
Put

bi =

{
apq(i) if r i ≤ k,
0 otherwise.

We have

apqr (k)=
p−1∑
m=0

(b f (m)− b f (m+q)), (6)

where f (m) is the unique integer such that f (m) ≡ r−1(k − m) (mod pq) and
0≤ f (m) < pq.

(If we need to stress the k-dependence of f (m), we will write fk(m) instead of
f (m), see, e.g., Lemma 22 and its proof.) This lemma reduces the computation
of apqr (k) to that of apq(i) for various i . These binary cyclotomic polynomial
coefficients are computed in the following lemma. For a proof see, e.g., [Lam and
Leung 1996; Thangadurai 2000].

Lemma 19. Let p < q be odd primes. Let ρ and σ be the (unique) nonnegative
integers for which 1+ pq = (ρ + 1)p+ (σ + 1)q. Let 0 ≤ m < pq. Then either
m = α1 p+ β1q or m = α1 p+ β1q − pq with 0 ≤ α1 ≤ q − 1 the unique integer
such that α1 p ≡ m (mod q) and 0 ≤ β1 ≤ p − 1 the unique integer such that
β1q ≡ m (mod p). The cyclotomic coefficient apq(m) equals

1 if m = α1 p+β1q with 0≤ α1 ≤ ρ, 0≤ β1 ≤ σ,

−1 if m = α1 p+β1q − pq with ρ+ 1≤ α1 ≤ q − 1, σ + 1≤ β1 ≤ p− 1,
0 otherwise.
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We say that [m]p = α1 is the p-part of m and [m]q = β1 is the q-part of m. It is
easy to see that

m =


[m]p p+ [m]qq if [m]p ≤ ρ and [m]q ≤ σ ;
[m]p p+ [m]qq − pq if [m]p > ρ and [m]q > σ ;
[m]p p+ [m]qq − δm pq otherwise,

with δm ∈ {0, 1}. Using this observation we find that, for i < pq ,

bi =


1 if [i]p ≤ ρ, [i]q ≤ σ and [i]p p+ [i]qq ≤ k/r;
−1 if [i]p > ρ, [i]q > σ and [i]p p+ [i]qq − pq ≤ k/r;

0 otherwise.

Thus in order to evaluate apqr (n) using Kaplan’s lemma it suffices to compute
[ f (m)]p, [ f (m)]q , and [ f (m+ q)]q (note that [ f (m)]p = [ f (m+ q)]p).

For future reference we provide a version of Kaplan’s lemma in which the com-
putation of bi has been made explicit, and thus is self-contained.

Lemma 20. Let 2 < p < q < r be primes and let k ≥ 0 be an integer. We put
ρ = [(p− 1)(q − 1)]p and σ = [(p− 1)(q − 1)]q . Furthermore, we put

bi =


1 if [i]p ≤ ρ, [i]q ≤ σ and [i]p p+ [i]qq ≤ k/r;
−1 if [i]p > ρ, [i]q > σ and [i]p p+ [i]qq − pq ≤ k/r;

0 otherwise.

We have

apqr (k)=
p−1∑
m=0

(b f (m)− b f (m+q)), (7)

where f (m) is the unique integer such that f (m) ≡ r−1(k − m) (mod pq) and
0≤ f (m) < pq.

Note that if i and j have the same p-part, then bi b j 6= −1, that is bi and b j cannot
be of opposite sign. From this it follows that |b f (m) − b f (m+q)| ≤ 1, and thus we
infer from Kaplan’s lemma that |apqr (k)| ≤ p and hence M(p)≤ p.

Using the mutual coprimality of p, q and r we arrive at the following trivial,
but useful, lemma.

Lemma 21. We have {[ f (m)]q : 0 ≤ m ≤ p − 1} = {0, 1, 2, . . . , p − 1} and
|{[ f (m)]p : 0≤m ≤ p−1}| = p. The same conclusions hold if we replace [ f (m)]q
and [ f (m)]p by [ f (m+ q)]q , respectively [ f (m+ q)]p.

Working with Kaplan’s lemma one first computes apq( f (m)) and then b f (m). As
a check on the correctness of the computations we note that the following identity
should be satisfied.
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Lemma 22. We have
p−1∑
m=0

apq( fk(m))=
p−1∑
m=0

apq( fk(m+ q)).

Proof. Choose an integer k1≡ k (mod pq) such that k1 > pqr . Then apqr (k1)= 0.
By Lemma 18 we find that

0= apqr (k1)=

p−1∑
m=0

(
apq( fk1(m))− apq( fk1(m+ q))

)
.

Since fk(m) only depends on the congruence class of k modulo pq , fk1(m)= fk(m)
and the result follows. �

6.1. Working with Kaplan’s lemma: examples. In this section we carry out some
sample computations using Kaplan’s lemma. For more involved examples the
reader is referred to [Gallot and Moree 2009b].

We remark that the result that an(k)= (p+1)/2 in Lemma 23 is due to Herbert
Möller [1971]. The proof we give here of this is rather different. The foundation
for Möller’s result is due to Emma Lehmer, who showed [1936] that

an
( 1

2(p− 3)(qr + 1)
)
=

1
2(p− 1)

with p, q, r and n satisfying the conditions of Lemma 23.

Lemma 23. Let p < q < r be primes satisfying

p > 3, q ≡ 2 (mod p), r ≡
p− 1

2
(mod p), r ≡

q − 1
2

(mod q).

For k = (p− 1)(qr + 1)/2 we have apqr (k)= (p+ 1)/2.

Proof (taken from [Gallot and Moree 2009a]). Using that q ≡ 2 (mod p), we infer
from 1+ pq = (ρ+1)p+(σ+1)q that σ = 1

2(p−1) and (ρ+1)p= 1+ 1
2(p−1)q

(and hence ρ = (p − 1)(q − 2)/(2p)). Invoking the Chinese remainder theorem
one checks that

−r−1
≡ 2≡−

(
q − 2

p

)
p+ q (mod pq). (8)

Furthermore, writing f (0) as a linear combination of p and q we see that

f (0)≡
k
r
≡

(
p− 1

2

)
q +

p− 1
2r
≡

(
p− 1

2

)
q + 1− p ≡ ρp (mod pq). (9)

Since f (m)≡ f (0)− m
r (mod pq) we find using (8), (9) and the observation that

ρ−m(q − 2)/p ≥ 0 for 0≤ m ≤ (p− 1)/2, that [ f (m)]p = ρ−m(q − 2)/p ≤ ρ
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and [ f (m)]q = m ≤ σ for 0 ≤ m ≤ (p − 1)/2. Since [ f (m)]p p + [ f (m)]qq =
ρp + 2m ≤ ρp + p − 1 = [k/r ], we deduce that apq( f (m)) = b f (m) = 1 in this
range; see also the following table:

m [ f (m)]p [ f (m)]q f (m) apq( f (m)) b f (m)

0 ρ 0 ρp 1 1
1 ρ− (q − 2)/p 1 ρp+ 2 1 1
...

...
...

... 1 1
j ρ− j (q − 2)/p j ρp+ 2 j 1 1
...

...
...

... 1 1
(p− 1)/2 0 (p− 1)/2 (p− 1)q/2 1 1

Note that f (m) ≡ f (0)−m/r ≡ ρp + 2m (mod pq), from which one easily
infers that f (m)=ρp+2m for 0≤m≤ p−1 (as ρp+2m≤ρp+2(p−1)< pq). In
the range 1

2(p+1)≤m≤ p−1 we have f (m)≥ρp+ p+1= (p−1)q/2+2> k/r ,
and hence b f (m) = 0.

On noting that f (m+q)≡ f (m)−q/r ≡ f (m)+2q ≡ρp+2m+2q (mod pq),
one easily finds, for 0 ≤ m ≤ p − 1, that f (m + q) = ρp + 2m + 2q > k/r and
hence b f (m+q) = 0.

Invoking Kaplan’s lemma one finds

apqr (k)=
p−1∑
m=0

b f (m)−

p−1∑
m=0

b f (m+q) =
p+ 1

2
− 0=

p+ 1
2

. �

Lemma 24. Let 3< p < q < r be primes satisfying

q ≡ 1 (mod p), r−1
≡

p+ q
2

(mod pq).

For k = (p− 1)qr/2− pr + 2 we have apqr (k)=−min
(q−1

p
+ 1, p+1

2

)
.

Proof. Let 0≤ m ≤ p− 1. We have

ρ =
(p− 1)(q − 1)

p
and σ = 0,

k ≡ 1 (mod p), k ≡ 0 (mod q), k ≡ 2 (mod r),

so that we can compute

[ f (m)]q ≡ q−1r−1(k−m)≡ (1−m)/2 (mod p),

[ f (m+ q)]q ≡ q−1r−1(k−m− q)≡−m/2 (mod p),

[ f (m)]p = [ f (m+ q)]p ≡ p−1r−1(k−m)≡−m/2 (mod q).
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This leads to

[ f (m)]q =


(p+ 1−m)/2 for m even,
(2p+ 1−m)/2 for m odd and m 6= 1,
0 for m = 1,

[ f (m+ q)]q =


(p−m)/2 for m odd,
(2p−m)/2 for m even and m 6= 0,
0 for m = 0,

[ f (m)]p = [ f (m+ q)]p =


(q −m)/2 for m odd,
(2q −m)/2 for m even and m 6= 0,
0 for m = 0.

We consider four cases:

Case 1: [ f (m)]p ≤ ρ and [ f (m)]q ≤ σ . In this case m = 1. Therefore

[ f (m)]p p+ [ f (m)]qq =
p(q − 1)

2
>

k
r
.

Case 2: [ f (m)]p > ρ and [ f (m)]q > σ . This case only arises if m is even and
m ≥ 2. Then we have

[ f (m)]p p+ [ f (m)]qq − pq =
2q −m

2
p+

p+ 1−m
2

q − pq

=
q(p+ 1−m)−mp

2
≤

q(p− 1)
2

− p+
2
r
=

k
r
.

However, not all even m ≥ 2 satisfy [ f (m)]p > ρ. For this it is necessary that

2q −m
2

>
(p− 1)(q − 1)

p
.

That means
m
2
<

q − 1
p
+ 1

and since 0< m
2
≤

p−1
2

we have exactly min
(q−1

p
,

p−1
2

)
different values of m.

Case 3: [ f (m + q)]p ≤ ρ and [ f (m + q)]q ≤ σ . In this case we have m = 0.
Therefore

[ f (m+ q)]p p+ [ f (m+ q)]qq = 0≤
k
r
.

Case 4: [ f (m + q)]p > ρ and [ f (m + q)]q > σ . We must have 2|m and m ≥ 2.
We find

[ f (m+ q)]p p+ [ f (m+ q)]qq − pq =
2q −m

2
p+

2p−m
2

q − pq >
k
r
.
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This case analysis shows that (respectively)

p−1∑
m=0

b f (m)=1

1= 0,
p−1∑
m=0

b f (m)=−1

1=min
(q−1

p
,

p−1
2

)
,

p−1∑
m=0

b f (m+q)=1

1= 1,
p−1∑
m=0

b f (m+q)=−1

1= 0.

Kaplan’s lemma then yields

apqr (k)=
(

0−min
(q−1

p
,

p−1
2

))
−(1−0)=−min

(q−1
p
+1, p+1

2

)
. �

The next two lemmas are proved by application of Kaplan’s lemma; see [Gallot
et al. 2010] for details.

Lemma 25. Let 3< p < q < r be primes satisfying

q ≡−2(mod p), r−1
≡ p− 2 (mod pq) and q > p2/2.

For k = p+1
2 (1+ r(2− p+ q))+ r + q − rq we have apqr (k)=−(p+ 1)/2.

Remark. Numerical experimentation suggests that with this choice of k, a condi-
tion of the form q > p2c1, with c1 some absolute positive constant, is unavoidable.

Lemma 26. Let 3< p < q < r be primes satisfying

q ≡−1 (mod p), r−1
≡

p+ q
2

(mod pq) and q ≥ p2
− 2p.

For k = p(q − 1)r/2− rq + p− 1 we have apqr (k)=−(p+ 1)/2.

Proof of Proposition 9. The first assertion follows by Theorem 6, so assume p≥11.
We will argue by contradiction. So suppose that p - fp. Put β = (p − 3)/2. By
the Chinese remainder theorem and Dirichlet’s theorem there are infinitely many
primes q1 such that q1 ≡ 2 (mod p) and q1 ≡ 1 (mod fp). Further, there are
infinitely many primes q2 such that q2 ≡ β (mod p) and q2 ≡ 1 (mod fp). By the
definition of fp there exists an integer c such that M(p; q)=c for all q≡1 (mod fp)

that are large enough. However, by Lemma 23 we have M(p; q1)= (p+1)/2 and
by Theorem 14 (note that β ∈B(p)) we have M(p; q2)> (p+1)/2 for all q2 large
enough. This contradiction shows that p - fp. �

The results from this section together with those from Section 3 allow one to
establish the following theorem. In Section 10 we will discuss the sharpness of the
lower bounds for q .

Theorem 27. Let 2< p < q be primes.

(a) If q ≡ 2 (mod p), then M(p; q)= (p+ 1)/2.

(b) If q ≡−2 (mod p) and q > p2/2, then M(p; q)= (p+ 1)/2.

(c) If q ≡ 1 (mod p) and q ≥ (p− 1)p/2+ 1, then M(p; q)= (p+ 1)/2.

(d) If q ≡−1 (mod p) and q ≥ p2
− 2p, then M(p; q)= (p+ 1)/2.
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Proof. By Theorem 17 we have M(3; q)= 2= (3+ 1)/2, so assume p > 3.

(a) We have M(p; q)≥ (p+1)/2 by Lemma 23, and M(p; q)≤ f (2∗)= f ((p+
1)/2)= (p+ 1)/2 by Theorem 13.

(b)+(c)+(d) Similar to that of part (a). Note that f ((−2)∗) = f ((p − 1)/2) =
(p+ 1)/2 and f (1)= f (p− 1)= (p+ 1)/2. �

Theorem 28. Let q > 5 be a prime. Then M(5; q)= 3.

Proof. The proof is most compactly given in a table:

q̄ q0 M(5; q) result

1 11 3 Theorem 27(c)
2 7 3 Theorem 27(a)
3 13 3 Theorem 27(b)
4 19 3 Theorem 27(d)

Interpretation: the third row, for example, says that for q ≡ 3 (mod 5), q ≥ 13, we
have M(5; q)= 3 by Theorem 27(b). �

7. Computation of M(7; q)

Theorem 27, together with the next two lemmas (again proved by application of
Kaplan’s lemma), allows one to compute M(7; q). These lemmas concern the
computation of M(p; q) with q ≡ (p± 1)/2 (mod p).

Lemma 29. Let p ≥ 5 be a prime. Let q ≥ max(3p, p(p + 1)/4) be a prime
satisfying q ≡ (p− 1)/2 (mod p). Let r > q be a prime satisfying

r−1
≡

p+ 1
2

(mod p), r−1
≡ p (mod q).

For k = p− 1+ r(1+ q(p− 1)/2− p(p+ 1)/2) we have apqr (k)= (p+ 1)/2.

Lemma 30. Let p ≥ 5 be a prime. Let q ≥ max(3p, p(p− 1)/4+ 1) be a prime
satisfying q ≡ (p+ 1)/2 (mod p). Let r > q be a prime satisfying

r−1
≡

p− 1
2

(mod p), r−1
≡ p (mod q).

For k = q + p− 1+ r(q(p− 1)/2− p(p+ 1)/2) we have apqr (k)= (p+ 1)/2.

Theorem 31.

(a) If q ≥max(3p, p(p+1)/4) is a prime satisfying q ≡ (p−1)/2 (mod p), then
(p+ 1)/2≤ M(p; q)≤ (p+ 3)/2.

(b) If q ≥max(3p, p(p−1)/4+1) is a prime satisfying q ≡ (p+1)/2 (mod p),
then (p+ 1)/2≤ M(p; q)≤ (p+ 3)/2.
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Proof. This follows on noting that

f
(( p+1

2

)∗ )
= f (2)= p+3

2
= f (p− 2)= f

(( p−1
2

)∗ )
,

and combining Lemmas 29 and 30 with Theorem 13. �

Theorem 32. We have M(7; 11) = 4, M(7; 13) = 3 and for q ≥ 17 a prime,
M(7; q)= 4.

Proof. Again we encode the proof in a table:

q̄ q0 M(7; q) result

1 29 4 Theorem 27(c)
2 23 4 Theorem 27(a)
3 31 4 Theorem 31(a)∗

4 53 4 Theorem 31(b)∗

5 47 4 Theorem 27(b)
6 41 4 Theorem 27(d)

For the entries marked with asterisks we also need the fact that M(7)≤ 4 (see just
before Theorem 2). Since M(7; 11)=M(7; 17)=M(7; 19)= 4 and M(7; 13)= 3
(the only cases not covered in the table), the proof is completed. �

Proof of Theorem 6. Combine Theorems 17, 28 and 32. �

8. Computation of M(11; q)

We have M(11; q)≤ M(11)= 7 (by Theorem 2 and Table 1). Moreover:

Theorem 33 [Gallot and Moree 2009b]. Let q < r be primes with q ≡ 4 (mod 11)
and r ≡−3 (mod 11). Let 1≤ α ≤ q−1 be the unique integer such that 11rα ≡ 1
(mod q). Suppose that q/33<α≤ (3q−1)/77. Then a11qr (10+(6q−77α)r)=−7.

Lemma 34. Let q be a prime such that q ≡ 4 (mod 11). For q > 37, M(11; q)= 7,
and M(11; 37)= 6.

Proof. By computation one finds that M(11; 37)= 6. Now assume q > 37. Notice
that it is enough to show that M(11; q) ≥ 7. For q ≥ 191 the interval I (q) :=
(q/33, (3q − 1)/77] has length exceeding 1 and so contains at least one integer
α1. Then by the Chinese remainder theorem and Dirichlet’s theorem we can find
a prime r1 such that both r1 ≡ −3 (mod 11) and 11r1α1 ≡ 1 (mod q). Then we
invoke Theorem 33 with r = r1 and α = α1. It remains to deal with the primes 59
and 103. One checks that both intervals I (59) and I (103) contain an integer and
so we can proceed as in the case q ≥ 191 to conclude the proof. �
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Lemma 35. Let p = 11.

(a) For ≥ 133, q ≡ 3 (mod 11), r−1
≡

q−19
2

(mod pq) and k = q + 7r (q−19)
2

we have apqr (k)= 7.

(b) For q≡7 (mod 11), r−1
≡

q+7
2
(mod pq) and k=6qr+4 we have apqr (k)=7.

(c) For q≡8 (mod 11), r−1
≡

q−3
2
(mod pq) and k=6qr+4 we have apqr (k)=7.

The proof is an application of Kaplan’s lemma.

Theorem 36. For q ≥ 13 we have

q (mod 11) 1 2 3 4 5 6 7 8 9 10
M(11; q) 6 6 7 7 6,7 6,7 7 7 6 6

except when q ∈ {17, 23, 37, 43, 47}. We have M(11; 17) = 5, M(11; 23) = 3,
M(11; 37)= 6, M(11; 43)= 5 and M(11; 47)= 6.

Remarks. (1) If q≡±5 (mod 11) and q ≥ 61, then M(p, q)∈ {6, 7}. We believe
that M(p; q)= 6.

(2) By Corollary 41 and 42 following Theorem 40, one infers that M(11; 17)≤ 5,
M(11; 23)≤ 3 and M(11; 43)≤ 5.

Proof of 36.

q̄ q0 M(11; q) result

1 67 6 Theorem 27(c)
2 13 6 Theorem 27(a)
3 157 7 Lemma 35(a)∗

4 59 7 Lemma 34
5 71 6,7 Theorem 31(a)∗

6 61 6,7 Theorem 31(b)∗

7 29 7 Lemma 35(b)∗

8 19 7 Lemma 35(c)∗

9 97 6 Theorem 27(b)
10 109 6 Theorem 27(d)

Here the asterisks indicate that we need the fact that M(11) = 7. The proof is
completed by directly computing the values of M(p; q) not covered by the table.

�

9. Computation for p = 19

By Theorem 2 we have M(19)≤ 2 ·19/3 and hence M(19)≤ 12. By Theorem 14
we find that M(19; q) ≥ 11 for every q ≡ 8 (mod 19) and q ≥ 179 and hence
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M(19) ≥ 11. Since A(19 · 53 · 859) = 12, it follows that M(19) = 12. The next
result even shows that M(19; q)= M(19) for a positive fraction of the primes.

Theorem 37. We have M(19)=12. Moreover, M(19, q)=12 if q≡±4 (mod 19),
with q > 23. Furthermore, M(19; 23)= 11.

The proof is an almost direct consequence of the following lemma, itself proved
by applying Kaplan’s lemma.

Lemma 38. Put p= 19 and let q ≡±4 (mod 19) be a prime. Suppose there exists
an integer a satysifying

qa ≡−1 (mod 3) and
q

6p
< a ≤

5q − 18
6p

. (10)

Let r>q be a prime satisfying r(q−ap)≡3 (mod pq). Then apqr (7qr+q)=−12,
if q ≡−4 (mod 19), and a19qr (7qr + r)=−12 if q ≡ 4 (mod 19).

