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A cyclotomic polynomial 8n(x) is said to be ternary if n = pqr , with p, q and
r distinct odd primes. Ternary cyclotomic polynomials are the simplest ones for
which the behavior of the coefficients is not completely understood. Here we
establish some results and formulate some conjectures regarding the coefficients
appearing in the polynomial family 8pqr (x) with p < q < r , p and q fixed and
r a free prime.

1. Introduction

The n-th cyclotomic polynomial 8n(x) is defined by

8n(x)=
∏

1≤ j≤n
( j,n)=1

(x − ζ j
n )=

∞∑
k=0

an(k)xk,

with ζn a n-th primitive root of unity (one can take ζn = e2π i/n). It has degree
ϕ(n), with ϕ Euler’s totient function. We write A(n) = max{|an(k)| : k ≥ 0}, and
this quantity is called the height of 8n(x). It is easy to see that A(n) = A(N ),
with N =

∏
p|n, p>2 p the odd squarefree kernel. In deriving this, one uses the

observation that if n is odd, then A(2n)= A(n). If n has at most two distinct odd
prime factors, then A(n) = 1. If A(n) > 1, then we necessarily must have that n
has at least three distinct odd prime factors. In particular for n < 105= 3 ·5 ·7 we
have A(n) = 1. It turns out that A(105) = 2 with a105(7) = −2. Thus the easiest
case where we can expect nontrivial behavior of the coefficients of 8n(x) is the
ternary case, where n = pqr , with 2< p< q < r odd primes. In this paper we are
concerned with the family of ternary cyclotomic polynomials

{8pqr (x) : r > q}, (1)
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where 2 < p < q are fixed primes and r is a “free prime”. Up to now in the
literature the above family was considered, but with also q free. The maximum
coefficient (in absolute value) that occurs in that family will be denoted by M(p),
thus M(p) = max{A(pqr) : p < q < r}, with p > 2 fixed. Similarly we define
M(p; q) to be the maximum coefficient (in absolute value) that occurs in the family
(1), thus M(p; q)=max{A(pqr) : r > q}, with 2< p < q fixed primes.

Example. Bang [1895] proved that M(p)≤ p− 1. Since a3·5·7(7)=−2 we infer
that M(3)= 2. Using a105(7)=−2 and M(3)= 2, we infer that M(3; 5)= 2.

Let A(p; q) = {apqr (k) : r > q, k ≥ 0} be the set of coefficients occurring in
the polynomial family (1).

Proposition 1. A(p; q)= [−M(p; q),M(p; q)] ∩Z.

This shows the relevance of understanding M(p; q). Let us first recall some
known results concerning the related function M(p). Here we know thanks to
Bachman [2003], who very slightly improved on an earlier result in [Beiter 1971],
that M(p) ≤ 3p/4. It was conjectured by Sister Marion Beiter [1968] (see also
[Beiter 1971]) that M(p)≤ (p+1)/2. She proved it for p≤5. Since Möller [1971]
proved that M(p)≥ (p+1)/2 for p> 2, her conjecture actually would imply that
M(p) = (p + 1)/2 for p > 2. The first to show that Beiter’s conjecture is false
seems to have been Eli Leher (in his PhD thesis), who gave the counterexample
a17·29·41(4801) = −10, showing that M(17) ≥ 10 > 9 = (17+ 1)/2. Gallot and
Moree [2009b] provided for each p≥11 infinitely many infinitely many counterex-
amples p · q j · r j with q j strictly increasing with j . Moreover, they have shown
that for every ε > 0 and p sufficiently large M(p) > (2

3−ε)p. They also proposed
the corrected Beiter conjecture: M(p)≤ 2p/3. The implications of their work for
M(p; q) are described in Section 4.

Proposition 1 together with Möller’s result quoted above gives a different proof
of the result, due to Bachman [2004], that {apqr (k) : p<q< r}=Z. For references
and further results in this direction (begun by I. Schur) see Fintzen [2011].