Proof of Theorem 37. For q>90 the interval in (10) is of length>3 and so contains
an integer a satisfying qa ≡−1 (mod 3). It remains to deal with q ∈ {23, 53, 61}.
Computation shows that M(19; 23) = 11. For q = 53 and q = 61 one finds an
integer a satisfying condition (10). �

Proof of Theorem 5. By Theorem 14 and Dirichlet’s theorem the claim follows for
p = 13. Using Lemmas 34 and 35 the result follows for p = 11. On invoking
Theorems 6 and 37, the proof is then completed. �

10. Small values of M( p; q)

Typically if M(p; q) is constant for all q large enough with q ≡ a (mod d), then
M(p; q) assumes a smaller value for some small q in this progression. A (partial)
explanation of this phenomenon is provided in this section. We will show that if
ap+ bq = 1 with a and b small in absolute value, then M(p; q) is small. On the
other hand we will show that M(p; q) cannot be truly small.

Proposition 39. Let 2< p < q be odd primes. Then M(p; q)≥ 2.

Proof. We say 8n(x) is flat if A(n) = 1. ChunGang Ji [2010] proved that if
p < q < r are odd prime and 2r ≡±1 (mod pq), then 8pqr (x) is flat if and only
if p = 3 and q ≡ 1 (mod 3). It follows that M(p; q) ≥ 2 for p > 3. Now invoke
Theorem 17 to deal with the case p = 3. �

Theorem 40. Let 2< p < q be odd primes and ρ and σ be the (unique) nonnega-
tive integers for which 1+ pq = (ρ+ 1)p+ (σ + 1)q. Then

M(p; q)≤
{

p+ ρ− σ if ρ ≤ σ,
q + σ − ρ if ρ > σ.
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Corollary 41. Let h, k be integers with k > h and q = (kp − 1)/h a prime. If
p ≥ k+ h, then M(p; q)≤ k+ h.

Corollary 42. Let h, k be integers with k> h and q = (kp+1)/h a prime. If p> h
and q > k+ h, then M(p; q)≤ k+ h.

Proof of Theorem 40. Let us assume that ρ≤σ , the other case being similar. Using
Lemma 21 and Lemma 19 we infer that the number of 0≤m≤ p−1 with b f (m)=1
is at most ρ+1. Likewise the number of m with b f (m+q)=−1 is at most p−1−σ .
By Kaplan’s lemma it then follows that apqr (k)≤ ρ+1+(p−1−σ)= p+ρ−σ .
Since the number of 0≤m ≤ p− 1 with b f (m) =−1 is at most p− 1−σ and the
number of m with b f (m+q)=1 is at most ρ+1, we infer that apqr (k)≥−(p+ρ−σ)
and hence the result is proved. �

Theorem 43. Let q ≡ 1 (mod p). Then

M(p; q)=min
(q−1

p
+ 1, p+1

2

)
.

Proof. For p = 3 the result follows by Theorem 17, so assume p ≥ 5. Sis-
ter Beiter [Beiter 1968], and independently Bloom [Bloom 1968], proved that
M(p; q) ≤ (p+ 1)/2 if q ≡ ±1 (mod p) (alternatively we invoke Theorem 13).
By Corollary 42 we have M(p; q) ≤ (q − 1)/p + 1. By Lemma 24 the proof is
then completed. �

Numerical experiments suggest that in Theorem 27(b) the condition q > p2/2
can perhaps be dropped. By Theorem 43 the condition q ≥ (p−1)p/2+1 in part
(c) is optimal. In (d) we need q ≥ (p−1)p/2−1; otherwise M(p; q) < (p+1)/2
by Corollary 41.

Lemma 44. Let p ≥ 7 be a prime such that q = 2p− 1 is also a prime. Let r > q
be a prime such that (p+ q)r ≡ −2 (mod pq). Put k = rq(p− 1)/2+ 2p− pq.
Then apqr (k)= 3.

The proof is an application of Kaplan’s lemma.

Proof of Theorem 7. On combining Lemma 44 with Corollary 41, one deduces that
M(p; 2p− 1)= 3 if p ≥ 5 and 2p− 1 is a prime. �

11. Conjectures, questions, problems

The open problem that we think is the most interesting is Conjecture 8. If one
could prove it and obtain an effective upper bound for the ternary conductor fp

(say 16p) and an effective upper bound for the minimal ternary prime (say p3),
one would have a finite procedure to compute M(p).
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Problem 45. Bachman [2010] introduced inclusion-exclusion polynomials. These
polynomials generalize the ternary cyclotomic polynomials. Study M(p; q) in this
setting (here p and q can be any coprime natural numbers), cf. Section 2 where we
denoted this function by M ′(p; q). For example, using [Bachman 2010, Theorem
3] by an argument similar to that given in Proposition 3 it is easily seen that there
is a finite procedure to compute M ′(p; q).

Problem 46. The analogue of M(p; q) for inverse cyclotomic polynomials can be
defined [Moree 2009]. Study it.

Question 47. Can one compute the average value of M(p; q), that is does the limit

lim
x→∞

1
π(x)

∑
p<q≤x

M(p; q)

exist and if yes, what is its value?

Question 48. Is Theorem 5 still true if we put δ(13)= 1/3 and cross out the words
“a subset having”?

Question 49. If q > p is prime and q ≡−2 (mod p), then do we have M(p; q)=
(p+ 1)/2?

Question 50. Suppose that p > 11 is a prime.
If 6p− 1 is prime, then do we have M(p, 6p− 1)= 7?
If (5p− 1)/2 is prime, then do we have M(p, (5p− 1)/2)= 7?
If (5p+ 1)/2 is prime then do we have M(p, (5p+ 1)/2)= 7?
Find more similar results.

Question 51. Given an integer k ≥ 1, does there exist p0(k) and a function qk(p)
such that if q ≡ 2/(2k + 1)(mod p), q ≥ qk(p) and p ≥ p0(k), then M(p; q) =
(p+ 2k+ 1)/2?

Question 52. Is it true that M(11; q) = 6 for all large enough q satisfying q ≡
±5 (mod 6)? If so one can finish the computation of M(11; q).

Question 53. Is it true that for q sufficiently large the values of M(13;q), M(17;q),
M(19;q) and M(23;q) are given by Table 2 on the next page?

The next question was raised by the referee of this paper.

Question 54. Suppose that for all sufficiently large primes q ≡ q0 (mod fp) we
have M(p; q) < M(p). Is it possible to prove that M(p; q) < M(p) for every
prime q ≡ q0 (mod fp)?

Question 55. For a given prime p, let m(p) denote lim inf M(p; q), with q > p.
Determine m(p). Is it true that limp→∞m(p)/p = c for some constant c > 0?
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q (mod 13) 1 2 3 4 5 6 7 8 9 10 11 12
M(13; q) 7 7 7 8 8 7 7 8 8 7 7 7

q (mod 17) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
M(17; q) 9 9 9 10 10 9 10 9 9 10 9 10 10 9 9 9

q (mod 19) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
M(19; q) 10 10 10 12 11 9 11 11 10 10 11 11 9 11 12 10

q (mod 19)
(continued)

17 18
M(19; q) 10 10

q (mod 23) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
M(23; q) 12 12 12 14 14 11 13 11 14 13 12 12 13 14 11 13

q (mod 23)
(continued)

17 18 19 20 21 22
M(23; q) 11 14 14 12 12 12

Table 2. Conjectural values of M(13; q), M(17; q), M(19; q)
and M(23; q) (for q large). See Question 53.

By Proposition 39 we have m(p) ≥ 2 for p > 2. Note that the results in this
paper imply that m(p)= (p+1)/2 for 2< p≤ 11. If the answer to Question 53 is
yes, then m(p)= (p+1)/2 for 2< p≤ 17 and m(p)= (p−1)/2 for 19≤ p≤ 23.
(The issue of lower bounds for M(p; q) was raised by the referee.)
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Preimages of quadratic dynamical systems
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For a quadratic polynomial with rational coefficients, we consider the problem
of bounding the number of rational points that eventually land at a given constant
after iteration, called preimages of the constant. It was shown by Faber, Hutz,
Ingram, Jones, Manes, Tucker, and Zieve (2009) that the number of rational
preimages is bounded as one varies the polynomial. Explicit bounds on the
number of preimages of zero and−1 were addressed in subsequent articles. This
article addresses explicit bounds on the number of preimages of any algebraic
number for quadratic dynamical systems and provides insight into the geometric
surfaces parameterizing such preimages.

1. Introduction

Fix an algebraic number field K and a number c ∈ K and define an endomorphism
of the affine line by

fc : A
1
K → A1

K , fc(x)= x2
+ c.

If we define f N
c to be the N -fold composition of the morphism fc, and f −N

c to be
the inverse image of a in A1

K under f N
c , then for a ∈ A1(K ), the set of rational

iterated preimages of a is given by⋃
N≥1

f −N
c (a)(K )= {x0 ∈ A1(K ) : f N

c (x0)= a for some N ≥ 1}.

Heuristically, finding iterated preimages amounts to solving progressively more
complicated polynomial equations, so K -rational solutions should be a rarity. The
situation becomes more interesting as we vary c, which has the effect of varying
the morphism fc.

MSC2010: primary 37P05, 14G05; secondary 37F10.
Keywords: quadratic dynamical systems, arithmetic geometry, preimage, rational points, uniform
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Definition 1.1. Define

κ(a)= sup
c∈K

#
{⋃

N≥1

f −N
c (a)(K )

}
.

A special case of the main theorem in [Faber et al. 2009] shows that κ(a) is finite,
but does not give an explicit bound. Note that it is easy to construct a pair (a, c)with
arbitrarily many rational preimages simply by fixing c and taking a = fc(N )(0).
The fact that κ(a) is finite shows that, for a given a, such c values are rarely defined
over the same field.

When needed for clarity, we include the field K in the notation as κ(a, K ). In
this article, we focus on a weaker notion κ̄(a) that bounds the “typical” number of
rational preimages.

Definition 1.2. Define

κ̄(a, K )= lim sup
c∈K

#
{⋃

N≥1

f −N
c (a)(K )

}
.

In essence κ̄(a) differs from κ(a) by excluding at most finitely many c values from
consideration, thus, κ̄(a)≤ κ(a).

The cases of a = 0 and a =−1 were studied in [Faber et al. 2011; Hyde 2010],
respectively, and it was shown that

κ̄(0,Q)= κ̄(−1,Q)= 6.

In the first of these papers, a significant amount of effort went into the more difficult
task of showing that κ(0,Q)= 6, assuming some standard conjectures. This article
addresses the situation from the more general setting of allowing a to vary and
examining the “preimage surfaces” instead of “preimage curves.” We also allow
arbitrary number fields K . Our main result is the following theorem.

Theorem 1.3. For a ∈Q and for any fixed algebraic number field K we have

κ̄(a, K )=


10 if a =− 1

4 ,

6 or 8 if a is one of the three third critical values,
4 if a ∈ S ∩ K ,
6 otherwise.

The set S is the finite set of a values (in Q) where the elliptic surface with two
rational first preimages and four rational second preimages and the elliptic surface
with two rational first preimages, (at least) two rational second preimages, and (at
least) two rational third preimages both have specialization with rank zero at a.

The elliptic surface parameterizing values of a and c with two rational first
preimages, (at least) two rational second preimages, and (at least) two rational



PREIMAGES OF QUADRATIC DYNAMICAL SYSTEMS 345

third preimages has generic rank two (Theorem 3.3). Thus, finding the set of a
values where the corresponding specialization is an elliptic curve of rank zero is
a generalization of the problem studied by Masser and Zannier [2008]. The same
authors have shown that such sets are finite [Masser and Zannier 2012], implying
the set S is finite. The critical values are defined in Definition 2.1.

The organization of the article is as follows. In Section 3 we examine the lower
bound for κ̄(a) by finding the generic rank over Q of the elliptic surfaces cor-
responding to arrangements of 6 preimages. In Section 4 we examine the upper
bound on κ̄(a) by showing that all arrangements of 2N preimages for some N
correspond to curves of genus greater than 1. In Section 5 we prove Theorem 1.3.
In Section 6 we prove some additional properties of the preimage surfaces that are
tangential to the proof of Theorem 1.3, yet still of interest. First we parameterize
the possible torsion subgroups of the elliptic surface corresponding to two rational
first preimages and four rational second preimages. Then, starting on page 362,
we examine exceptional pairs (a, c) that are excluded by considering κ̄(a) instead
of κ(a).

We present these results for two reasons. First, by working with the “moduli
surfaces” parameterizing arrangements of preimages, our problem can be reduced
to the classical Diophantine problem of finding rational points on curves and sur-
faces. Second, our setting provides a nice example in which elliptic surfaces natu-
rally arise and we apply specialization theorems, rank arguments, height functions,
and use explicitly that the geometry of a curve has implications for its arithmetic
through the use of Falting’s theorem.

We make heavy use of the algebra and number theory systems Magma and
PARI/gp version 2.3.2.

A similar analysis would almost certainly be possible for the families of maps
of the form xd

+ c, where d ≥ 2 is a positive integer. In fact, for any family of
polynomial maps of fixed degree it seems likely that the same methods would apply.
For more general rational maps, at the very least, there would be additional com-
plications for the genus calculations. This problem poses an interesting direction
for further study.

2. Preimage curves and surfaces

In this section we summarize the necessary geometric theory of preimage curves
developed in [Faber et al. 2011; 2009], and then introduce the preimage surfaces
we consider in this article. Let K be a number field. As in the introduction, we
define a morphism fc : A

1
K → A1

K for any c ∈ K by the formula fc(x) = x2
+ c.

We could view fc as an endomorphism of P1
K , but the point at infinity is totally

invariant for this type of morphism and, thus, dynamically uninteresting. Fix a
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point a ∈ K and a positive integer N . Define an algebraic set

Y pre(N , a)= V ( f N
c (x)− a)⊂ A2

K = Spec K [x, c].

If Y pre(N , a) is geometrically irreducible, we define the N-th preimage curve, de-
noted Xpre(N , a), to be the unique complete curve birational to Y pre(N , a).

Definition 2.1. We say a is an N-th critical value of fc if

f N
c0
(0)= a and

d f N
c (0)
dc

∣∣∣
c=c0
= 0.

Theorem 2.2 [Faber et al. 2009, Corollary 2.4 and Theorem 3.2]. Suppose N is a
positive integer and a ∈ K is not a critical value of f j

c for any 2 ≤ j ≤ N. Then
Y pre(N , a) is nonsingular, geometrically irreducible, and the genus of Xpre(N , a)
is (N − 3)2N−2

+ 1.

For a ∈ K , define a morphism ψ : Y pre(N , a)→ AN by

ψ(x, c)=
(
x, fc(x), f 2

c (x), f 3
c (x), . . . , f N−1

c (x)
)
.

We recall the following theorem.

Theorem 2.3 [Faber et al. 2011, Proposition 4.2].

(a) The projective closure of the image of ψ is a complete intersection of quadrics
with homogenous ideal

J = (Z2
N−1+ Zi Z N − Z2

i−1− aZ2
N : i = 1, 2, 3, . . . , N − 1).

(b) The points of V (J ) on the hyperplane Z N = 0 have homogeneous coordinates

(ε0 : · · · : εN−1 : 0), εi =±1.

In particular, there are 2N−1 of them. Moreover, they are all nonsingular
points of V (J ).

(c) If Y pre(N , a) is nonsingular, then Xpre(N , a)∼= V (J ) and the complement of
the affine part Xpre(N , a)r Y pre(N , a) consists of 2N−1 points.

Definition 2.4. We define the N-th preimage surface Xpre(N ) as the surface fibered
over P1

K by a. The fiber over a is given by Xpre(N , a) if Y pre(N , a) is geometrically
irreducible and V (J ) otherwise. In particular, for each a ∈ K not a critical value
of fc, we get a nonsingular curve in PN

K .

Xpre(N )

π

��

Xpre(N , a)
_

π

��
P1

K a
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Note that for a fixed a0, the affine points (x0, c0, 1) on the curve Xpre(N , a0) are
in bijection with the N -th preimages x0 ∈ f −N

c0
(a0).

We will consider the N -th preimage surfaces in the language of function fields.
In particular, consider the function field K (a) which is comprised of all rational
functions in a with K -rational coefficients. We consider the surfaces defined as

Y pre(N )= V ( f N
c (x)− a)⊂ A2

K (a)

and

Xpre(N )= V (Z2
N−1+ Zi Z N − Z2

i−1− aZ2
N : i = 1, 2, 3, . . . , N − 1)⊂ PN

K (a).

The genus formula (Theorem 2.2) applies to each fiber for which Y pre(N , a) is
nonsingular and geometrically irreducible. In particular, Xpre(1) and Xpre(2) have
fibers of genus 0, Xpre(3) has fibers of genus 1, and Xpre(N ) for N ≥ 4 has fibers of
genus> 1 (with finitely many exceptional fibers for each N ). Therefore, for N > 3
and all but finitely many a ∈ K , it follows from Falting’s theorem that there are
only finitely many points (x, c) ∈ Xpre(N , a). Thus, except for the finitely many a
values, the N -th preimages for N > 3 have no contribution to κ̄(a). This premise
is the content of Corollary 4.2 and the rest of Section 4 addresses the exceptional
a values.

Throughout this article we discuss arrangements of preimages. For example, by
a 222 arrangement we mean that there are two rational first preimages, (at least) two
rational second preimages, and (at least) two rational third preimages. Similarly, a
2424 arrangement has two rational first preimages, four rational second preimages,
(at least) 2 rational third preimages, and (at least) four rational fourth preimages.
Note that any 226 arrangement would have to be part of a 246 arrangement since
the forward image of a rational point is still a rational point.

3. Arrangements of six preimages

By examining the arrangements of six preimages we are able to prove the following
lower bound for κ̄(a).

Theorem 3.1. Let K be a number field. There is a finite set S such that{
κ̄(a)≥ 6 if a ∈ K\(S ∩ K ),
κ̄(a)= 4 if a ∈ S ∩ K .

Proof. The 22 curve over the function field K (a) is the curve whose points corre-
spond to two rational first preimages and (at least) two rational second preimages.
It has fibers of genus 0 [Faber et al. 2009] and at least one Q-rational section for
each choice of a, (1, 1, 0). Thus, each fiber has infinitely many rational points and
κ̄(a)≥ 4.
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Theorem 3.3 shows that the 222 surface has generic rank at least 2 (exactly 2
over Q). Theorem 3.2 shows that the 24 surface has generic rank 0 over Q. Let
S be the (possibly empty) set of a values for which both the 222 and 24 surface
specialize to rank 0. By [Masser and Zannier 2012] the set of a values where the
222 surface has rank 0 is finite and thus, S is finite. If a ∈ S ∩ K , κ̄(a) = 4,
otherwise κ̄(a)≥ 6. �

Second preimages. We consider the situation where the preimage tree is full to the
second level; that is, there are two rational first preimages and four rational second
preimages:

a

t

fc

;;

−t

fc

dd

s

fc

@@

−s u

fc

bb
fc

;;

−u.

fc
``

.

We can define this curve over the function field K (a) as

X24 = V (s2
− t z− (t2

− az2), u2
+ t z− (t2

− az2))⊆ P3
K (a).

The fibers (when nonsingular) have genus one with at least one rational section
(1, 1, 1, 0) so we can produce a minimal Weierstrass model (using Magma) as an
elliptic curve over the function field K (a) as

E24(a) : v2w = u3
+ (4a− 1)u2w+ 16auw2

+ (64a2
− 16a)w3

with j-invariant

j (a)=
(16a2

− 56a+ 1)3

a(4a+ 1)4

and discriminant

1(a)= a(4a+ 1)4.

The only fibers which are not elliptic curves are a = 0 and a =−1
4 . This is in fact

a rational elliptic surface since it has a Weierstrass model satisfying deg(ai ) ≤ i
for ai the coefficients of an elliptic curve in Weierstrass form [Shioda 1990, page
237].

Theorem 3.2. E24(a)(Q(a)) has rank 0 and torsion subgroup Z/4Z generated by

T (a)= (2, 8a+ 2, 1).
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Proof. We use the main theorem of [Oguiso and Shioda 1991] to see that the rank
over Q(a) is zero. We compute the Kodaira symbols in Magma to get

[ << I 4, 1>> , << I 1∗, 1>> , << I 1, 1>> ].

From row 72 in the table [Oguiso and Shioda 1991] we have that the rank of
E24(a)(Q(a)) is zero. Examining the torsion, we see that the point

(2, 8a+ 2, 1)

has order 4 and the specialization E24(1)(Q) has torsion subgroup Z/4Z. Since
the specialization map is injective on torsion on all nonsingular fibers, E24(a) has
torsion subgroup exactly Z/4Z. �

Third preimages. From Theorem 2.3 we see that the elliptic surface parameteriz-
ing third preimages of a over the function field K (a) is given by

X222 = V (z2
2+ z1z3− z2

0− az2
3, z2

2+ z2z3− z2
1− az2

3)⊆ P3
K (a).

Using the cuspidal point (−1, 1, 1, 0) from Theorem 2.3 as the section at infinity
we can find a minimal model in Magma as

E222(a) : v2w = u3
+
(
16a+ 942

13

)
u2w+

( 10048
13 a+ 293084

169

)
uw2

+
(
1024a2

+
1620800

169 a+ 30250696
2197

)
w3

with j-invariant

j (a)=
(16a2

+ 3)2

(4a+ 1)2(256a3+ 368a2+ 104a+ 23)

and discriminant

1(a)= (4a+ 1)2(256a3
+ 368a2

+ 104a+ 23).

As expected, the only fibers which are not elliptic curves are the fibers over a=−1
4

and the three third critical values. This is in fact a rational elliptic surface since it
has a Weierstrass model satisfying deg(ai )≤ i for ai the coefficients of an elliptic
curve in Weierstrass form [Shioda 1990, page 237].

Theorem 3.3. E222(a)(Q(a)) has rank 2 generated by the two independent sec-
tions

P(a)=
(
−

262
13 , 32a+ 8, 1

)
and Q(a)=

(
−

366
13 , 32a+ 8, 1

)
.

Proof. We use the main theorem of [Oguiso and Shioda 1991] to see that the rank
over Q(a) is exactly two. We compute the Kodaira symbols in Magma to get

[ << I 1, 3>> , << I 2, 1>> , << I 1∗, 1>> ].
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From row 30 in the table [Oguiso and Shioda 1991] we have that the rank of
E222(a)(Q(a)) = 2. Since the specialization map is injective on torsion on all
fibers where E222 is nonsingular, and the specialization E222(0) has no torsion,
there are no rational torsion sections. We can see P(a) and Q(a) are actually the
generators by finding a specialization E222(a0) which is rank 2 with generators
P(a0) and Q(a0). For a = 4 we have

E222(4) : v2w = u3
+

1774
13 u2w+ 815580

169 uw2
+

150527944
2197 w3

and from Magma the generators are(
−

262
13 , 136, 1

)
and

(
−

1146
13 , 136, 1

)
.

In terms of P(4) and Q(4) these are

P(4) and P(4)+ Q(4).

Thus, P(4) and Q(4) generate the Mordell-Weil group E222(4) and, hence, P(a)
and Q(a) generate the Mordell-Weil group of E222(a). �

4. Arrangements of eight or more preimages

We examine when the genus of the fibers of preimage surfaces of various arrange-
ments of 2N preimages is greater than 1 and, thus, by Falting’s theorem have a
finite number of rational points over an algebraic number field. In particular, if
every 2N arrangement has genus greater than 1 for some N , then κ̄(a) < 2N . The
difficulty lies in determining the genus when the fiber is singular. We treat the
nonsingular case in the following theorem.

Theorem 4.1. If the curve (fiber) defining an arrangement of 2N rational preim-
ages of a is nonsingular, then it has genus (N − 3)2N−2

+ 1.

Proof. A complete intersection in Pm is defined as a subscheme Y of Pm whose
homogeneous ideal I can be generated by r = codim(Y,Pm) elements [Hartshorne
1977, Exercise II.8.4]. Each surface arranging 2N points can be described by the
equations

fc(z1)= a and fc(zi )= (−1)εz j for 2≤ i ≤ N

where 1 ≤ j < N and ε = ±1 depending on the arrangment of points. After
homogenization and elimination of c from this system of equations we obtain a
description of each fiber as a curve defined by N−1 degree two hypersurfaces in PN

and, hence, a complete intersection. From [Hirzebruch 1966, §22] or [Arslan and
Sertöz 1998, Corollary 2] we get a formula for the arithmetic genus of a complete
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intersection of N − 1 degree two hypersurfaces in PN as

pa =

N−1∑
m=1

(−1)m+1
(

N − 1
m

)
φN (−2m)

where φN (z) comes from the Hilbert polynomial of the 2N curve and is given by

φN (z)=
(z+ 1)(z+ 2) · · · (z+ N )

N !
=

(
z+ N

N

)
.

Since the arithmetic genus is equal to the geometric genus for nonsingular curves
[Hartshorne 1977, Proposition IV.1.1], the genus is independent of the arrangement
of the preimages and from [Faber et al. 2009, Theorem 1.5] we get the simpler
formula

g = (N − 3)2N−2
+ 1. �

Corollary 4.2. If the curve (fiber) defining an arrangement of 2N rational preim-
ages of a is nonsingular, then the genus is greater than 1 for 2N ≥ 8.

We have thus reduced the computation of κ̄(a, K ) to checking a values where
the fiber is singular for arrangements with 8 (or more) rational preimages (224,
242, 2222). The method is as follows.

(a) Using the Jacobian criterion, determine all of the singular fibers (a values).

(b) Determine the δ-invariants of each singular point to determine the genus of
each singular fiber.

Recall that the δ-invariant of a singularity P is defined as

δP =
∑

Q

1
2 m Q(m Q − 1),

where the sum ranges over the infinitely near points of P and m Q are their multi-
plicities. See [Sendra et al. 2008, Section 3.2] for the basic definitions and the case
of plane curves and [Brieskorn and Knörrer 1986, Section 9.2, Theorem 7] for a
more general discussion. As the singularity analysis computations are identical in
form for all of the singularities, we outline the method, include the first such com-
putation, and omit the details for the other singularities. The singularity analysis
proceeds as follows.

(a) Let C ⊆ PN be a singular curve with singular point P . We move P to
(0, . . . , 0, 1) and dehomogenize.

(b) Project onto a singular plane curve with isomorphic tangent space at the sin-
gular point.

(c) Analyze the singularity of the plane curve with blow-ups and compute the
δ-invariant.
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Examining the 224 surface. One possible 224 arrangement of 8 preimages is this:

a

t

fc

<<

−t

fc
__

s

fc

==

−s

fc

aa

q

fc

@@

−q r

fc

aa
fc

==

−r

fc

^^

Every other 224 arrangement differs only by renaming, so this is the only distinct
224 arrangement. The curve is defined by three degree two equations in P4 as

C224= V (az2
− t2
−(t z−s2), az2

− t2
−(sz−q2), az2

− t2
−(−sz−r2))⊆P4

K (a).

Theorem 4.3. The a values for which the fiber of the 224 surface is singular are
given by

a ∈
{
−

1
4 , 0, a1, a2, a3

}
,

where a1, a2, a3 are the three third critical values of fc

Proof. We apply the Jacobian criterion to determine the singular points. For each
singular point, we can determine the associated a value(s). Examining the hyper-
plane at infinity z = 0 we have the 8 cuspidal points (±1,±1,±1, 1, 0) ∈ P4. To
check the singularity of these points, we use the Jacobian criterion on the affine
chart A4

q 6=0 with generators

{az2
− t2
− (t z− s2), az2

− t2
− (sz− 1), az2

− t2
− (−sz− r2)}

to have the Jacobian matrix at z = 0 0 2s −2t −t
0 0 −2t −s
2r 0 −2t s

 .
The determinant of one such maximal minor is −8rst , and since r, s, t 6= 0, this is
nonzero, so the cuspidal points are all nonsingular.

Now we consider the points in the affine chart A4
z 6=0 which has generators

{a− t2
− (t − s2), a− t2

− (s− q2), a− t2
− (−s− r2)}.
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The Jacobian matrix is given by 0 0 2s −2t − 1
2q 0 −1 −2t
0 2r 1 −2t


and the determinants of the maximal minors are

{8qrs, 4qr(−2t − 1), 2q(4st − 2t − 1),−2r(4st + 2t + 1)}.

The combinations that result in all 4 determinants vanishing are the following.

(a) If q = r = 0, then we have c =±s and so c = 0 and so a = 0.

(b) If q = 0 and (4st + 2t + 1) = 0, then we must have s 6= − 1
2 so we can solve

t = − 1
4s+2 = −

1
4c+2 . Then we have s2

+ c = c2
+ c = t and the roots of

4c3
+6c2

+2c+1= d f 3
c (0)
dc combined with a = fc( fc( fc(0))) to get the three

third critical values.

(c) If q 6= 0, r = 0, and (4st − 2t − 1)= 0, then we must have t 6= 0 and we can
solve s = 2t+1

4t =−c. Then we have s2
− s = t and the roots of 16t3

+4t2
−1

which give the three third critical values.

(d) If q, r 6= 0, s = 0, and t =− 1
2 , then we have c =− 1

2 and so a =− 1
4 .

�

We will treat a =− 1
4 on page 358.

Theorem 4.4. The genus of C224 is

g =
{

4 if a = 0,
1 if a ∈ {a1, a2, a3},

where a1, a2, a3 are the three third critical values of fc.

Proof. There is one singular point for a = 0 and four singular points for each ai .
In all cases δP = 1 so the genus drops by 1 for each singular point.

We now compute the δ-invariant of one of the singular points for a1. The 224
curve for a1 is defined as

V (a1z2
− t2
− (t z− s2), a1z2

− t2
− (sz− q2), a1z2

− t2
− (−sz− r2))

and if α is a root of
4x3
+ 6x2

+ 2x + 1

then
a1 = α

4
+ 2α3

+α2
+α =− 1

4α
2
+

1
2α−

1
8 .
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We label the coordinates as (q, r, s, t, z) and the singular point is

P = (0,−β, α, α2
+α, 1)

where β2
=−2α. We move P to (0, 0, 0, 0, 1) with a translation

(q, r, s, t, z) 7→ (q, r −βz, s+αz, t + (α2
+α)z)

to get a new curve C̃ and singular point P̃ = (0, 0, 0, 0, 1). We dehomogenize
to affine coordinates (Q, R, S, T ) = (q/z, r/z, s/z, t/z) and compute the tangent
space at P̃ as 

−2Tα2
− 2Tα− T + 2Sα = 0,

−2Tα2
− 2Tα− S = 0,

−2Tα2
− 2Tα+ S− 2βR = 0.

(1)

Notice that the second equation of (1) implies the first using the degree 4 polyno-
mial satisfied by α. Thus, the tangent space is given by

−2Tα2
− 2Tα− S = 0, −2Tα2

− 2Tα+ S− 2βR = 0.

Since we want to project C̃ to a plane curve preserving the tangent space at P̃ we
define

u =−2Tα2
− 2Tα− S, v =−2Tα2

− 2Tα+ S− 2βR,

with inverse

S = βR−
u
2
+
v

2
, T =

βR
−2α2− 2α

+
u

−4α2− 4α
+

v

−4α2− 4α
,

and make the change of variables (Q, R, S, T ) 7→ (Q, R, u, v) to get a new curve
C̃ ′ and point P̃ ′. The tangent space at P̃ ′ is given by u = v = 0. We now project
C̃ ′ onto a plane curve in the Q R-plane. To project we eliminate the variables u, v
from the three defining equations of C̃ ′ to get the single equation

(2α+ 1)Q8
+
(
(−8α− 4)R2

+ (16βα+ 8β)R+ (16α2
− 4)

)
Q6

+
(
(12α+ 6)R4

+ (−48βα− 24β)R3
+ (−144α2

− 64α+ 4)R2

+ (96βα2
+ 32βα− 8β)R+ (−64α2

− 24α− 8)
)
Q4

+
(
(−8α− 4)R6

+ (48βα+ 24β)R5
+ (240α2

+ 128α+ 4)R4

+ (−320βα2
− 192βα− 16β)R3

+ (384α2
+ 208α+ 128)R2

+ (−128βα2
− 96βα− 64β)R− 32α

)
Q2

+ (2α+ 1)R8
+ (−16βα− 8β)R7

+ (−112α2
− 64α− 4)R6

+ (224βα2
+ 160βα+ 24β)R5

+ (−320α2
− 152α− 136)R4

+ (128βα2
+ 32βα+ 96β)R3

+ (−64α2
+ 64α)R2

= 0,
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defining a plane curve in A2 with variables (Q, R). Notice that the only points of
the form (0, 0, u, v) on C̃ ′ is the point (0, 0, 0, 0) (in the other words, the singular
point is the only point that projects onto (0, 0)), so we proceed with analyzing the
plane curve singularity (0, 0). Blowing-up once resolves the singularity and we
see that it has multiplicity 2. So we compute

δP =
1
2
(2 · 1)= 1.

A similar analysis is done on all of the other singularities to get δP = 1 for all
P for all a ∈ {0, a1, a2, a3}. Hence, we have{

g = 5− 1= 4 if a = 0,
g = 5− (1+ 1+ 1+ 1)= 1 if a = a1, a2, a3. �

Examining the 242 surface. One possible 242 arrangement of 8 preimages is this:

a

t

fc
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−t

fc
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s

fc

@@

−s u

fc

aa
fc

==

−u

fc

^^

q

fc
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fc

^^

Every other 242 arrangement differs only by renaming, so this is the only distinct
242 arrangement. The surface is defined by 3 degree two equations in P4 as

C242= V
(
az2
− t2
−(t z−s2), az2

− t2
−(−t z−u2), az2

− t2
−(sz−q2)

)
⊆P4

K (a).

Theorem 4.5. The a values for which the fiber of the 242 surface is singular are
given by

a ∈
{
−

1
4 , 0, 2, a1, a2, a3

}
where a1, a2, a3 are the three third critical values of fc.

Proof. We apply the Jacobian criterion to determine the singular points. For each
singular point, we can determine the associated a value(s). Examining the hyper-
plane at infinity, z = 0, we have the 8 cuspidal points (±1,±1,±1, 1, 0) ∈ P4. To
check the singularity of these points, we use the Jacobian criterion on the affine
chart A4

q 6=0 with generators{
az2
− t2
− (t z− s2), az2

− t2
− (−t z− u2), az2

− t2
− (sz− 1)

}
.
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The Jacobian matrix at z = 0 is given by2s 0 −2t −t
0 2u −2t t
0 0 −2t −s

 .
The determinant of one maximal minor is −8sut , and since s, u, t 6= 0, this is
nonzero, so the cuspidal points are all nonsingular.

Now we consider the points in the affine chart A4
z 6=0 which has generators

{a− t2
− (t − s2), a− t2

− (−t − u2), a− t2
− (s− q2)}.

The Jacobian matrix is given by 0 2s −2t − 1 0
0 0 −2t + 1 2u

2q −1 −2t 0

 .
The determinants of the maximal minors are{

2u(4st + 2t + 1), 4qu(−2t − 1), 8qus, 4qs(−2t + 1)
}
.

The combinations that result in all 4 vanishing are as follows:

(a) If q = 0 and u = 0, then f 2
c (0) = a and f 3

c (0) = a which is the polynomial
equation

fc( fc( fc(0)))− fc( fc(0))= c4
+ 2c3

= c3(c+ 2)= 0

so c = 0 or c =−2. So we have a = 0 or a = 2.

(b) If q = 0 and (4st + 2t + 1) = 0, then we must have s 6= − 1
2 so we can solve

t = −1/(4s + 2) = −1/(4c+ 2). Then we have s2
+ c = c2

+ c = t and the
roots of

4c3
+ 6c2

+ 2c+ 1=
d f 3

c (0)
dc

combined with a = fc( fc( fc(0))) to get the three third critical values.

(c) If u = 0 and s = 0, then c =±t and so t = c = 0 and so a = 0.

(d) If u = 0 and t = 1
2 , then c =− 1

2 and so a =− 1
4 .

(e) If s = 0 and t =− 1
2 , then c =− 1

2 and so a =− 1
4 . �

We will treat a =− 1
4 on page 358.

Theorem 4.6. The genus of C242 is g =


3 if a = 0,
4 if a = 2,
3 if a ∈ {a1, a2, a3}.
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Proof. We proceed as in the proof of Theorem 4.4 for analyzing the singularities.
For a = 0 there is one singularity that required two blow-ups to resolve and we

get multiplicity 2 for both of the infinitely near points and, hence, δP =
1
2(2 · 1)+

1
2(2 · 1)= 2 and g = 5− 2= 3.

For a = 2 there is one singular point with δP = 1 and, hence, g = 5− 1= 4.
For a ∈ {a1, a2, a3} each curve has two singular points both with δP = 1 and,

hence, g = 5− (1+ 1)= 3. �

Examining the 2222 surface. One possible 2222 arrangement of 8 preimages is
this: a

t

fc
??

−t

fc
^^
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q

fc
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fc
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u
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Every other 2222 arrangement differs only by renaming, so this is the only distinct
2222 arrangement. The surface is defined by 4 degree two equations in P5 as

C2222= V (az2
− t2
−(t z−s2), az2

− t2
−(sz−q2), az2

− t2
−(qz−u2))⊆P5

K (a).

From [Faber et al. 2009, Theorem 1.3] the only singular fibers are for a the N -th
critical values for 2 ≤ N ≤ 4. For N = 2 we get a = −1

4 , which will be treated
on page 358. For N = 3 we get the three third critical values which we label
a3,1, a3,2, a3,3. For N = 4 we get the seven 4-th critical values, which we label a4,i

for 1≤ i ≤ 7, and which satisfy

a = fc( fc( fc( fc(0)))) for 8c7
+ 28c6

+ 36c5
+ 30c4

+ 20c3
+ 6c2

+ 2c+ 1= 0.

Theorem 4.7. The genus of C2222 is

g =
{

3 if a ∈ {a3,1, a3,2, a3,3},

4 if a ∈ {a4,i : 1≤ i ≤ 7}.

Proof. A fiber of the 2222 surface is isomorphic [Faber et al. 2011, Proposition
4.2] to the degree 16 plain curve defined by the equation

f 4
c (x)= a.
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For a ∈ {a3,i } there are three singular points, one of which is (0, 1, 0) and the other
two depend on a. The (0, 1, 0) point requires several blow-ups and has δP = 100
and each of the other two points have δP = 1 for a final genus of g = 1

2(15 · 14)−
102= 105− 102= 3.

For a ∈ {a4,i } there are two singular points, one of which is (0, 1, 0) and the
other depends on a. The (0, 1, 0) point has δP = 100 and the point has δP = 1 for
a final genus of g = 1

2(15 · 14)− 101= 105− 101= 4. �

Corollary 4.8. For any a ∈ Q\
{
−

1
4

}
and any algebraic number field K there are

only finitely many c ∈ K for which there are at least two K -rational 4-th preimages
of a.

The bound κ̄(−1
4). For a = − 1

4 the preimages curves are in fact reducible since
we have an equation in the generators of the form

s2
+
(
t − 1

2 z
)2
=
(
s−

(
t − 1

2 z
))(

s+
(
t − 1

2 z
))
,

where s is a second preimage of a for which s2
+ c = t and t2

+ c = a, and an
equation of the form

u2
−
(
t + 1

2 z
)2
=
(
u−

(
t + 1

2 z
)(

u−
(
t + 1

2 z
))
,

where u is a second preimage of a for which u2
+ c = −t . After splitting the

preimage curves into their distinct irreducible components we can again proceed
with genus calculations.

Theorem 4.9. For any fixed number field K , κ̄
(
−

1
4

)
= 10.

Proof. Using the Jacobian criterion we compute that the following curves are all
nonsingular, and we apply the genus formula from [Hirzebruch 1966, §22] or [Ar-
slan and Sertöz 1998, Corollary 2] to compute the following genera.

g =
{

1 in the cases 224, 2222, 244, 2422
5 in the cases 22222, 2224, 2242, 246, 2442, 2424, 24222.

Using Magma, we see that the 244 curve is a rank 1 elliptic curve over Q isomor-
phic to

v2w = u3
+ u2w− 9uw2

+ 7w3

so has infinitely many rational points. Therefore, there are infinitely many c with
10 rational preimages of − 1

4 and only finitely many c values with 12 (or more)
rational preimages of − 1

4 . �
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5. Proof of Theorem 1.3

Proof. The case a =− 1
4 was covered in Theorem 4.9.

For a a third critical value we have genus 1 for the 224 curve and, hence, for
a large enough extension of Q it has positive rank and infinitely many rational
points. Also, it has no Q-rational points. The 242 curve has genus greater than 1
and, hence, has only finitely many rational points. Thus, for κ̄(a, K ) to be at least
10 there must be infinitely many rational points on a curve corresponding to an
arrangement with rational 4-th preimages, which is not possible by Corollary 4.8.
So it is possible for κ̄(a, K ) to be either 6 or 8 depending on the field.

For all other values of a we have the genus of the 224 and 242 curves are
greater than 1 and, hence, have only finitely many rational points. Any arrangement
with more points must contain one of these two arrangements, hence κ̄(a, K )≤ 6.
Theorem 3.3 shows that the 222 surface has generic rank 2 and [Masser and Zannier
2012] shows that the set of a where the rank is 0 is finite. Every a value for which
both E222 and E24 specialize to rank 0 has κ̄(a)= 4, otherwise κ̄(a)= 6. �

6. Other properties of preimage surfaces

In this section we collect some additional properties of the preimages surfaces that
are tangential to the proof of Theorem 1.3, yet still of interest.

Parametrization of torsion subgroups of E24. Recall that Mazur’s theorem [1977]
gives a description of the possible torsion subgroups of elliptic curves over Q and
that the specialization map is injective on nonsingular fibers. These facts combined
with Theorem 3.2 implies that the possible torsion subgroups for a nonsingular
specialization of E24(a) must be isomorphic to one of the following groups:

{Z/2Z×Z/4Z, Z/2Z×Z/8Z, Z/4Z, Z/8Z, Z/12Z}.

We characterize the a values giving rise to a specialization with each of these
possible torsion subgroups in the following theorem.

Theorem 6.1. (a) E24(a)(Q) contains a subgroup isomorphic to Z/2Z×Z/4Z if
and only if

a =−t2 for t ∈Q\
{
0,± 1

2

}
.

(b) E24(a)(Q) contains a subgroup isomorphic to Z/8Z if and only if

a = 1
4 t2(t2

− 2) for t ∈Q\{0,±1}.

(c) E24(a)(Q) contains a subgroup isomorphic to Z/2Z×Z/8Z if and only if

a =−
(4t2
− 4t − 1)2(4t2

+ 4t − 1)2

4(4t2+ 1)4
for t ∈Q\

{
0,± 1

2

}
.
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(d) E24(a)(Q) contains a subgroup isomorphic to Z/12Z if and only if

a =
(13691470144t2

− 235376t + 1)(13903463744t2
− 235376t + 1)3

9527265101250297856000000t6(117688t − 1)2

for t ∈Q\
{
0, 1

117688

}
.

Proof. (a) First suppose a =−t2 for some t ∈Q\
{
0,± 1

2

}
. Then

{O, (4t2
+ 1, 0, 1), (4t, 0, 1), (−4t, 0, 1)}

is a subgroup of E24(−t2)(Q) isomorphic to Z/2Z× Z/2Z. Since there is also a
generic torsion point of order 4 (Theorem 3.2), E24(−t2)(Q) contains a subgroup
isomorphic to Z/2Z× Z/4Z. Next, suppose E24(a)(Q) contains a subgroup iso-
morphic to Z/2Z×Z/2Z and, hence, also a subgroup isomorphic to Z/2Z×Z/4Z.
Thus, E24(a)(Q) has three points of order two. Points of order two must be rational
roots of the Weierstrass equation

x3
+ (4a− 1)x2

+ (16a)x + 16a(4a− 1)= (x + 4a− 1)(x2
+ 16a). (2)

So, x2
+16a must have 2 rational roots, or equivalently, a=−(x/4)2=−t2. Hence,

there are three rational roots of (2) if and only if a = −t2 for t ∈ Q. However, if
t =±1

2 then the roots will not be distinct, so we must have a=−t2 for t ∈Q\{± 1
2}.

For t = 0 we get a = 0 which is a degenerate case (a singular fiber of Xpre(2)).

(b) Suppose a = t2(t2
− 2)/4 for some t ∈ Q\{0,±1}. Then it can be verified

directly that the point P = (2t (t2
+ t−1), 2(t−1)t (t+1)3, 1) is in E24(a)(Q) and

[2]P = (2, 2(4a+ 1), 1) is the generator of the cyclic subgroup of order four. So,
P generates a cyclic group of order eight.

Now suppose that E24(a)(Q) has a cyclic subgroup of order eight. If we let
P = (x, y, 1) be the generator of the subgroup, then [2]P generates a cyclic group
of order four (the generic torsion subgroup). So, we must have x([2]P)= 2. This
gives us the equation

x4
− 8x3

− 64ax2
+ 8x2

− 512a2x − 1024a3
+ 256a2

+ 64a = 0.

Then using the solution to the quartic we have the solutions

x = 2± 2
√

4a+ 1+
1
2

√
24+ (8a− 1)±

512+ 4096a2+ 256(8a− 1)

16
√

4a+ 1

x = 2± 2
√

4a+ 1−
1
2

√
24+ (8a− 1)±

512+ 4096a2+ 256(8a− 1)

16
√

4a+ 1
.
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In order to have x ∈ Q, and since x is clearly not 2, we must have
√

4a+ 1 ∈ Q.
So a = b2

−1
4 for some b ∈Q. The above roots become

x = 2(1± b+ b
√

1± b)

x = 2(1± b− b
√

1± b)

from which it follows that b=±(t2
−1). Thus, a = t2(t2

−2)
4 . Note that for t =±1

we get a =− 1
4 and for t = 0 we get a = 0 which are all singular fibers.

(c) Clearly, E24(a)(Q) has a subgroup isomorphic to Z/2Z×Z/8Z if and only if
E2(a) has a subgroup isomorphic to Z/2Z×Z/4Z and a subgroup isomorphic to
Z/8Z. From the two previous parts, it follows that a = −t2

1 and a = 1
4 t2

2 (t
2
2 − 2).

These two equations define a curve of genus zero which can be parameterized with
Magma and substituted into a =−t2

1 to get the stated form. For t = 0,± 1
2 we get

a =− 1
4 , which is a singular fiber.

(d) Since specialization is injective on torsion for nonsingular fibers , E24(a)(Q)
has a subgroup isomorphic to Z/12Z if and only if there is a point Q = [x, y] ∈
E24(a)(Q) for which [3]Q generates the generic Z/4Z torsion subgroup. In par-
ticular, we must have x([3]Q)= 2. So we need to find solutions to

x([3]Q)− 2
x − 2

= 0

where we divide out by x−2 since we only wish to exclude the a values which have
purely Z/4Z torsion. From the algcurve package in Maple we get the parametriza-
tion given. The two excluded t values correspond to the two singular fibers a = 0
and a =− 1

4 . �

Corollary 6.2. The a∈Q for which E24(a)(Q) has torsion subgroup exactly Z/4Z,
in other words, the a ∈ Q for which the specialization map is an isomorphism on
torsion, is a Zariski dense set.

Proof. From Mazur’s theorem and the injectivity of the specialization map, the
possible torsion groups of E24(a)(Q) are

{Z/2Z×Z/4Z, Z/2Z×Z/8Z, Z/4Z, Z/8Z, Z/12Z}.

The condition on a for E24(a)(Q)tors to not be Z/4Z is a closed condition from
Theorem 6.1 and the j-invariant. Therefore, every a ∈ Q outside of this Zariski
closed set satisfies E24(a)(Q)tors ∼= Z/4Z and there is at least one such a,

E23(1)(Q)tors ∼= Z/4Z. �
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Exceptional (c, a) values over Q.

Rank zero. The methods of [Masser and Zannier 2008; 2012], in principle, can
compute the full set S, but in practice such computations are difficult. However,
computing the set S ∩ K for [K :Q] ≤ 2 from Theorem 1.3 is feasible since we
have an explicit (small) bound on the order of a torsion point.

We must have both P(a) and Q(a) are torsion on the 222 surface. We have
a bound of 18 for the order of a torsion point over a quadratic number field K
[Kamienny 1992; Kenku and Momose 1988]. Finding the a for which P(a) or
Q(a) is torsion of a given order is solving polynomials equation in a. If there are
any a values for which they are both torsion, we compute the rank of E24(a).

Theorem 6.3. Let S be the set of a values from Theorem 1.3 for which κ̄(a) = 4.
Let K be a quadratic number field. Then, S ∩ K =∅.

Proof. Direction computation. �

Full trees of preimages. We can find an a value with arbitrarily many Q-rational
preimages by taking a to be the n-th forward image of any wandering Q-rational
point. This gives a very deep but potentially sparse preimage tree. Consequently,
one may ask if you can find an a and c which gives a full tree to some level.
Clearly, if you allow K/Q to be of large degree, the answer is any level, so we
address this question over Q. For example, here is a list of (c, a) with a 246
preimage arrangement.(
−

5248
2025 ,

726745984
284765625

)
,
(
−

17536
5625 ,

878382976
244140625

)
,
(
−

9153
6400 ,−

437896611
400000000

)
,
(
−

24361
14400 ,−

42
25

)
,(

−
20817
25600 ,−

1078371711
6400000000

)
,

(
−

180625
97344 ,

2845625
5483712

)
,

(
−

158848
99225 ,

20844352384
683722265625

)
.

Remark 6.4. We were unable to find any pairs (c, a) over Q with the full 248
arrangement, but it seems reasonable to expect that such an arrangement exists. We
searched by choosing the smallest third preimage having height at most log 30,000,
since choosing two third preimages which map to same second preimage (up to
sign) fixes a unique c value and, hence, a unique a value.
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The Steiner problem on the regular tetrahedron
Kyra Moon, Gina Shero and Denise Halverson

(Communicated by Frank Morgan)

The Steiner problem involves finding a shortest path network connecting a spec-
ified set of points. In this paper, we examine the Steiner problem for three points
on the surface of a regular tetrahedron. We prove several important properties
about Steiner minimal trees on a regular tetrahedron. There are infinitely many
ways to connect three points on a tetrahedron, so we present a way to eliminate
all but a finite number of possible solutions. We provide an algorithm for finding
a shortest network connecting three given points on a regular tetrahedron. The
solution can be found by direct measurement of the remaining possible Steiner
trees.

1. Introduction

The Steiner problem asks to find a shortest path network to connect a given set of
points on a surface. In this paper we will study the three point Steiner problem on
a regular tetrahedron. We will provide an algorithm in Section 10, Algorithm 10.1,
that determines a solution to the three point Steiner problem on the regular tetra-
hedron.

On the Euclidean plane, the Steiner problem has been studied extensively; see
[Gilbert and Pollak 1968; Hwang et al. 1992; Ivanov and Tuzhilin 1994, Chapter 9;
Melzak 1961; Zacharias 1914–1921]. The Steiner problem for three points on the
Euclidean plane was formally introduced in the seventeenth century by Fermat;
see [Hwang et al. 1992; Kuhn 1974; Zacharias 1914–1921]. A general algorithm
to find the solution to the Steiner problem for n points on the Euclidean plane was
first developed by Melzak [1961] (see also [Hwang et al. 1992]).

The Steiner problem on the surface of the tetrahedron is not as straightforward
as on the plane. In particular, a geodesic segment connecting any two points on
the surface of the tetrahedron is not unique (see top part of Figure 1 on next page).
Consequently, there are infinitely many locally stable shortest-length trees connect-
ing any three points on the surface of the tetrahedron (see Figure 1, bottom). In this

MSC2010: primary 05C05; secondary 51M15.
Keywords: Steiner problem, length minimization, regular tetrahedron, piecewise-linear surface.
Funded by NSF grant DMS-0755422 and a BYU undergraduate research grant.
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Figure 1. Candidates for a shortest path (top) and for a shortest
tree (bottom).

paper, we provide an algorithm that eliminates all but a small number of path net-
works that need be considered as possible minimizers. Amongst these remaining
candidates, a shortest path network can be found using direct measurement.

This research contributes to the growing set of strategies for solving Steiner
problems on surfaces in general. Algorithms exist to find the solution for the
Steiner problem on certain surfaces of constant curvature. The problem was studied
in [Weng 2001; Litwhiler and Aly 1980; Brazil et al. 1998] for on curved surfaces,
including spheres. March and Halverson [2005] studied Steiner trees in hyperbolic
space. Lee et al. [2011] studied the Steiner problem on wide and narrow cones.
Penrod [2007] and May and Mitchell [2007] developed algorithms to solve Steiner
problems on the flat torus. Caffarelli et al. [2010] studied the Steiner problem on
surfaces of revolution. Brune and Sipe [2009] developed an algorithm to find a
shortest path between two points on the surface of the regular tetrahedron. This
research about the Steiner problem on the regular tetrahedron may provide further
insight into the Steiner problem on more general piecewise linear surfaces.

2. Preliminaries

We begin by setting up the basic framework for the Steiner problem on a regular
tetrahedron T. Let A = {a1, a2, . . . , an} be a set of given points on T called
terminal points, and let L be a path network (also on T) connecting the points
in A. A path network connects a collection of arcs, only possibly meeting at the
endpoints such that the network contains a path connecting any two points of A.
If L is a shortest path network, the edges must be geodesics. L must also be a tree
since if L contained a cycle, one of the edges could be removed. The goal of the
Steiner problem is to find a shortest path network L connecting the points of A.
A shortest path network may have additional vertices called Steiner points. The
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solution to the Steiner problem is called the Steiner minimal tree, which will be
denoted by SMT(A).

As defined in [Hwang and Weng 1986], a tree with n fixed points is called a
Steiner tree on n fixed points if it satisfies the following conditions:

(1) There are at most n− 2 Steiner points.

(2) Each Steiner point has exactly three incident edges.

(3) Any pair of edges meeting at any vertex of the tree form an angle with measure
at least 120◦.

Note that for a tree with no degree-two Steiner points, the number of edges
minus the number of vertices is 1, which in fact implies condition 1. A tree that
has exactly n− 2 Steiner points is called a full Steiner tree. A tree that has fewer
than n− 2 Steiner points is called a degenerate Steiner tree.

The Steiner problem for n fixed points on the plane can be solved in finite time
using Melzak’s algorithm [1961]. We will utilize these results for the regular tetra-
hedron since the plane can be viewed as a branched cover of the regular tetrahedron.
The Steiner problem on T is more complex than on the plane because there are
infinitely many geodesics that could connect two points. Thus, the process of solv-
ing the Steiner problem on T is initially a problem of narrowing down potential
path networks.

The algorithm used to solve the 3-point Steiner problem in Euclidean space was
developed by Torricelli, Cavalieri, Simpson, Heinen, and Bertrand (see [Hwang
et al. 1992]). For convenience, we repeat it here.

Algorithm 2.1. This algorithm provides a shortest network connecting three given
points in Euclidean space.

(1) Let A, B, and C be given. Label A, B, and C so that m 6 ABC ≥ m 6 AC B
and m 6 ABC ≥ m 6 B AC .

(2) Determine whether Case 1 or 2 applies.

Case 1. If m 6 ABC > 120◦, the Steiner minimal tree is degenerate and it is
AB ∪ BC . The algorithm is complete (see figure for example).

m∠ABC = 121.52°

A

B

C

Case 2. If m 6 ABC ≤ 120◦, proceed to Steps (3)–(6).
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(3) Create an equilateral triangle 4BC E where E is on the opposite side of
←−→

BC
from A.

S
E

A

B

C

(4) Construct EA . This line segment is called the Simpson line. (The length of
the Simpson Line is known to have the same length as the SMT(A, B,C)
[Hwang et al. 1992].)

(5) Next, circumscribe a circle about 4BC E . The point of intersection of that
circle and EA is the Steiner point S.

(6) Connect each of A, B, and C to S to form SMT(A, B,C). By construction,
every two edges of the tree which meet at the Steiner point have angle 120◦

[Gilbert and Pollak 1968]. The algorithm is complete.

m∠ASC = 120°

m∠BSC = 120°

m∠ASB = 120°

S

A

B

C

Another observation relevant to our discussion of the Steiner problem on the
regular tetrahedron is that no geodesic passes through the vertices of a narrow
cone [Lee et al. 2011]. Since a small neighborhood of a vertex is a narrow cone,
no shortest path network will pass through any vertices of T. Hence, a shortest
path network can only meet a vertex of T if a fixed point is placed on that vertex
[Ivanov and Tuzhilin 1994, Chapter 9].

3. Tiling the plane

In this section we will show how to construct a branched covering of the plane
onto the regular tetrahedron. For further reference, see [Ivanov and Tuzhilin 1994,
Chapter 9].

Consider a regular tetrahedron with faces labeled 1, 2, 3, and 4. Cut along the
edges common to faces 1 and 2, 1 and 4, and 2 and 4 and lay it on the plane, as
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shown in the figure. We will use this configuration to tile the plane.

2
3

4

1

Notice that face 1 is adjacent to face 2 on the tetrahedron. Thus, in order to
represent that on the plane, we must place a tile corresponding to face 2 so it
becomes adjacent to a tile corresponding to face 1. This is accomplished by placing
a tile corresponding to face 2 that is an 180◦ rotation about a common vertex.
Similarly, we must place a tile corresponding to face 4 so that the tile corresponding
to face 1 and a tile corresponding to face 4 have a common edge in the plane as
they do on the tetrahedron. Since each face on the tetrahedron is adjacent to the
other three faces, then each face should be adjacent to all of the other faces on
the plane. If copies of each face are placed at 180◦ rotations about each of their
respective vertices, this results in a comprehensive tiling of the Euclidean plane.

Points on T will be represented by lower case letters. The corresponding points
in the tiling will be represented by corresponding capital letters. Assume a is on
face 1 on T. Then for each tile corresponding to face 1, there is a copy of A on
the tile. Two adjacent tiles contain copies of A which are 180◦ rotations about the
common vertex of the tile containing A. A small section of the tiling can be seen
here:

4

3
2

4

2
3

4
3

24
3

2

2
3

44
3

2

4
3

2 4
3

2

4
3

2

1

1

1

1

1

1

1

1

1

24
3

1

A

A

A

AA

A

A

A

A

A

We introduce a coordinate system to notate the different faces of the tiling. In
the tiling, the horizontal lines that separate the triangles will be known as mi , for
i = . . . ,−2,−1, 0, 1, 2, . . . . Similarly define ni as the lines with the slope equal
to−
√

3. Finally define pi as the lines with slope
√

3. We thus obtain the following
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arrangement:

p-2

p-1

p4p3p2p1p0

n-3

n-2

n-1 n3n2n1n0

m-2

m-1

m2

m1

m0

4

3
2

4

2
3

4
3

24
3

2

2
3

44
3

2

4
3

2 4
3

2

4
3

2

1

1

1

1

1

1

1

1

1

24
3

1

Using this coordinate system, we can identify individual tiles. For any tile that is
bounded by mx , ny , and pz , we will denote it as T(x,y,z). Without loss of generality,
we will assume that T(0,0,0) corresponds to face 1, T(1,−1,0) corresponds to face 2,
T(0,−1,1) corresponds to face 3, and T(1,0,1) corresponds to face 4. Though each
face of the tetrahedron is replicated infinitely many times, each tile in the tiling has
a unique labeling according to the lines that bound it.

We now show that this tiling is a branched covering of the plane onto the regular
tetrahedron. Let 5 : R2

→T be the natural continuous map that takes each tile of
the plane to its corresponding face in T homeomorphically. Let V be the vertex set
of T. Note that 5 is a branched covering map with branch set V. Then the map

π : R2
−5−1(V )→ T−V

(which is a restriction of 5) is a covering map of T−V. Since π is a covering
map, it has the following lifting property: Suppose a ∈ T−V and A ∈ 5−1(a).
Then any path α : [0, 1] → T − V so that α(0) = a has a unique lift to a path
α̃ : [0, 1] → R2

−5−1(V) with α̃(a) = A. The map α̃ is a lift in the sense that
π ◦ α̃ = α. It follows that any embedded path network in T−V containing a can
be uniquely lifted to a path network containing A.

Note that in the case that a ∈V and 5(A)= a, for any embedded path network
containing a in T, there are two lifts of the path network containing A. These lifts
are 180◦ rotations of each other about A.

4. The two point problem

This section will briefly describe an algorithm used to construct a shortest path
between any two points on a regular tetrahedron. For further details on this process,
refer to [Brune and Sipe 2009]. The algorithm detailed here will depend heavily
on the following basic geometric property:
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Property 4.1. Given any two points A and B on the plane, construct the perpen-
dicular bisector of AB and call it PAB . If X is on the A side of PAB , then X is
closer to A. If X is on the B side of PAB , then X is closer to B.

Definition 4.2. Given two points P and Q on the plane, define H̃P Q to be the
half-plane cut by the perpendicular bisector of P and Q on the P side; that is,

H̃P Q = {X |P X ≤ Q X}.
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The algorithm: a brief synopsis. Suppose there are two points p and q on distinct
faces of the tetrahedron. Suppose R2 is tiled as in Section 3. Recall that 5 :
R2
→ T is the covering map and R2 is tiled as in Section 3. Then 5−1(p) and

5−1(q) contain infinitely many points. Let P ∈5−1(p). We want to find a point
Q ∈ 5−1(q) that realizes a shortest path from p to q . The points of 5−1(q) that
could realize a shortest path to P can be restricted to a star-shaped region. The
region consists of an interior hexagon which contains the point P , outlined by six
tiles which contains points of5−1(q). This region is called an i-star for i = 1, 2, 3,
or 4, where i is the face of the tetrahedron containing q . We illustrate a 4-star when
p is on face 1 and q is on face 4:
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It was proved in [Brune and Sipe 2009] that this i-star always contains a shortest
path between two points.
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Figure 2. Reducing the number of possible points of5−1(q) that
can realize a shortest path.

There is a cutting technique that has been shown to reduce the number of possi-
ble points of 5−1(q) that could realize a shortest path. Begin by constructing the
line segment from point P to the point P ′ ∈5−1(p), also located within the 4-star.
Then, construct the perpendicular bisector of PP ′ , denoted PPP ′ (see Figure 2,
left). Every point of 5−1(q) within the star that falls on the same side of l as
P will now be the only copies of 5−1(q) considered for the shortest path. The
portion of the star-shaped region which is on the P side of PPP ′ is called τ (see
Figure 2, right).

There are three points of5−1(q) in τ which we will label as Q1, Q2, and Q3, as
shown in Figure 2, right. (If PPP ′ contains a point of 5−1(q) in τ , then it contains
another point of5−1(q) and either point in5−1(q) in τ can be discarded.) To find
min{P Qi } where i = 1, 2, 3, we construct H̃Qi Q j for i = 1, 2, 3 and j 6= i .

Note that the boundary of H̃Qi Q j is PQi Q j . If Qi is closest to P , then P must
lie in H̃Qi Q j ∩ H̃Qi Qk . Note that if P is equally close to Qi and Q j , then P lies in
both H̃Qi Q j ∩ H̃Qi Qk and H̃Q j Qi ∩ H̃Q j Qk . In the figure below, a shortest path is
realized by P Q3 . Hence, P lies in H̃Q3 Q1 ∩ H̃Q3 Q2 . In particular, 5(P Q3 ) is the
minimal geodesic connecting p and q and will traverse faces 1, 2, and 4.
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5. Overview

Suppose {x, y, z} ∈ T. Recall that 5 is the branched covering map described
in Section 3. Thus 5−1(x),5−1(y), and 5−1(z) contain infinitely many points.
Hence, there are also infinitely many distinct Steiner trees connecting points x, y
and z. Our goal in this paper is to narrow down the number of combinations in the
tiled plane which may realize the solution.

As stated earlier, we will divide our discussion of this problem into three cases:

Case 1: Three points that can be considered to be on one face of T.

Case 2: Three points that can be considered to be on three distinct faces of T.

Case 3: Any configuration of three points that does not fit into the first two cases
(i.e., three points that can only be considered to be on two distinct faces).

Section 6 will address the simplest case where all three points are on a common
face of the tetrahedron. Section 7 will introduce the strategies needed for Sections
8 and 9. In Section 8, we will discuss case 2, and in Section 9 we will discuss case
3. We will discuss how to solve the problem for any specific positioning of the
points in Section 10.

6. Case 1: Three points on one face

We know by a theorem proved in [Brune and Sipe 2009] that a shortest path network
connecting n points contained on the same face of a regular tetrahedron is contained
within that face. Thus, the Steiner minimal tree for three points on the same face
of a tetrahedron can be constructed in that face using the algorithm described in
Algorithm 2.1.

7. Geometric properties of Steiner minimal trees

Given a, b, c ∈ T and the corresponding point sets on the tiled plane, there are
many ways that points can be selected, each corresponding to a Steiner tree on T.
However, only certain of the combinations realize the Steiner minimal tree on the
tetrahedron. The next several results represent strategies that help eliminate fruit-
less combinations. At this point the reader is encouraged to reread Property 4.1,
describing the situation illustrated here:
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Lemma 7.1 (perpendicular bisector rule I). Suppose A, A′ ∈5−1(a) such that A
is on tile T and A′ is on tile T ′. Then for any point B on T , AB ≤ A′B. If neither
A nor B are a common vertex of T and T ′, then AB < A′B.

Proof. Let b = 5(B). Note that a and b are on the same face. We know from a
theorem proved in [Brune and Sipe 2009] that a shortest path network connecting
n points on the same face is in that same face and here is ab, which is realized by
AB in T . Since AB is a minimum of all paths A′B where A′ ∈5−1(a), then for all
A′ 6= A, AB≤ A′B. If A is not a common vertex of T and T ′, then A 6= A′, so PAA′

is defined. If B is not a common vertex of T , then B ∈ PAA′ . Thus AB < A′B. �

Next, let A, B, and C be points in the tiled plane such that

5(SMT(A, B,C))= SMT(a, b, c).

We will show that the convex hull of the triangular region formed from A, B, and C
cannot contain a vertex of the tiled plane unless that vertex is one of A, B, or
C . However, before we prove this, we introduce a definition and a property of
triangular regions in general.

Definition 7.2. Given two points X and V , let 0X V be the line perpendicular to
X V through V .

Lemma 7.3. Suppose there is a triangular region with vertices A, B, and C that
contains the point V in the interior. Then there is an X ∈ {A, B,C} such that 0X V

separates X from {A, B,C}− {X}.

Proof. If 0AV separates A from BC , the proof is done (left figure):

|AV

A

B

C

V

|AV

A

B

C

V

Otherwise, one of B or C is on the same side of 0AV as A.
Without loss of generality, suppose B is on the same side of 0AV as A (right

figure). Then m 6 AV B ≤ 90◦. Then if 0CV separates C from A and B, the proof
is done.

If not, one of A or B is on the same side of 0CV as C . In the former case we have
m 6 CV A≤ 90◦, while in the latter we have m 6 CV B ≤ 90◦. Here is an illustration
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of the second possibility:
|CV

A B

C

V

Thus, either m 6 AV C +m 6 AV B ≤ 180◦ or m 6 CV B +m 6 AV B ≤ 180◦. In
either case, we are in contradiction with the hypothesis that V is in the interior
of 4ABC . Thus, there exists an X ∈ {A, B,C} such that 0X V separates X from
{A, B,C}− {X}. �

Theorem 7.4 (vertex rule). Suppose a, b, and c ∈ T and

5(SMT(A, B,C))= SMT(a, b, c).

Then the image of the convex hull of 4ABC under 5 cannot contain a vertex v,
unless v is one of a, b, or c.

Proof. By way of contradiction, suppose a vertex V of the tiling is contained in
the interior of the convex hull of 4ABC . Construct SMT(A, B,C), and label the
Steiner point S (the Steiner tree may possibly be degenerate). Using Lemma 7.3,
we may assume without loss of generality that 0CV separates C from both A and
B. Reflect the part of the path on the C side of 0CV across 0CV . Let C ′ be the
reflection of C across 0CV . Note that the partially reflected path connects A, B,
and C ′ and is equal in length to SMT(A, B,C). Thus, there is an alternate choice of
points in5−1(a),5−1(b), and5−1(c) which is at least as short as SMT(A, B,C).
If S is on the opposite side of 0CV as C , we can shorten the tree by replacing SC
with SC ′ (see figure on the left). If S is on the same side of 0CV as C , we can
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shorten the tree by replacing S A with S A′ and SB with SB ′, where A′ and B ′

are the reflections of A and B across 0CV , respectively. If S is on 0CV , then
SC = SC ′, so either tree is the same length. However, the tree containing A, B,
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and C ′ will no longer meet the 120◦ condition for Steiner trees, and will not be
SMT(A, B,C ′). Thus L(SMT(A, B,C ′)) < L(SMT(A, B,C)), which implies
that 5(SMT(A, B,C)) 6= SMT(a, b, c). �

Theorem 7.5 (perpendicular bisector rule II). Let A, A′ ∈ 5−1(a) on the tiled
plane be distinct. If PAA′ separates {B,C} from A, then

L(SMT(A′, B,C)) < L(SMT(A, B,C)).

Hence, 5(SMT(A, B,C)) 6= SMT(a, b, c).

Proof. Let λ be the reflection of the part of SMT(A, B,C) on the A side of PAA′

across PAA′ :

P
AA'

A'

A

B

C

λ

Note that λ uses the point A′ as a terminal, thus it is a path network connecting
A′, B, and C . By a similar argument as in Theorem 7.4, we obtain

L(SMT(A, B,C))= L(λ) > L(SMT(A, B,C ′)). �

Sectors and half-planes.

Definition 7.6. Fix a vertex V of the tiled plane, and let T1 and T2 be tiles (not
necessarily adjacent to V ) that are mapped to one another with respect to 180◦

rotation about V . Define the sector ST2T1 as the intersection of all half-planes
H̃X2 X1 , where X1 runs over all points in T1 and X2 is it image under a 180◦ rotation
about V . Clearly H̃X2 X1 is fully determined by the direction of the vector V X1;
thus by considering two extreme cases for this direction, as here:

H
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we conclude that the ST2T1 is the intersection of the half-planes H̃X2 X1 obtained in
these two cases:

ST2T1

T2

T1

X
2

X
1

Next, if Y and Z are arbitrary points belonging to tiles T1 and T2, respectively, we
set SY Z = ST2T1 .

Definition 7.7. Let T1, T2 be tiles that are translates of each other on the tiled plane,
satisfying 5(T1) = 5(T2). Then the intersection of all half-planes H̃X2 X1 where
X i ∈ Ti and 5(X1)=5(X2), is denoted by HT2T1 .

H
T2T1

T
1 T

2

If Y and Z are arbitrary points belonging to tiles T1 and T2, respectively, we set
SY Z = ST2T1 .

Theorem 7.8 (Steiner point rule). Let A, B, and C be points in the tiled plane such
that 5(SMT(A, B,C)) is a Steiner minimal tree on the tetrahedron. Suppose that
S is the Steiner point of SMT(A, B,C). If S′ is any other point of5−1(5(s)), then
X S ≤ X S′ for X = A, B, and C.

Proof. Without loss of generality, assume that X = C . By way of contradiction,
suppose C S′ < C S. Then there exists a point C ′ ∈ 5−1(c) such that C S′ = C ′S.
This implies that

L(SMT(A, B,C))= AS+ BS+C S > AS+ BS+C ′S

≥ L(SMT(A, B,C ′)),

as needed. (See Figure 3 on next page.) �
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Figure 3. Toward the proof of Theorem 7.8.

8. Case 2: Three points on three distinct faces

When the three points can be viewed to lie on three distinct faces, we use the
following procedure to determine the possible configurations of the points on the
tiled plane which may realize the Steiner minimal tree. Our arguments apply also
when the three points can be viewed to lie on two or one face, as may be the case
if one or more of the points lie on vertices or edges. For example, if one point is in
the interior of a face, another point is in the interior of another face, and the third
point is on a vertex shared by both faces, then we can assign the third point to the
third face which shares that vertex, and the configuration is in the realm of Case 2.

Triple ribbon region. Recall the labeling system introduced in Section 3, in which
mi , ni , and pi represent the horizontal, negative slope, and positive slope lines,
respectively. Also recall that the triangle that is bounded by mx , ny , and pz will be
denoted as T(x,y,z).

Let a, b, and c be points on the tetrahedron such that s is the Steiner point for
SMT(a, b, c). Let τ0 be the shaded region in Figure 4. Since τ0 contains copies of
the tiles corresponding to all four faces, a copy of S ∈5−1(s) must lie within τ0.
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Figure 4. The region τ0.
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Let S∗ = 5−1(5(s))− {S}. We will determine a region R such that given a
point P ∈ R, P S ≤ P S′ for any S′ ∈ S∗. It follows from Theorem 7.8 that any
points not in R cannot be the fixed points of the Steiner minimal tree that contains
S and realizes SMT(a, b, c).

In order to simplify the process, we will first determine the region Ri that con-
tains all points closer to Ti than to any other tile corresponding to face 1. Then
R=

⋃
Ri . We will call R=

⋃
Ri the triple ribbon region.

Reductions. Let i = 1. Let S′ be the 180◦ rotation of S about the vertex V =
T1 ∩ T(2,0,0). Then any point X ∈ ST(2,0,0)T1 is closer to S′ than S. Thus no fixed
point is in ST(2,0,0)T1 :
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Likewise, no fixed points will be found in ST(0,−2,0)T1 or ST(0,0,2)T1 :
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There are also no fixed points to be found in ST(2,−2,−2)T1, ST(−2,−2,2)T1 , and ST(2,2,2)T1 :
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R1 is the closure of the region remaining when the shaded regions in the six
figures of the previous page are cut away. It is shown in white here:
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Regions R2, R3, and R4 are found similarly. The union of all these regions,
R=

⋃4
i=1 Ri , is the triple ribbon region (Figure 5).
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Figure 5. The triple ribbon region (in white).

Regardless of the location of s on the tetrahedron, a copy of5−1(SMT(a, b, c))
is contained within the triple ribbon region. Thus, it is sufficient to check only the
combinations of fixed points in the triple ribbon region.

Although the number of potential path networks needed to be checked to find
SMT(a, b, c) is a finite number, it is still a significant number. Note that there are
six tiles meeting the triple ribbon region corresponding to face i for i = 2, 3, 4.
Thus there are 6×6×6= 216 combinations to consider given the specification of
points in certain faces of τ0. Hence, we continue to make further reductions.

Horn removal. We subdivide the triple ribbon region as follows. The closure of
the bounded white region in Figure 6 (on the next page) is called the badge region.
The small black triangles, which make up the difference between the triple ribbon
region and the badge region, are called the horns.
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Figure 6. The badge region (closure of the polygon in white) and
the horns (in black).

Proposition 8.1. Suppose a, b, and c are three points on distinct faces of T, none
of which are chosen to be face 1. Then there is a copy of

SMT(A, B,C) ∈5−1(SMT(a, b, c))

on the tiled plane which is contained in the badge region centered about a tile
corresponding to face 1 with Steiner point S contained in the triangular region τ0

(see Figure 4).

Proof. Without loss of generality, assume that a is contained on face 3, b is con-
tained on face 4, and c is contained on face 2. Let A ∈ 5−1(a), B ∈ 5−1(b),
and C ∈ 5−1(c) lie in the triple ribbon region such that 5(SMT(A, B,C)) =
SMT(a, b, c). Note that no portion of the horns contains any points of 5−1(a),
5−1(b), or 5−1(c) and therefore cannot contain A, B, or C . Let H1 be the horn
bounded by m2, n0, and p−1 that is outside the badge region.

Suppose an edge of SMT(A, B,C) meets H1 outside the badge region. If the
interior of an edge passes through either side of the horn not on m2, the edge must
meet the shaded region. But by hypothesis, SMT(A, B,C) must lie entirely within
the triple ribbon region. Thus the edge may only pass through the boundary of the
horn on m2. If so, the only possibility is that one of the endpoints of the edges is
contained in H1. Thus a fixed point is contained in the interior of the horn, and
hence contained in the interior of face 1. But by hypothesis, face 1 was not selected
as one of the faces containing fixed points. Therefore, an edge of SMT(A, B,C)
does not meet H1. By a similar argument, SMT(A, B,C) cannot meet any horn.

�

Reduction to the piping region. Using Theorem 7.4 and Theorem 7.5, we will
now demonstrate that a lift of the Steiner minimal tree can be contained in a subset
of the badge region called the piping region (Figure 7). What is left over of the
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Figure 7. The piping region (closure of the polygon in white) and
the flaps (in black).

badge region is called the (top) flaps. We will show that if SMT(A, B,C) realizes
SMT(a, b, c) and is contained in the badge region, then SMT(A, B,C) does not
meet the flaps outside the piping region.

Theorem 8.2. Suppose a, b, and c are three points on distinct faces of T, none
of which chosen to be face 1. Suppose SMT(A, B,C) ∈5−1(a, b, c) is contained
in the badge region. Then SMT(A, B,C) ∈ 5−1(a, b, c) is also contained in the
piping region centered about a tile corresponding to face 1.

Proof. Assume the setup given in the proof of Proposition 8.1. We will show that
the Steiner minimal tree need not meet any of the flaps. By way of contradiction,
suppose that SMT(A, B,C) meets the top flap, the flap contained in T(2,1,−1), out-
side the piping region. If SMT(A, B,C) meets the top flap, then at least one fixed
point or vertex of SMT(A, B,C) must lie above m2. Note that by construction, S
is contained in T0 and cannot be this point. Since the only tile in the badge region
which lies above m2 is a tile corresponding to face 3, the fixed point must lie in the
interior of face 3. Thus, A must lie in the top flap outside the piping region. For the
remainder of the argument, we will denote A by A1 and label the other copies of
5−1(a),5−1(b), and5−1(c) contained in tiles meeting the badge region as shown
in the figure on the top of the next page. We will show either that any Steiner tree
SMT(A1, Bi ,C j ) with S in τ0 contained within the badge region cannot realize
SMT(a, b, c) or that there exists another copy of the tree within the piping region.

We will first determine which combinations cannot realize SMT(a, b, c).Once
those combinations are determined, we will show that the remaining combinations
have an equivalent copy contained in the piping region.

Construct the sector SA2 A1 . If any points Bi and C j are both contained in SA2 A1 ,
they must both be separated from A1 by PA2 A1 . Thus, by Theorem 7.5, we know
that5(SMT(A1, Bi ,C j )) 6=SMT(a, b, c) for Bi and C j contained in these sectors.
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By this argument, the combinations (Bi ,C j ), for i = 4, 5 and j = 4, 5, 6, cannot
be used with A1 to realize SMT(a, b, c).

Construct the half-plane HA3 A1 . If any points Bi and C j are both contained in
HA3 A1 , they must be separated from A1 by PA3 A1 . Thus, by Theorem 7.5, we know
that5(SMT(A1, Bi ,C j )) 6=SMT(a, b, c) for Bi and C j contained in these sectors.
By this argument, the combinations (Bi ,C j ), for i = 4, 6 and j = 3, 4, 5, 6, cannot
be used with A1 to realize SMT(a, b, c).

Construct the half-plane HA4 A1 . If any points Bi and C j are both contained in
HA4 A1 , they must be separated from A1 by PA4 A1 . Thus, by Theorem 7.5, we know
that5(SMT(A1, Bi ,C j )) 6=SMT(a, b, c) for Bi and C j contained in these sectors.
By this argument, the combinations (Bi ,C j ), for i = 3, 4, 5, 6 and j = 4, 6, cannot
be used with A1 to realize SMT(a, b, c).

Consider SMT(A1, B1,C3). Note that both A1 and B1 must be contained in
SC1C3 . Thus, A1 and B1 must be separated from C3 by PC1C3 . By Theorem 7.5,
5(SMT(A1, B1,C3)) 6= SMT(a, b, c).

Consider SMT(A1, B1,C4). Note that both A1 and B1 must be contained in
SC2C4 . Thus, A1 and B1 must be separated from C4 by PC2C4 . By Theorem 7.5,
5(SMT(A1, B1,C4)) 6= SMT(a, b, c).

Consider SMT(A1, B1,C5). Note that both A1 and B1 must be contained in
HC1C5 . Thus, A1 and B1 must be separated from C5 by PC1C5 . By Theorem 7.5,
5(SMT(A1, B1,C5)) 6= SMT(a, b, c).

Consider SMT(A1, B1,C6). Note that both A1 and B1 must be contained in
SC1C6 . Thus, A1 and B1 must be separated from C3 by PC1C6 . By Theorem 7.5,
5(SMT(A1, B1,C6)) 6= SMT(a, b, c).
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Consider SMT(A1, B2,C2). Let V be the intersection of m1 and n0. Note that
V and A1 are on the same side of

←−−→

B2C2, V and B2 are on the same side of
←−−→

A1C2,
and V and C2 are on the same side of

←−−→

A1 B2. Thus V is contained in 4A1 B2C2.
By Theorem 7.4, 5(SMT(a, b, c)) 6= SMT(a, b, c).

Consider SMT(A1, B2,C3). Note that C3 lies in HA2 A1 and that A1 lies in SC1C3 .
B2 must lie in at least one of SA2 A1 and HC1C3 . Suppose B2 lies in SA2 A1 . Then
both B2 and C3 must be separated from A1 by PA2 A1 . If B2 does not lie in SA2 A1 ,
then B2 must lie in HC1C3 . But then both B2 and A1 must be separated from C3 by
PC1C3 . By Theorem 7.5, 5(SMT(A1, B2,C3)) 6= SMT(a, b, c).

Consider SMT(A1, B2,C4). Note that C4 lies in HA3 A1 and that A1 lies in SC2C4 .
B2 must lie in at least one of HA3 A1 and SC2C4 . Suppose B2 lies in HA3 A1 . Then
both B2 and C4 must be separated from A1 by PA3 A1 . If B2 does not lie in HA3 A1 ,
then B2 must lie in SC2C4 . But then both B2 and A1 must be separated from C4 by
PC2C4 . By Theorem 7.5, 5(SMT(A1, B2,C4)) 6= SMT(a, b, c).

Consider SMT(A1, B2,C5). Note that C5 lies in HA3 A1 and that A1 lies in HC1C5 .
B2 must lie in at least one of HA3 A1 and HC1C5 . Suppose B2 lies in HA3 A1 . Then
both B2 and C5 must be separated from A1 by PA3 A1 . If B2 does not lie in HA3 A1 ,
then B2 must lie in HC1C5 . But then both B2 and A1 must be separated from C5 by
PC1C5 . By Theorem 7.5, 5(SMT(A1, B2,C5)) 6= SMT(a, b, c).

Consider SMT(A1, B2,C6). Note that both A1 and B2 must be contained in
SC1C6 . Thus, A1 and B2 must be separated from C6 by PC1C6 . By Theorem 7.5,
5(SMT(A1, B2,C6)) 6= SMT(a, b, c).

We now consider the combinations (A1, Bi ,C j ) for i = 4, 5, 6 and j = 1, 2. By
arguments of symmetry, 5(SMT(A1, Bi ,C j )) 6= SMT(a, b, c) for i = 4, 5, 6 and
j = 1, 2.

Consider SMT(A1, B3,C3). Let V be the intersection of m1 and n0. Note that
V and A1 are on the same side of

←−−→

B3C3, V and B3 are on the same side of
←−−→

A1C3,
and V and C3 are on the same side of

←−−→

A1 B3. Thus V is contained in 4A1 B3C3.
By Theorem 7.4, 5(SMT(A1, B1,C1)) 6= SMT(a, b, c).

The only remaining cases are (A1, B1,C1), (A1, B1,C2), and (A1, B2,C1). We
will show that copies of these trees exist within the piping region. However, we
will not claim that the Steiner point S must remain in τ0.

For (A1, B1,C1), note that 5(SMT(A1, B1,C1))=5(SMT(A2, B2,C2)) since
SMT(A2, B2,C2) is a rotation of SMT(A1, B1,C1) about V . SMT(A2, B2,C2) is
contained within the piping region.

For (A1, B1,C2), note that 5(SMT(A1, B1,C2))=5(SMT(A2, B2,C1)) since
SMT(A2, B2,C1) is a rotation of SMT(A1, B1,C2) about V . SMT(A2, B2,C1) is
contained within the piping region.

For (A1, B2,C1), note that 5(SMT(A1, B2,C1))=5(SMT(A2, B1,C2)) since
SMT(A2,B1,C2) is a rotation of SMT(A1,B2,C1) about V . Also, SMT(A2,B1,C2)
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is contained within the piping region.
Thus, each possible combination (A1, Bi ,C j ) does not realize SMT(a, b, c) or

has a copy within the piping region. Likewise, each possible combination involving
B5 or C5 does not realize SMT(a, b, c) or has a copy within the piping region.
Therefore, there is a solution contained in the piping region. �

The region resulting from Theorem 8.2 is the piping region, which we illustrated
in Figure 7.

Reduction to the truncated triangle region. We further subdivide the piping re-
gion into the truncated triangle region and the side flaps (Figure 8).
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Figure 8. The truncated triangle region (closure of white polygon)
and the side flaps (in black).

Theorem 8.3. Suppose a, b, and c are three points on distinct faces of T, none
of which are in the interior of face 1. Suppose SMT(A, B,C) ∈ 5−1(a, b, c) is
contained in the piping region. Then either SMT(A, B,C) ∈ 5−1(a, b, c) is also
contained in the truncated triangle region centered about a tile corresponding to
face 1 or there is a copy of SMT(A, B,C) contained within the truncated triangle
region that is a rotation of SMT(A, B,C).

Proof. Assume the setup in the proof of Proposition 8.1. Without loss of generality,
suppose that SMT(A, B,C) is in the piping region. We will show that the Steiner
minimal tree need not meet any of the side flaps. Although the final cases of
the proof of Theorem 8.2 did not guarantee that S was contained in τ0, S must be
contained in the truncated triangle region. This is because all the trees which could
be rotated to lie within the piping region contained fixed points contained within
the truncated triangle region. Because S must be contained in the convex hull of
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the triangular region formed from the fixed points, S must be contained within the
truncated triangle region.

By way of contradiction, suppose the Steiner minimal tree meets the flap con-
tained in T(2,−1,−1). If SMT(A, B,C) meets this side flap, then at least one fixed
point or vertex of SMT(A, B,C) must lie above to the left of p−1 and above m1.
Since S is contained in the truncated triangle region (Figure 8), S cannot be this
point. Since the only tile in the piping region which lies to the left of p−1 and
above m1 is a tile corresponding to face 3, the fixed point must lie in the interior
of face 3. Thus, A must lie in the specified side flap outside the truncated triangle
region. For the remainder of the proof we will denote A by A1 and number the
other points within the piping region as follows:
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Construct the sector SA2 A1 . If any points Bi and C j are both contained in SA2 A1 ,
they must both be separated from A1 by PA2 A1 . Thus, by Theorem 7.5, we know
that5(SMT(A1, Bi ,C j )) 6=SMT(a, b, c) for Bi and C j contained in these sectors.
By this argument, the combinations (Bi ,C j ), for i = 4, 5 and j = 2, 4, 5, cannot
be used with A1 to realize SMT(a, b, c).

Construct the half-plane HA3 A1 . If any points Bi and C j are both contained in
HA3 A1 , they must both be separated from A1 by PA3 A1 . Thus, by Theorem 7.5, we
know that 5(SMT(A1, Bi ,C j )) 6= SMT(a, b, c) for Bi and C j contained in these
sectors. By this argument, the combinations (Bi ,C j ), for i = 2, 4, 5 and j = 4, 5,
cannot be used with A1 to realize SMT(a, b, c).

Construct the sector SA4 A1 . If any points Bi and C j are both contained in SA4 A1 ,
they must both be separated from A1 by PA4 A1 . Thus, by Theorem 7.5, we know
that5(SMT(A1, Bi ,C j )) 6=SMT(a, b, c) for Bi and C j contained in these sectors.
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By this argument, the combinations (Bi ,C j ), for i = 2, 5 and j = 3, 4, cannot be
used with A1 to realize SMT(a, b, c).

For SMT(A1, B1,C2), note that A1 and B1 are contained in SC1C2 , so they
are both separated from C2 by PC1C2 . By Theorem 7.5, 5(SMT(A1, B1,C2)) 6=

SMT(a, b, c).
For SMT(A1, B1,C4), note that A1 and B1 are contained in SC3C4 , so they

are both separated from C4 by PC3C4 . By Theorem 7.5, 5(SMT(A1, B1,C4)) 6=

SMT(a, b, c).
For SMT(A1, B1,C5), note that A1 and B1 are contained in SC1C5 , so they

are both separated from C5 by PC1C5 . By Theorem 7.5, 5(SMT(A1, B1,C5)) 6=

SMT(a, b, c).
Consider SMT(A1, B3,C2). Let V1 be the intersection of m1 and n−1. Note that

A1 and V1 are on the same side of
←−−→

B3C2, B3 and V are on the same side of
←−−→

A1C2,
and C2 and V are on the same side of

←−−→

A1 B3. Thus, V1 is contained in 4ABC . By
Theorem 7.4, 5(SMT(A1, B3,C2)) 6= SMT(a, b, c).

Consider SMT(A1, B3,C4). Note that A1 lies in SC2C4 and C4 lies in SA2 A1 .
Note that B3 must lie in at least one of SC2C4 and SA2 A1 . If B3 lies in SC2C4 , both
B3 and A1 must be separated from C4 by PC2C4 . If B3 lies in SA2 A1 , both B3 and C4

must be separated from A1 by PA2 A1 . By Theorem 7.5, 5(SMT(A1, B3,C4)) 6=

SMT(a, b, c).
Consider SMT(A1, B3,C5). Note that both A1 and B3 lie in SC1C5 , so they

are both separated from C5 by PC1C5 . By Theorem 7.5, 5(SMT(A1, B3,C5)) 6=

SMT(a, b, c).
Consider SMT(A1, B2,C1). Note that both A1 and C1 lie in SB4 B2 , so they

are both separated from B2 by PB4 B2 . By Theorem 7.5, 5(SMT(A1, B2,C1)) 6=

SMT(a, b, c).
Consider SMT(A1, B2,C2). Note that both A1 and C2 lie in SB4 B2 , so they

are both separated from B2 by PB4 B2 . By Theorem 7.5, 5(SMT(A1, B2,C2)) 6=

SMT(a, b, c).
Consider SMT(A1, B4,C1). Note that both A1 and C1 lie in SB3 B4 , so they

are both separated from B4 by PB3 B4 . By Theorem 7.5, 5(SMT(A1, B4,C1)) 6=

SMT(a, b, c).
Consider SMT(A1, B4,C3). Note that A1 lies in SB3 B4 and B4 lies in HA3 A1 .

Note that C3 must lie in at least one of SB3 B4 and HA3 A1 . If C3 lies in SB3 B4 ,
both A1 and C3 are separated from B4 by PB3 B4 . If C3 lies in HA1 A3 , both B4 and
C3 are separated from A1 by PA3 A1 . By Theorem 7.5, 5(SMT(A1, B4,C3)) 6=

SMT(a, b, c).
Consider SMT(A1, B5,C1). Note that both A1 and C1 lie in SB5 B4 , so they

are both separated from B5 by PB4 B5 . By Theorem 7.5, 5(SMT(A1, B5,C1)) 6=

SMT(a, b, c).
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The only remaining cases are (A1, B1,C1), (A1, B1,C3), and (A1, B3,C3). We
will show that copies of these trees exist within the truncated triangle region.

For SMT(A1, B1,C1), we have 5(SMT(A1, B1,C1)) = 5(SMT(A4, B3,C3))

and SMT(A4, B3,C3) is contained within the truncated triangle region.
For SMT(A1, B1,C3), we have 5(SMT(A1, B1,C3)) = 5(SMT(A4, B3,C1))

and SMT(A4, B3,C1) is contained within the truncated triangle region.
For (A1, B3,C3), we have 5(SMT(A1, B3,C3)) = 5(SMT(A4, B1,C1)) and

SMT(A4, B1,C1) is contained within the truncated triangle region.
Thus, each possible combination (A1, Bi ,C j ) does not realize SMT(a, b, c) or

has a copy within the truncated triangle region. Likewise, each possible combi-
nation involving A5, B2, B5, C5, or C2 cannot realize SMT(a, b, c) or has a copy
within the truncated triangle region. Therefore, there is a solution contained in the
truncated triangle region. �

Final reductions. Within the truncated triangle region, there are three copies of
every face that contains a terminal point (the center of each region does not contain
any points; in this scenario, face 1). That means that there are three copies of each
point:
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If all combinations of three points were considered possible configurations for
the Steiner minimal tree, there would be 27 different Steiner trees that could be
considered. However, some of these possibilities may still be eliminated.

There are three remaining combinations that can be eliminated within the trun-
cated triangle region. Let V1 be the intersection of m0 and n−2, V2 be the intersec-
tion of m0 and n0, and V3 be the intersection of m1 and n0.
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Consider SMT(A1, B3,C2). Since A1 and V1 are on the same side of
←−−→

B3C2, B3

and V1 are on the same side of
←−−→

A1C2, and C2 and V1 are on the same
←−−→

A1 B3, then V1

is contained in the interior of4A1 B3C2. By Theorem 7.4,5(SMT(A1, B3,C2)) 6=

SMT(a, b, c).
Consider SMT(A2, B1,C3). Since A2 and V2 are on the same side of

←−−→

B1C3, B1

and V2 are on the same side of
←−−→

A2C3, and C3 and V2 are on the same
←−−→

A2 B1, then V2

is contained in the interior of4A2 B1C3. By Theorem 7.4,5(SMT(A2, B1,C3)) 6=

SMT(a, b, c).
Consider SMT(A3, B2,C1). Since A3 and V3 are on the same side of

←−−→

B2C1, B2

and V3 are on the same side of
←−−→

A3C1, and C1 and V3 are on the same
←−−→

A3 B2, then V3

is contained in the interior of4A3 B2C1. By Theorem 7.4,5(SMT(A3, B2,C1)) 6=

SMT(a, b, c).

List of potential combinations in case 2. The remaining possibilities are

(A1, B1,C1), (A2, B1,C1), (A3, B1,C1),

(A1, B1,C2), (A2, B1,C2), (A3, B1,C2),

(A1, B1,C3), (A2, B2,C1), (A3, B1,C3),

(A1, B2,C1), (A2, B2,C2), (A3, B2,C2),

(A1, B2,C2), (A2, B2,C3), (A3, B2,C3),

(A1, B2,C3), (A2, B3,C1), (A3, B3,C1),

(A1, B3,C1), (A2, B3,C2), (A3, B3,C2),

(A1, B3,C3), (A2, B3,C3), (A3, B3,C3).

Thus, the Steiner tree which realizes SMT(a, b, c) will be formed from one of
the 24 combinations in this list.

9. Case 3: Three points on two faces

In this section, we consider the cases that haven’t been addressed in the other
sections, namely where three points lie on two faces and cannot be considered to
lie on three faces or a single face. The two remaining possibilities are:

(1) Two of the points are contained in the interior of one face with the third point
anywhere not meeting that face.

(2) One point is contained in the interior of a face f , a second point is contained in
the interior of an edge adjacent to f , and the final point is in the complement
of f .

The arguments for both are the same.
We will assume a and b are on the same face and that at least a is in the interior

of the face. Thus either b is in the interior of the face or in the interior of an edge
of the face.
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On the tiled plane, there are infinitely many copies of A ∈ 5−1(a) and B ∈
5−1(b). Suppose SMT(A, B,C) realizes SMT(a, b, c). Then either A and B
reside on the same tile, or they don’t. We will discuss each case separately. We
will discuss the former case here and the latter starting on page 392.

A and B on the same tile. In this case, the following theorem provides a region
containing the fixed points that can realize SMT(a, b, c):

Theorem 9.1. Let a, b, c ∈ T and assume

A ∈5−1(a), B ∈5−1(b), C ∈5−1(c)

are the points that determine SMT(a, b, c). If A and B are on the same tile, the
Steiner minimal tree must be contained in the ten-triangle region shown here in
white and light gray:
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Proof. We can assume without loss of generality that suppose c is on face 1, while
a and b are on face 3. We suppose that C is contained in the light gray tile in the
figure above.

Case 1: Suppose C is not on a vertex of a tile. The other copies of Ci ∈ 5
−1(c)

are located on the other tiles corresponding to face 1. We number them as in the
figure above. We will now determine the tiles on which A and B could possibly
reside.

Construct SC1C . The points Ai and B j which lie in SC1C must be separated from
C by PC1C . By Theorem 7.5, SMT(Ai , B j ,C) cannot realize SMT(a, b, c). Thus,
we can eliminate from consideration as a candidate for containing A and B any
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tiles whose interior overlaps the region SC1C , which we show in dark gray (left):
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Construct SC2C . Again, using Theorem 7.5, we can eliminate any tile contained
in SC2C , which is the reason shown in dark gray in the figure above and to the right.

Continue the process by constructing the sectors SCi C , where i=3, . . . , 9. Three
of these are shown below, while the other four are obtainable by reflection in a
vertical line (through the central triangle) from others already illustrated: SC3C

from SC1C , SC6C from SC5C , SC7C from SC4C , and SC9C from SC8C .
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The only copies of tile 3 not completely covered by the union of the shaded
regions are those contained in the white region in the statement of Theorem 9.1.
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By hypothesis, A and B are contained on the same tile. The convex hull of4ABC
contains the tree realizing SMT(a, b, c). The white region is the minimal collec-
tion of tiles containing all such possible convex hulls. Since there are five tiles
containing copies of A and B in this region, there are five potential Steiner trees
which must be tested within this region.

Case 2: Suppose C is a vertex of a tile. It can only be the vertex at the intersection
of m1 and n0, because the other vertices are adjacent to tiles containing A and B,
and this case has already been addressed in Section 6.

Construct H̃Ci C for i = 1, 3, 4, 5, 6, 7. The union of the added “union of the”
shaded regions H̃Ci C is shown here:
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If both A j and Bk lie in any H̃Ci C , they must both be separated from C by PCi C .
By Theorem 7.5, A j and B j cannot be used with C to realize SMT(a, b, c). Note
that at least one of A and B must lie in the unshaded region, and A and B are on
the same tile by hypothesis. Thus, there are six possible path networks that connect
C with a pair of points A j and Bk which are contained on the same tile where at
least one is not in the shaded region. Since each path has one identical path by
reflection across C , there are only three distinct paths, and there exists a copy of
each in the region stated in Theorem 9.1. �

A and B not on the same tile. We now study the case that A and B are not on
the same tile. This will occupy us through page 399. We will determine the faces
where the Steiner point can reside in Theorem 9.2. We will then find the region
that must contains the fixed points. We will eliminate possibilities for fixed points
in Theorems 9.3–9.6. We will then make final reductions and list the combinations
that could realize SMT(a, b, c).

Theorem 9.2. Assume the setup in Theorem 9.1. Suppose that s is the Steiner point
for SMT(a, b, c). If A and B are not found on the same tile, then s can not be on
the face containing a and b, including the interior of its edges.
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Proof. By way of contradiction, suppose s is on the same face as a and b. Suppose
S ∈5−1(s) is contained in the region bounded by n−1,m1, and p1. Without loss
of generality, c is on face 4, and a and b are on face 3.

Case 1: Suppose S is not on the same tile as B. Then there exists a distinct point
S′ ∈5−1(s) on the same tile as B. By Lemma 7.1, S′B< SB. Then PSS′ separates
B from S. By Theorem 7.8, S cannot be the Steiner point.

Case 2: Suppose S is on the same tile as B, but S is not a vertex. Then there exists
an S′ ∈5−1(s) on the same tile as A. Since S is not a vertex, S′ 6= S. Then PSS′

separates A from S. By Theorem 7.8, S cannot be the Steiner point. �

It follows from Theorem 9.2 that s must be contained on at least one of faces 1,
2, or 4. Since S cannot be on any tile corresponding to face 3, we can fix S in the
shaded region bounded by m1, m0, n−1, and p1, which we call the key trapezoid:
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By a similar procedure to that discussed on pages 378 and following, we can
eliminate all points lying in the sectors SS′S or half-planes HS′S for all S′ 6= S,
where S′ ∈5−1(s). The resulting region is this:
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Because no terminals are located on faces 1 or 2, the Steiner tree will never
cross the copies of face 1 or 2 whose interior meets the edge of this region. We can
eliminate these to obtain the region shaded in the figure below. Within this region,
there are a maximum of four copies of A, four copies of B, and five copies of C ,
resulting in a maximum of 80 possible Steiner trees. However, we can reduce the
region even further.

Theorem 9.3. Suppose S is contained in the key trapezoid (page 393). Let C1 and
Ai , B j (with i, j = 1, . . . , 5) lie in the triangles specified in this diagram:
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Then 5(SMT(Ai , B j ,C1)) 6= SMT(a, b, c) for all i, j with i 6= j . Hence, the tile
containing C1 can be removed from the region of interest.

Proof. The last assertion follows immediately once we show that no combination
(Ai , B j ,C1) which can be used to realize SMT(a, b, c). We analyze each case:

Consider SMT(A1, B2,C1). Both B2 and C1 are contained in SA2 A1 . Thus B2

and C1 are separated from A1 by PA2 A1 . By Theorem 7.5, 5(SMT(A1, B2,C1)) 6=

SMT(a, b, c). Similarly, 5(SMT(A2, B1,C1)) 6= SMT(a, b, c).
Consider SMT(A1, B3,C1). Both B3 and C1 are contained in HA3 A1 . Thus B3

and C1 are separated from A1 by PA3 A1 . By Theorem 7.5, 5(SMT(A1, B3,C1)) 6=

SMT(a, b, c). Similarly, 5(SMT(A3, B1,C1)) 6= SMT(a, b, c).
Consider SMT(A1, B4,C1). Both B4 and C1 are contained in HA4 A1 . Thus B4

and C1 are separated from A1 by PA4 A1 . By Theorem 7.5, 5(SMT(A1, B4,C1)) 6=

SMT(a, b, c). Similarly, 5(SMT(A4, B1,C1)) 6= SMT(a, b, c).
Consider SMT(A1, B5,C1). Both A1 and B5 are contained in SC5C1 . Thus A1

and B5 are separated from C1 by PC5C1 . By Theorem 7.5, 5(SMT(A1, B5,C1)) 6=

SMT(a, b, c). Similarly, 5(SMT(A5, B1,C1)) 6= SMT(a, b, c).
Consider SMT(A2, B3,C1). Both B3 and C1 are contained in SA3 A2 . Thus B3

and C1 are separated from A1 by PA3 A2 . By Theorem 7.5, 5(SMT(A2, B3,C1)) 6=

SMT(a, b, c). Similarly, 5(SMT(A3, B2,C1)) 6= SMT(a, b, c).
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Consider SMT(A2, B4,C1). We claim that V3 is contained in the interior of
4A2 B4C1. Note that V3 and C1 are on the same side of

←−−→

A2 B4, V3 and B4 are
on the same side of

←−−→

A2C1, and V3 and A2 are on the same side of
←−−→

A2 B4. Thus
4A2 B4C1 contains V3. By Theorem 7.4, 5(SMT(A2, B4,C1)) 6= SMT(a, b, c).
Similarly, 5(SMT(A4, B2,C1)) 6= SMT(a, b, c).

Consider SMT(A2, B5,C1). Both A2 and C1 are contained in HB3 B5 . Thus A2

and C1 are separated from B5 by PB3 B5 . By Theorem 7.5, 5(SMT(A2, B5,C1)) 6=

SMT(a, b, c). Similarly, 5(SMT(A5, B2,C1)) 6= SMT(a, b, c).
Consider SMT(A3, B4,C1). Both A3 and C1 are contained in SB3 B4 . Thus A3

and C1 are separated from B4 by PB3 B4 . By Theorem 7.5, 5(SMT(A3, B4,C1)) 6=

SMT(a, b, c). Similarly, 5(SMT(A3, B4,C1)) 6= SMT(a, b, c).
Consider SMT(A3, B5,C1). Both A3 and C1 are contained in HB3 B5 . Thus A3

and C1 are separated from B5 by PB3 B5 . By Theorem 7.5, 5(SMT(A3, B5,C1)) 6=

SMT(a, b, c). Similarly, 5(SMT(A5, B2,C1)) 6= SMT(a, b, c).
Consider SMT(A4, B5,C1). Both A4 and C1 are contained in SB4 B5 . Thus A4

and C1 are separated from B5 by PB4 B5 . By Theorem 7.5, 5(SMT(A4, B5,C1)) 6=

SMT(a, b, c). Similarly, 5(SMT(A5, B4,C1)) 6= SMT(a, b, c). �

Theorem 9.4. Suppose S is contained in the key trapezoid (page 393). Let C2

and Ai , B j (with i, j = 1, . . . , 5) lie in the triangles specified in the diagram of
Theorem 9.3. Then 5(SMT(Ai , B j ,C2)) 6= SMT(a, b, c) for all i, j with i 6= j .
That is, the tile containing C2 can be removed from the region of interest.

Proof. Again we apply a case-by-case analysis.
Consider SMT(A1, B2,C2). Both B2 and C2 are contained in SA2 A1 . Thus, B2

and C2 are separated from A1 by PA1 A2 . By Theorem 7.5, 5(SMT(A1, B2,C2)) 6=

(SMT(a, b, c)). By a similar argument, 5(SMT(A2, B1,C2)) 6= SMT(a, b, c).
Consider SMT(A1, B3,C2). Both B3 and C2 are contained in HA3 A1 . Thus, B3

and C2 are separated from A1 by PA1 A3 . By Theorem 7.5, 5(SMT(A1, B3,C2)) 6=

SMT(a, b, c). By a similar argument, 5(SMT(A3, B1,C2)) 6= SMT(a, b, c).
Consider SMT(A1, B4,C2). Both B4 and C2 are contained in HA3 A1 . Thus, B4

and C2 are separated from A1 by PA1 A3 . By Theorem 7.5, 5(SMT(A1, B4,C2)) 6=

SMT(a, b, c). By a similar argument, 5(SMT(A4, B1,C2)) 6= SMT(a, b, c).
Consider SMT(A1, B5,C2). We claim that V1 is contained in the interior of
4A1 B5C2. Both C2 and V1 lie on the same side of

←−−→

A1 B5, B5 and V1 lie on the
same side of

←−−→

A1C2, and A1 and V1 lie on the same side of
←−−→

B5C2. Thus V1 must be
contained in the interior of 4A1 B5C2. By Theorem 7.4, 5(SMT(A1, B5,C2)) 6=

SMT(a, b, c). By a similar argument, 5(SMT(A5, B1,C2)) 6= SMT(a, b, c).
Consider SMT(A2, B3,C2). Recall that S are contained in the convex hull of
4A2 B3C2. By hypothesis, S is contained in the key trapezoid (page 393). These
two conditions are satisfied only if A2 B3 lies above the vertex V2. Thus, C2 and
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V2 lie on the same side of
←−−→

A2 B3, B3 and V2 lie on the same side of
←−−→

A2C2, and
A2 and V2 lie on the same side of

←−−→

B3C2. Thus V2 are contained in the interior of
4A2 B3C2. By Theorem 7.4, 5(SMT(A2, B3,C2)) 6= SMT(a, b, c). By a similar
argument, 5(SMT(A3, B2,C2)) 6= SMT(a, b, c).

Consider SMT(A2, B4,C2). Both A2 and C2 are contained in SB3 B4 . Thus, A2

and C2 are separated from B4 by PB3 B4 . By Theorem 7.5, 5(SMT(A2, B4,C2)) 6=

SMT(a, b, c). By a similar argument, 5(SMT(A4, B2,C2)) 6= SMT(a, b, c).
Consider SMT(A2, B5,C2). Both A2 and C2 are contained in HB3 B4 . Thus, A2

and C2 are separated from B5 by PB2 B5 . By Theorem 7.5, 5(SMT(A2, B5,C2)) 6=

SMT(a, b, c). By a similar argument, 5(SMT(A5, B2,C2)) 6= SMT(a, b, c).
Consider SMT(A3, B4,C2). Both A3 and C2 are contained in SB3 B4 . Thus, A3

and C2 are separated from B4 by PB3 B4 . By Theorem 7.5, 5(SMT(A3, B4,C2)) 6=

SMT(a, b, c). By a similar argument, 5(SMT(A4, B3,C2)) 6= SMT(a, b, c).
Consider SMT(A3, B5,C2). Both A3 and C2 are contained in HB3 B5 . Thus, A3

and C2 are separated from B5 by PB3 B5 . By Theorem 7.5, 5(SMT(A3, B5,C2)) 6=

SMT(a, b, c). By a similar argument,5(SMT(A5, B3,C2)) 6= SMT(a, b, c).
Consider SMT(A4, B5,C2). Both A4 and C2 are contained in SB4 B5 . Thus, A4

and C2 are separated from B5 by PB4 B5 . By Theorem 7.5, 5(SMT(A4, B5,C2)) 6=

SMT(a, b, c). By a similar argument,5(SMT(A5, B4,C2)) 6= SMT(a, b, c). �

Theorem 9.5. Suppose S is contained in the key trapezoid (page 393). Let C4

and Ai , B j (with i, j = 1, . . . , 5) lie in the triangles specified in the diagram of
Theorem 9.3. Then 5(SMT(Ai , B j ,C4)) 6= SMT(a, b, c) for all i, j with i 6= j .
That is, the tile containing C4 can be removed from the region of interest.

Proof. Consider SMT(A1, B2,C4). Both B2 and C4 are contained in SA2 A1 , so B2

and C4 are separated from A1 by PA1 A2 . By Theorem 7.5, 5(SMT(A1, B2,C4)) 6=

SMT(a, b, c)). By a similar argument, 5(SMT(A2, B1,C4)) 6= SMT(a, b, c).
Consider SMT(A1, B3,C4). Let V4 be the intersection of m1 and p1. Note that

C4 and V4 lie on the same side of
←−−→

A1 B3, B3 and V4 lie on the same side of
←−−→

A1C4,
and A1 and V4 lie on the same side of

←−−→

B3C4. Thus V4 are contained in the interior of
4A1 B3C4. By Theorem 7.4, 5(SMT(A1, B3,C4)) 6= SMT(a, b, c). By a similar
argument, 5(SMT(A3, B1,C4)) 6= SMT(a, b, c).

Consider SMT(A1, B4,C4). Both A1 and C4 are contained in HB1 B4 . Thus, A1

and C4 are separated from B4 by PB1 B4 . By Theorem 7.5, 5(SMT(A1, B4,C4)) 6=

SMT(a, b, c). By a similar argument, 5(SMT(A4, B1,C4)) 6= SMT(a, b, c).
Consider SMT(A1, B5,C4). Both A1 and C4 are contained in HB1 B5 . Thus, A1

and C4 are separated from B5 by PB1 B5 . By Theorem 7.5, 5(SMT(A1, B5,C4)) 6=

SMT(a, b, c). By a similar argument, 5(SMT(A5, B1,C4)) 6= SMT(a, b, c).
Consider SMT(A2, B3,C4). Both A2 and C4 are contained in SB2 B3 . Thus, A2
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and C4 are separated from B3 by PB2 B3 . By Theorem 7.5, 5(SMT(A2, B3,C4)) 6=

SMT(a, b, c). By a similar argument, 5(SMT(A3, B2,C4)) 6= SMT(a, b, c).
Consider SMT(A2, B4,C4). Both A2 and C4 are contained in HB2 B4 . Thus, A2

and C4 are separated from B4 by PB2 B4 . By Theorem 7.5, 5(SMT(A2, B4,C4)) 6=

SMT(a, b, c). By a similar argument, 5(SMT(A4, B2,C4)) 6= SMT(a, b, c).
Consider SMT(A2, B5,C4). Both A2 and C4 are contained in HB2 B5 . Thus, A2

and C4 are separated from B5 by PB2 B5 . By Theorem 7.5, 5(SMT(A2, B5,C4)) 6=

SMT(a, b, c). By a similar argument, 5(SMT(A5, B2,C4)) 6= SMT(a, b, c).
Consider SMT(A3, B4,C4). Both A3 and C4 are contained in SB3 B4 . Thus, A3

and C4 are separated from B4 by PB3 B4 . By Theorem 7.5, 5(SMT(A3, B4,C4)) 6=

SMT(a, b, c). By a similar argument, 5(SMT(A4, B3,C4)) 6= SMT(a, b, c).
Consider SMT(A3, B5,C4). Both A3 and C4 are contained in HB3 B5 . Thus, A3

and C4 are separated from B5 by PB3 B5 . By Theorem 7.5, 5(SMT(A3, B5,C4)) 6=

SMT(a, b, c). By a similar argument, 5(SMT(A5, B3,C4)) 6= SMT(a, b, c).
Consider SMT(A4, B5,C4). Both A4 and B5 are contained in HC5C4 . Thus, A4

and B5 are separated from C4 by PC5C4 . By Theorem 7.5, 5(SMT(A4, B5,C4)) 6=

SMT(a, b, c). By a similar argument, 5(SMT(A5, B4,C4)) 6= SMT(a, b, c). �

Theorem 9.6. Suppose S is contained in the key trapezoid (page 393). Let C3

and Ai , B j (with i, j = 1, . . . , 5) lie in the triangles specified in the diagram of
Theorem 9.3. Then 5(SMT(Ai , B j ,C3)) 6= SMT(a, b, c) for all i, j with i 6= j .
That is, the tile containing C4 can be removed from the region of interest.

Proof. Consider SMT(A1, B2,C3). Both B2 and C3 are contained in SA2 A1 , so B2

and C3 are separated from A1 by PA1 A2 . By Theorem 7.5, 5(SMT(A1, B2,C3)) 6=

SMT(a, b, c). By a similar argument, 5(SMT(A2, B1,C3)) 6= SMT(a, b, c).
Consider SMT(A1, B3,C3). Assume B3 is not a vertex. We claim that V2 is

contained in 4A1 B3C2. Let V2 be the intersection of m0 and p1. Note that V2

and C3 are on the same side of
←−−→

A1 B3, V2 and B3 are on the same side of
←−−→

A1C3,
and V2 and A1 are on the same side of

←−−→

B3C3. Thus 4A1 B3C3 must contain V2.
By Theorem 7.4, 5(SMT(A1, B3,C3)) 6= SMT(a, b, c). By a similar argument,
5(SMT(A3, B1,C3)) 6= SMT(a, b, c).

Consider SMT(A1, B4,C3). Both A1 and B4 are contained in HC6C3 . Thus, A1

and B4 are separated from C3 by PC6C3 . By Theorem 7.5, 5(SMT(A1, B4,C3)) 6=

SMT(a, b, c). By a similar argument, 5(SMT(A4, B1,C3)) 6= SMT(a, b, c).
Consider SMT(A1, B5,C3). Both A1 and C3 are contained in HB1 B5 . Thus, A1

and C3 are separated from B5 by PB1 B5 . By Theorem 7.5, 5(SMT(A1, B5,C3)) 6=

SMT(a, b, c). By a similar argument, 5(SMT(A1, B5,C3)) 6= SMT(a, b, c).
Consider SMT(A2, B3,C3). Recall that S are contained in the convex hull of
4A2 B3C3. By hypothesis, S is contained in the key trapezoid (page 393). These
two conditions are satisfied only if A2 B3 lies above the vertex V2, the intersection
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of m0 and p1. Thus, C3 and V2 lie on the same side of
←−−→

A2 B3, B3 and V2 lie on
the same side of

←−−→

A2C3, and A2 and V2 lie on the same side of
←−−→

B3C3. Thus V2 are
contained in the interior of 4A2 B3C3. By Theorem 7.4, 5(SMT(A2, B3,C3)) 6=

SMT(a, b, c). By a similar argument, 5(SMT(A3, B2,C3)) 6= SMT(a, b, c).
Consider SMT(A2, B4,C3). Both A2 and C3 are contained in HB2 B4 . Thus, A2

and C3 are separated from B4 by PB2 B4 . By Theorem 7.5, 5(SMT(A2, B4,C3)) 6=

SMT(a, b, c). By a similar argument, 5(SMT(A4, B2,C3)) 6= SMT(a, b, c).
Consider SMT(A2, B5,C3). Both A2 and C3 are contained in HB2 B5 . Thus A2

and C3 are separated from B5 by PB2 B5 . By Theorem 7.5, 5(SMT(A2, B5,C3)) 6=

SMT(a, b, c). By a similar argument, 5(SMT(A5, B2,C3)) 6= SMT(a, b, c).
Consider SMT(A3, B4,C3). Both A3 and C3 are contained in SB3 B4 . thus, A3

and C3 are separated from B4 by PB3 B4 . By Theorem 7.5, 5(SMT(A3, B4,C3)) 6=

SMT(a, b, c). By a similar argument, 5(SMT(A4, B3,C3)) 6= SMT(a, b, c).
Consider SMT(A3, B5,C1). Both A3 and C3 are contained in HB3 B5 . Thus, A3

and C3 are separated from B5 by PB3 B5 . By Theorem 7.5, 5(SMT(A3, B5,C3)) 6=

SMT(a, b, c). By a similar argument, 5(SMT(A5, B3,C3)) 6= SMT(a, b, c).
Consider SMT(A4, B5,C3). Both A4 and B5 are contained in HC1C3 . Thus A4

and B5 are separated from C3 by PC1C3 . By Theorem 7.5, 5(SMT(A4, B5,C3)) 6=

SMT(a, b, c). By a similar argument, 5(SMT(A4, B3,C3)) 6= SMT(a, b, c). �

The final region of interest, after the removal of the tiles containing C1,C2,C3

and C4, is shown in Figure 9. This region also contains each of the five Steiner
trees that can be considered when A and B are on the same tile (see Theorem 9.1).

Final reductions. The region shown in Figure 9 must contain at least one copy
of the tree SMT(A, B,C) that realizes SMT(a, b, c) where A and B come from
different tiles. Within this region, there are still combinations that can never realize
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Figure 9. The final region of interest.
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SMT(a, b, c) and thus do not need to be considered. In this section we will elim-
inate these combinations and then provide a list of all the trees SMT(Ai , B j ,Ck)
that must be considered to determine the SMT(A, B,C) realizing SMT(a, b, c).

Consider SMT(A1, B5,C6). Both B5 and C6 lie in HA1 A5 . Thus, B5 and C6

must be separated from A5 by PA1 A5 . By Theorem 7.5, 5(SMT(A1, B5,C6)) 6=

SMT(a, b, c). By a similar argument, 5(SMT(A5, B1,C6)) 6= SMT(a, b, c).
Consider SMT(A2, B5,C6). Both A2 and C6 lie in SB2 B5 . Thus, A2 and C6

must be separated from B5 by PB2 B5 . By Theorem 7.5, 5(SMT(A2, B5,C6)) 6=

SMT(a, b, c). By a similar argument, 5(SMT(A5, B2,C6)) 6= SMT(a, b, c).
Consider SMT(A3, B5,C6), and let V1 = m1 ∩ n0. Then A3 and V1 are on the

same side of
←−−→

B5C6, B5 and V1 on the same side of
←−−→

A3C6, and C6 and V1 on the same
side of

←−−→

A3 B5. Thus, V1 ⊂ 4A3 B5C6. By Theorem 7.4, 5(SMT(A3, B5,C6)) 6=

SMT(a, b, c). Similarly, 5(SMT(A5, B3,C6)) 6= SMT(a, b, c).
Consider SMT(A4, B5,C6). Note that if B5 is within the shaded region (which

is required for it to even be considered), then both B5 and A4 lie in SC5C6 . Thus, B5

and A4 are separated from C6 by PC5C6 . By Theorem 7.5, 5(SMT(A4, B5,C6)) 6=

SMT(a, b, c). By a similar argument, 5(SMT(A5, B4,C6)) 6= SMT(a, b, c).
Consider SMT(A1, B4,C5). Both B4 and C5 lie in SA4 A1 . Thus, both B4 and C5

must be separated from A1 by PA4 A1 . By Theorem 7.5, 5(SMT(A1, B4,C5)) 6=

SMT(a, b, c). By a similar argument, 5(SMT(A4, B1,C6)) 6= SMT(a, b, c).
Consider SMT(A2, B5,C5). Both B5 and C5 lie in SA5 A2 . Thus, both B5 and C5

must be separated from A2 by PA5 A2 . By Theorem 7.5, 5(SMT(A2, B5,C5)) 6=

SMT(a, b, c). By a similar argument, 5(SMT(A5, B2,C6)) 6= SMT(a, b, c).
Consider SMT(A1, B5,C5). Note that if B5 is within the shaded region, then

both B5 and C5 are contained in SA4 A1 . Thus, B5 and C5 are separated from A1

by PA4 A1 . By Theorem 7.5, 5(SMT(A1, B5,C5)) 6= SMT(a, b, c). By a similar
argument, 5(SMT(A5, B1,C6)) 6= SMT(a, b, c).

List of potential combinations in Case 3. The remaining combinations (Ai ,B j ,Ck)

for both A and B on the same tile and A and B not on the same tile are

(A1, B2,C6)∼= (A4, B5,C5), (A2, B1,C6)∼= (A5, B4,C5), (A1, B3,C6),

(A3, B1,C6), (A1, B4,C6), (A4, B1,C6),

(A2, B3,C6), (A3, B2,C6), (A2, B4,C6),

(A4, B2,C6), (A3, B4,C6), (A4, B3,C6),

(A2, B1,C5), (A1, B2,C5), (A1, B3,C5),

(A3, B1,C5), (A2, B3,C5), (A3, B2,C5),

(A2, B4,C5), (A4, B2,C5), (A3, B4,C5),

(A4, B3,C5), (A3, B5,C5), (A5, B3,C5),

(A2, B2,C5), (A3, B3,C5), (A4, B4,C5)∼= (A1, B1,C6),

(A5, B5,C5)∼= (A2, B2,C6), (A3, B3,C6).
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Thus, the Steiner tree which realizes SMT(a, b, c) will be formed from one of
the 29 combinations included in this list.

10. An algorithm for finding a shortest network on three points

At the end of Sections 8 and 9 we provided lists of combinations which could
realize SMT(a, b, c) for the different cases. In this section we discuss how these
lists can be further reduced by considerations of the specific positioning of the
points within the faces. We provide two principles upon which the reductions are
based. We also provide an algorithm that uses these principles. When the algorithm
is applied, we have found that most point combinations can be eliminated.

Two principles allow us to eliminate potential combinations of points from
consideration:

• We demonstrated that for Case 2 a solution must reside in the truncated tri-
angle region (Figure 8) and for Case 3 it must resided in the shaded region in
Figure 9. In either case, if a point lies outside the corresponding region, no
combinations involving that particular point need to be considered.

• If any two points of a combination are separated from the third point by
the perpendicular bisector of the third point and a rotation and/or transla-
tion of the third point, that combination does not need to be considered (see
Theorem 7.5). Recall from Definition 4.2 that for any points P and Q, H̃P Q=

{X | P X ≤ Q X}. Thus, equivalently, if A and B are contained in H̃C ′C for
some C,C ′ ∈5−1(c), then (A, B,C) does not need to be considered.

Using these principles, point combinations within the list can be eliminated
from consideration. A systematic approach to the elimination is introduced in the
following algorithm.

Algorithm 10.1. The following algorithm provides a shortest network connecting
three given points on a regular tetrahedron T.

(1) Determine whether Case 1, 2, or 3 applies.

Case 1: If all three points can be considered to lie on a common face, the
Steiner tree is just a shortest network on that face (Section 6), and the Steiner
tree can be constructed using Algorithm 2.1. The algorithm is complete.

Case 2: If the three points can be considered to lie on distinct faces of T,
define the region of interest to be the truncated triangle region (Figure 8).
Define the list of potential combinations to be the list on page 389. Label the
faces so that the face not considered to contain any points is face 1. Proceed
to Steps (2)–(4).
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Case 3: Otherwise, define the shaded region to be that shown in Figure 9.
Define the list of potential combinations to be the list on page 399. Label the
faces so that the face considered to contain two points is face 3, and the face
considered to contain one point is face 4. Proceed to Steps (2)–(4).

(2) Eliminate any combinations within the list of potential combinations that con-
tain points which are not contained within the shaded region.

(3) For all Cm contained in the shaded region:
(a) For all Ci 6= Cm in the shaded region, construct H̃Ci Cm . Eliminate any

combinations (Ak, Bl,Cm) where Ak and Bl are both contained in H̃Ci Cm .
(b) For the remaining Bl that appear in combinations which have not yet been

eliminated:
(i) For all Bi 6= Bl in the shaded region, construct H̃Bi Bl . If both Cm

and Ak are contained in H̃Bi Bl for any Bl , eliminate the combination
(Ak, Bl,Cm).

(ii) For the Ak that appear in a remaining combination with Bl and Cm :
For all Ai 6= Ak in the shaded region construct H̃Ai Ak . If both Cm and
Bl are contained in H̃Ai Ak , eliminate the combination (Ak, Bl,Cm).

(4) Measure the lengths of the Steiner minimal trees formed from the remaining
combinations using Algorithm 2.1. The Steiner minimal tree with shortest
length realizes SMT(a, b, c). The algorithm is complete.

We will now demonstrate how to apply the algorithm for the configuration shown
in Figure 9, which clearly corresponds to Case 3.

B5,A1 and A5 are not contained within the shaded region, so none of (A1,B2,C5),
(A1,B3,C6), (A1,B4,C6), (A5,B4,C5), (A5,B3,C5), (A3,B5,C5) and (A4,B5,C5)

need to be considered.
Construct H̃C6C5 :
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3
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Since both A2 and B2 are contained in H̃C6C5 , the combination (A2, B2,C5) can
be eliminated.

Construct H̃Bi B1 for all i 6= 1 (left diagram). Since C5 and A3 are contained in
H̃B3 B1 , the combination (A3, B1,C5) can be eliminated. There are no remaining
combinations which use both B1 and C5.
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Construct H̃Bi B2 for all i 6= 2 (right diagram above). Since both C5 and A3 are
contained in H̃B3 B2 , the combination (A3, B2,C5) can be eliminated. Since both
C5 and A4 are contained in H̃B4 B2 , the combination (A4, B2,C5) can be eliminated.
There are no remaining combinations which use both B2 and C5.

Construct H̃Bi B3 for all i 6= 3 (left diagram below). Since both C5 and A4

are contained in H̃B4 B3 , the combination (A4, B3,C5) can be eliminated. The only
remaining combinations the list are (A2, B3,C5) and (A3, B3,C5). However, since
both C5 and B3 are contained in H̃A3 A2 , (A2, B3,C5) can be eliminated.
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Construct H̃Bi B4 for all i 6= 4. Since C5 is not contained in any H̃Bi B4 with i 6= 4,
the remaining possibilities from the above list are (A2, B4,C5), (A3, B4,C5), and
(A4, B4,C5). Since both C5 and B4 are contained in H̃A4 A2 , (A2, B4,C5) can be
eliminated (right diagram immediately above). Since both C5 and B4 are contained
in H̃A4 A3 , (A3, B4,C5) can be eliminated.
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We have shown that the only remaining combinations in the list containing C5

are (A3, B3,C5) and (A4, B4,C5). Using a similar procedure, we can show that the
only remaining combination containing C6 is (A2, B2,C6). Assuming T has edge-
length 1, we construct the Steiner trees associated with each of these combinations,
with the following results:

m C

m 

m C

m∠

3
4

1
2

3
4 1

2
3

p-1

p-2

p1 p2 p3p0

m-1

m-2

m1

m2

m0

n-4

n1 n2 n3n-1

n-2

n-3

n0

3
2

3

1

1

1

2

33
41

2

3

4

1
4

3

2

1

4

1
43

2
2

3 4
1

1
2

3
44

3
2

1

C6
C5

A5

B5

A4

B4

B3

A1

B2

A3

A2

B1

L(SMT(A3, B3,C5))= 1.04
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L(SMT(A4, B4,C5))= 0.87
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L(SMT(A2, B2,C6))= 1.43

Hence, SMT(A4, B4,C5) realizes SMT(a, b, c) with length 0.87, and the algo-
rithm is complete with only three actual measurements.
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Constructions of potentially eventually positive sign
patterns with reducible positive part

Marie Archer, Minerva Catral, Craig Erickson, Rana Haber,
Leslie Hogben, Xavier Martinez-Rivera and Antonio Ochoa

(Communicated by Chi-Kwong Li)

Potentially eventually positive (PEP) sign patterns were introduced by Berman
et al. (Electron. J. Linear Algebra 19 (2010), 108–120), where it was noted that
a matrix is PEP if its positive part is primitive, and an example was given of a
3× 3 PEP sign pattern with reducible positive part. We extend these results by
constructing n×n PEP sign patterns with reducible positive part, for every n≥3.

1. Introduction

A sign pattern matrix (or sign pattern) is a matrix having entries in {+,−, 0}. For
a real matrix A, sgn(A) is the sign pattern having entries that correspond to the
signs of the entries in A. If A is an n× n sign pattern, the qualitative class of A,
denoted Q(A), is the set of all A ∈ Rn×n such that sgn(A) = A, where sgn(A) =
[sgn(ai j )]; such a matrix A is called a realization of A. Qualitative matrix problems
were introduced by Samuelson [1947] in the mathematical modeling of problems
from economics. Sign pattern matrices have useful applications in economics,
population biology, chemistry and sociology. If P is a property of a real matrix,
then a sign pattern A is potentially P (or allows P) if there is some A ∈ Q(A) that
has property P .

The spectrum of a square matrix A, denoted σ(A), is the multiset of the eigen-
values of A, and the spectral radius of A is defined as ρ(A)=max{|λ| : λ∈ σ(A)}.
Matrix A has the strong Perron–Frobenius property if ρ(A) > 0 is a simple strictly
dominant eigenvalue of A that has a positive eigenvector. A matrix A ∈ Rn×n is
eventually positive if there exists a k0 ∈ Z+ such that for all k ≥ k0, Ak > 0, where
the inequality is entrywise. Handelman developed the following test for eventual
positivity in [Handelman 1981]: a matrix A is eventually positive if and only if both
A and AT satisfy the strong Perron–Frobenius property. If there exists a k such

MSC2010: 15B35, 15B48, 05C50, 15A18.
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that Ak > 0 and Ak+1 > 0, then A is eventually positive [Johnson and Tarazaga
2004]. A sign pattern A is potentially eventually positive (PEP) if there exists an
eventually positive realization A ∈ Q(A).

For a sign pattern A=
[
αi j
]
, define the positive part of A to be A+ =

[
α+i j

]
and

the negative part of A to be A− =
[
α−i j

]
, where

α+i j =

{
+ if αi j =+,

0 if αi j = 0 or αi j =−,
α−i j =

{
− if αi j =−,

0 if αi j = 0 or αi j =+.

Clearly A = A+ +A−. For a matrix A ∈ Rn×n , the positive part A+ of A and
negative part A− of A are defined analogously, and A = A++ A−.

A digraph 0 = (V, E) consists of a finite, nonempty set V of vertices, together
with a set E ⊆ V × V of arcs. Note that a digraph allows loops (arcs of the form
(v, v)) and may have both arcs (v,w) and (w, v) but not multiple copies of the
same arc. Let A =

[
ai j
]
∈ Rn×n . The digraph of A, denoted 0(A), has vertex set

{1, . . . , n} and arc set
{
(i, j) : ai j 6= 0

}
. If A is a sign pattern, then 0(A)= 0(A)

where A∈ Q(A). A digraph 0 is strongly connected if for any two distinct vertices
v and w of 0, there is a path in 0 from v to w.

A square matrix A is reducible if there exists a permutation matrix P such that

P APT
=

[
A11 0
A21 A22

]
where A11 and A22 are nonempty square matrices and 0 is a (possibly rectangular)
block consisting entirely of zero entries, or A is the 1× 1 zero matrix. If A is not
reducible, then A is called irreducible. It is well known that for n ≥ 2, A is irre-
ducible if and only if 0(A) is strongly connected. For a strongly connected digraph
0, the index of imprimitivity is the greatest common divisor of the lengths of the
cycles in 0. A strongly connected digraph is primitive if its index of imprimitivity
is one; otherwise it is imprimitive. The index of imprimitivity of a nonnegative sign
pattern A is the index of imprimitivity of 0(A) and A ≥ 0 is primitive if 0(A) is
primitive, or equivalently, if the index of imprimitivity of A is one.

The study of PEP sign patterns was introduced in [Berman et al. 2010], where
it was shown that if A+ is primitive, then A is PEP, and where the first example of
a PEP sign pattern with reducible positive part was given: the 3× 3 pattern

B=

+ − 0
+ 0 −
− + +

 .
In Section 2 we extend the results of [Berman et al. 2010] by generalizing the 3×3
pattern B given there to a family of PEP sign patterns having reducible positive
part for every order n ≥ 3.
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In Section 3 we examine the effect of the Kronecker product on PEP sign pat-
terns and obtain another method of constructing PEP sign patterns with reducible
positive part.

2. A family of sign patterns generalizing B

The sign pattern B from [Berman et al. 2010] was the first PEP sign pattern with a
reducible positive part. This sign pattern may be generalized by defining the n×n
sign pattern

Bn =


+ − · · · − 0
+ 0 · · · 0 −
...
...
. . .

...
...

+ 0 · · · 0 −
− + · · · + +

 .

The following result, which is a special case of the Schur–Cohn criterion (see,
e.g., [Marden 1949]), will be used in the proof that Bn is PEP.

Lemma 2.1. If the polynomial f (x)= x2
−βx +α satisfies |β|< 1+α < 2, then

all zeros of f (x) lie strictly inside the unit circle.

It is well known that if the characteristic polynomial of A is p(x) = xn
+

an−1xn−1
+ · · · + a1x + a0 then an−k = (−1)k Ek(A), where Ek(A) is the sum

of the k× k principal minors of A (see, e.g., [Horn and Johnson 1985]).

Theorem 2.2. For n ≥ 3 the n× n sign pattern Bn is PEP.

Proof. For t > 0, let Bn(t) be the n× n matrix

Bn(t)=


1+ (n− 2)t −t · · · −t 0

1+ t 0 · · · 0 −t
...

...
. . .

...
...

1+ t 0 · · · 0 −t
−(n− 2)t − 1

2 t2 t · · · t 1+ 1
2 t2

 .
Then Bn(t)∈Q(Bn), and 1 is an eigenvalue of Bn(t)with positive right eigenvector
1 (the all ones vector) and positive left eigenvector

w =
[2n−5

t
1 · · · 1 2n−4

t

]T
.

We show that for some choice of t > 0, 1 is a simple strictly dominant eigenvalue
of Bn(t) and hence Bn(t) is eventually positive. Since 1 ∈ σ(Bn(t)) and rank
Bn(t)≤ 3, the characteristic polynomial pBn(t)(x) of Bn(t) is of the form

pBn(t)(x)= xn−3(x−1)(x2
−βx+α)= xn

− (1+β)xn−1
+ (α+β)xn−2

−αxn−3.
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Computing α and β using the sums of principal minors to evaluate the characteristic
polynomial gives β = 1

2 t2
+(n−2)t+1 and α= (n−2)t

(
1+2t+ 1

2 t2
)
. For n> 3,

setting t = 1/(2(n−2)) gives |β|< 1+α< 2, which, using Lemma 2.1, guarantees
that the two nonzero eigenvalues of Bn other than 1 have modulus strictly less than 1
(recall that a 3× 3 eventually positive matrix B3 ∈ Q(B3) was given in [Berman
et al. 2010] so we have not been concerned with this case in choosing t). �

We illustrate this theorem with an example.

Example 2.3. Let n = 5. Following the proof of Theorem 2.2, we choose t = 1
6

and define

B5 = B5

(1
6

)
=

1
6


9 –1 –1 –1 0
7 0 0 0 –1
7 0 0 0 –1
7 0 0 0 –1

– 37
12 1 1 1 73

12

 .
Moreover, we have

σ(B5)=
{
1, 1

144

(
109+ i

√
2087

)
, 1

144

(
109− i

√
2087

)
, 0, 0

}
≈ {1, 0.7569+ 0.3172i, 0.7569− 0.3172i, 0, 0},

and
[
1 1 1 1 1

]T
and

[ 5
6

1
36

1
36

1
36 1

]T
are right and left eigenvectors, respec-

tively, corresponding to ρ(B5)= 1. Therefore B5 and BT
5 have the strong Perron–

Frobenius property, so B5 is eventually positive by Handelman’s criterion.

In [Berman et al. 2010] it was shown that if the sign pattern A is PEP, then any
sign pattern achieved by changing one or more zero entries of A to be nonzero
is also PEP. Applying this to Bn yields a variety of additional PEP sign patterns
having reducible positive part.

3. Kronecker products

The Kronecker product (sometimes called the tensor product) is a useful tool for
generating larger eventually positive matrices and thus PEP sign patterns. The
Kronecker product of A = [ai j ] and B = [bi j ] is defined as

A⊗ B =

a11 B · · · a1n B
...

. . .
...

an1 B · · · ann B

 .
It is clear that if A > 0 and B > 0, then A⊗ B > 0. The following facts can be

found in many linear algebra books; see [Reams 2006], for example. For A∈Rn×n

and B ∈ Rm×m , (A⊗ B)k = Ak
⊗ Bk . For A,C, B, D of appropriate dimensions,
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we have (A⊗ B)(C ⊗ D) = (AC)⊗ (B D). There exists a permutation matrix P
such that B⊗ A = P(A⊗ B)PT .

Proposition 3.1. If A and B are eventually positive matrices, then A⊗ B is even-
tually positive.

Proof. Assume that A and B are eventually positive matrices. Since A and B are
eventually positive, there exists some s0, t0 ∈ Z, with s0, t0 > 0, such that for all
s ≥ s0 and t ≥ t0, As > 0 and B t > 0. Set k0 = max{s0, t0}. Then for all k ≥ k0,
(A⊗ B)k = Ak

⊗ Bk > 0. �

Corollary 3.2. If A and B are PEP sign patterns, then A⊗B is PEP.

If either A or B is a reducible matrix, then A⊗ B is reducible since, without
loss of generality, if

P APT
=

[
A11 0
A21 A22

]
then

(P ⊗ I )(A⊗ B)(P ⊗ I )T =
[

A11⊗ B 0
A21⊗ B A22⊗ B

]
.

Thus Corollary 3.2 provides another way to construct PEP sign patterns having
reducible positive part.

Example 3.3. Let

B = 1
100

 130 –30 0
130 0 –30
–31 30 101

.
In [Berman et al. 2010] it was shown that B is eventually positive, and in fact
Bk > 0 for k ≥ 10.

Let A =
[2

1
3
0

]
. Then Ak > 0 for k ≥ 2, hence A is eventually positive.

Then

B⊗ A =
1

100



260 390 –60 –90 0 0
130 0 –30 0 0 0
260 390 0 0 –60 –90
130 0 0 0 –30 0
–62 –93 60 90 202 303
–31 0 30 0 101 0


.

Moreover (B⊗ A)10 > 0 and (B⊗ A)11 > 0, so B⊗ A is eventually positive and
sgn(B⊗ A) is a PEP sign pattern with reducible positive part.

Any 0 in sgn(B⊗ A) from Example 3.3 may be changed to − to get yet another
PEP sign pattern with reducible positive part.
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Congruence properties of S-partition functions
Andrew Gruet, Linzhi Wang, Katherine Yu and Jiangang Zeng

(Communicated by Ken Ono)

We study the function p(S; n) that counts the number of partitions of n with
elements in S, where S is a set of integers. Generalizing previous work of Kro-
nholm, we find that given a positive integer m, the coefficients of the generating
function of p(S; n) are periodic modulo m, and we use this periodicity to obtain
families of S-partition congruences. In particular, we obtain families of congru-
ences between partition functions p(S1; n) and p(S2; n).

1. Introduction and statement of results

The partition function p(n) is the number of nonincreasing sequences of positive
integers that sum to n. Ramanujan proved the following congruences for p(n):

p(5n+ 4)≡ 0 (mod 5),

p(7n+ 5)≡ 0 (mod 7),

p(11n+ 6)≡ 0 (mod 11).

Let S be a finite set of positive integers. An S-partition of an integer n is any
nonincreasing sequence of integers in S that sums to n. The S-partition function
p(S; n) counts the number of S-partitions of n. The generating function for p(S; n)
is

G(S; q) :=
∞∑

n=0

p(S; n)qn
=

1∏
s∈S(1− qs)

∈ Z[[q]]. (1-1)

Kronholm [2005; 2007] found elegant “Ramanujan-type” congruences for the
partition function

p(n,m)= p({1, . . . ,m}; n−m).

In this paper we reinterpret his idea of periodicity and we generalize it in the context
of sets of positive integers. We first show that the coefficients of the generating
function above are periodic modulo m.

MSC2010: 11P83.
Keywords: Brandt Kronholm, Ramanujan-type congruences, S-partition functions.
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Theorem 1.1. For a finite set of positive integers S and a positive integer m, there
exists a positive integer γm(S) such that for every integer n and all nonnegative k,
we have

p(S; n)≡ p(S; n+ kγm(S)) (mod m). (1-2)

Example. This theorem immediately implies many Ramanujan-type congruences.
For example, if S = {1, 2, 3, 5}, one easily verifies that γ7(S) = 210. Therefore,
the fact that p(S; 20)= 91≡ 0 (mod 7) gives the Ramanujan congruence

p(S; 210n+ 20)≡ 0 (mod 7).

Example. This theorem is analogous to Theorem 2 of [Kronholm 2007]. As Kro-
nholm states, let d be a multiple of lcm{1, . . . , t} and for the odd prime m, let mα

be a primary factor of d . Kronholm shows that if we let γm({1, . . . , t}) := d , the
congruences (1-2) hold. In particular, he proves that if∑

δ≥0

mδ
(⌊ t

mδ

⌋
−

⌊ t
mδ+1

⌋)
≤ mα, (1-3)

then for n ≥ d −
∑t−1

j=2 j , we have

p({1, . . . , t}; n− t)≡ p({1, . . . , t}; n− t − d) (mod m). (1-4)

Example. Theorem 1.1 extends Theorem 2 of [Kronholm 2007] in that m does
not have to be an odd prime. Let S := {2, 3, 11} and let m := 12. Given this choice
of S, it is clear that p(S; 1) = 0. We find that γ12(S) = 792. By our theorem, for
all positive k, p(S; 1+ 792k)≡ 0 (mod 12).

For convenience, for sets S we let

8S(q) :=
∏
s∈S

(1− qs). (1-5)

Corollary 1.2. Let S1 and S2 be finite sets of positive integers and let m be a
positive integer. If 8S1(q) divides 8S2(q) in (Z/mZ)[q], then for any nonnegative
integer d, let

X (q) := qdγm(S1)
8S2(q)
8S1(q)

,

where

qdγm(S1)
8S2(q)
8S1(q)

:≡

c∑
i=0

ai q i (mod m).

For n ≥ c and for any nonnegative k1 and k2, we have

p(S1; n+ k1γm(S1))≡

c∑
i=0

ai p(S2; n− i + k2γm(S2)) (mod m). (1-6)
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Note that Corollary 1.2 applies for all m when S1 ⊆ S2.

Example. Let S1 := {1, 17} and S2 := {17, 289} and let m := 17. Let X (q) :=
8S2(q)/8S1(q). Then clearly X (q)=

∑288
i=0 q i . For all nonnegative k1 and k2 and

for all n ≥ 288,

p(S1; n+ 289k1)≡

288∑
i=0

p(S2; n− i + 4913k2) (mod 17).

2. Proof of Theorem 1.1

For convenience, we let S := {s1, s2, . . . , st } and let dS =
∑t

i=1 si . Let

8S(q)=
∏
s∈S

(1− qs) :=

ds∑
n=0

b(S; n)qn.

From the identity

1=8S(q)G(S; q)=
( ds∑

n=0

b(S; n)qn
)( ∞∑

n=0

p(S; n)qn
)

,

we have

1=
∑
i≥0

b(S; 0)p(S; i)q i
+

∑
i≥0

b(S; 1)p(S; i)q i+1
+· · ·+

∑
i≥0

b(S; dS)p(S; i)q i+dS .

Looking at coefficients of q N for N ≥ 1, we observe that

dS∑
n=0

b(S; n)p(S; N − n)= 0. (2-1)

This defines a linear recurrence relation. Noting that b(S; 0)= 1, we have

p(S; N )=−
dS∑

n=1

b(S; n)p(S; N − n).

We consider consecutive dS-tuples of consecutive partition values. Arranging
these tuples in order, we have(

p(S; 0), p(S; 1), . . . , p(S; dS − 1)
)
,(

p(S; dS), p(S; dS + 1), . . . , p(S; 2dS − 1)
)
,

and so on. By reducing modulo m, we will find a first pair of dS-tuples that agrees
modulo m. Indeed, the maximal possible number of different tuples is mdS . Sup-
pose that the first tuple of this pair starts at p(S; n0), and the second tuple starts
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at p(S; n1). Since by the linear recurrence relation, each tuple determines the next
tuple, we have inductively that for all nonnegative i ,

p(S; n0+ i)≡ p(S; n1+ i) (mod m).

We will first show that the residue classes of each tuple after the first determines
the preceding tuple’s residue classes. For any a0 = vdS , with v ≥ 1, we consider
the tuple (

p(S; a0), . . . , p(S; a0+ dS − 1)
)
.

By (2-1), and noting that b(S; dS)= (−1)t , we have

(−1)t+1 p(S; N − dS)=

dS−1∑
n=0

b(S; n)p(S; N − n).

It follows immediately that

(−1)t+1 p(S; a0− 1)≡
dS−1∑
i=0

b(S; i)p(S; a0+ dS − 1− i) (mod m),

(−1)t+1 p(S; a0− 2)≡
( dS−2∑

i=0

b(S; i)p(S; a0+ dS − 2− i)
)

+ b(S; dS − 1)p(S; a0− 1) (mod m),
...

(−1)t+1 p(S; a0− dS)≡ b(S; 0)p(S; a0)+

dS−1∑
i=1

b(S; i)p(S; a0− i) (mod m).

Therefore, the residue classes of
(

p(S; a0), . . . , p(S; a0+dS−1)
)

reduced modulo
m uniquely determine the residue classes of

(
p(S; a0 − dS), . . . , p(S; a0 − 1)

)
reduced modulo m.

To complete the proof, we must show that n0 = 0. By hypothesis,(
p(S; n0), . . . , p(S; dS − 1)

)
≡
(

p(S; n1), . . . , p(S; n1+ dS − 1)
)
(mod m).

Suppose n0 = vdS where v ≥ 1, (i.e., n0 6= 0). Then, by the argument above, we
have(

p(S; n0− dS), . . . , p(S; n0− 1)
)
≡
(

p(S; n1− dS), . . . , p(S; n1− 1)
)
(mod m).

This result contradicts our hypothesis that the first-repeated tuple started for the
first time at p(S; n0). Therefore, we can conclude that n0 = 0, and so we let
γm(S) := n1. In particular, for any nonnegative k, we have (1-2).
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3. Proof of Corollary 1.2

By Theorem 1.1, for any nonnegative k1, we have

p(S1; n+ k1γm(S1))≡ p(S1; n) (mod m).

Clearly, for any nonnegative k2, we have

c∑
i=0

ai p(S2; n− i + k2γm(S2))≡

c∑
i=0

ai p(S2; n− i) (mod m).

Thus, subtracting two congruences, we have (1-6):

p(S1; n+ k1γm(S1))−

c∑
i=0

ai p(S2; n− i + k2γm(S2))

≡ p(S1; n)−
c∑

i=0

ai p(S2; n− i) (mod m). (3-1)

Since 8S2(q)
8S1(q)

G(S2; q)= G(S1; q), we know

G(S1; q)− X (q)G(S2; q)≡ G(S1; q)− qdγm(S1)G(S1; q) (mod m). (3-2)

By comparing coefficients in (3-2), we have, for n ≥ dγm(S1),

p(S1; n)−
c∑

i=0

ai p(S2; n− i)≡ 0 (mod m). (3-3)

Thus by (3-1), if n ≥ c, then for any nonnegative k1 and k2, since c≥ dγm(S1), we
have

p(S1; n+ k1γm(S1))≡

c∑
i=0

ai p(S2; n− i + k2γm(S2)) (mod m).
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