Jia Zhao and Xianke Zhang [2010] showed that M(7)= 4, thus establishing the
Beiter conjecture for p = 7. In a later paper they established the corrected Beiter
conjecture:

Theorem 2 [Zhao and Zhang 2009]. M(p)≤ 2p/3.

This result together with some computer computation allows one to extend the
list of exactly known values of M(p) (see Table 1).

It is not known whether there is a finite procedure to determine M(p). On the
other hand, it is not difficult to see that there is such a procedure for M(p; q).

Proposition 3. Given primes 2 < p < q , there is a finite procedure to determine
M(p; q).
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p M(p) smallest n

3 2 3 · 5 · 7
5 3 5 · 7 · 11
7 4 7 · 17 · 23

11 7 11 · 19 · 601
13 8 13 · 73 · 307
19 12 19 · 53 · 859

Table 1. Values of M(p). By “smallest n” we mean the smallest
integer n satisfying A(n)=M(p) and with p as its smallest prime
divisor.

Recall that a set S of primes is said to have natural density δ if

lim
x→∞

|{p ≤ x : p ∈ S}|
π(x)

= δ,

where π(x) is the number of primes p ≤ x . A further question that arises is how
often the maximum value M(p) is assumed. We have:

Theorem 4. Given primes 2< p< q, there exists a prime q0 with q0 ≡ q (mod p)
and an integer d such that M(p, q)≤M(p, q0)=M(p, q ′) for every prime q ′≥q0

satisfying q ′ ≡ q0 (mod d · p). In particular the set of primes q with M(p; q) =
M(p) has a subset having a positive natural density.

A weaker result in this direction, namely that for a fixed prime p ≥ 11, the set of
primes q such that M(p; q) > (p+ 1)/2 has a subset of positive natural density,
follows from [Gallot and Moree 2009b] (recall that M(p) > (p+1)/2 for p≥ 11).

Unfortunately, the proof of Theorem 4 gives a lower bound for the density that
seems to be far removed from the true value. In this paper we present some con-
structions that allow one to obtain much better bounds for the density for small p.
These results are subsumed in the following main result of the paper.

Theorem 5. Let 2< p≤ 19 be a prime with p 6= 17. Then the set of primes q such
that M(p; q)= M(p) has a subset having natural density δ(p) as follows:

p = 3 5 7 11 13 19
δ(p)= 1 1 1 2

5
1

12
1
9

Numerical experimentation suggests that the set of primes q such that M(p; q)=
M(p) has a natural density δ(p) as given in the above table, except when p = 13
in which case numerical experimentation suggests δ(13)= 1/3.

In order to prove Theorem 5, we will use the following theorem dealing with
2< p ≤ 7.
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Theorem 6. For 2< p≤ 7 and q > p we have M(p; q)= (p+1)/2, except in the
case p = 7, q = 13, where M(7; 13)= 3.

The fact that M(7; 13)= 3 can be explained. It turns out that if ap+bq = 1 for
integers a and b small in absolute value, then M(p; q) is small. For example:

Theorem 7. If p ≥ 5 and 2p− 1 is a prime, then M(p; 2p− 1)= 3.

This result and similar ones are established in Section 10.

Our main conjecture on M(p; q) is the following one.

Conjecture 8. Given a prime p, there exists an integer d and a function

g : (Z/dZ)∗→ Z>0

such that for some q0 > d we have for every prime q ≥ q0 that M(p; q) = g(q̄),
where 1 ≤ q̄ < d satisfies q ≡ q̄ (mod d). The function g is symmetric, that is we
have g(α)= g(d −α).

The smallest integer d with the above properties, if it exists, we call the ternary
conductor fp. The corresponding smallest choice of q0 (obtained on setting d= fp)
we call the ternary minimal prime. For p=7 we obtain, e.g., f7=1 and q0=17 (by
Theorem 6). Note that once we know q0 it is a finite computation to determine d
and the function g. Theorem 6 can be used to obtain the p≤ 7 part of the following
observation concerning the ternary conductor.

Proposition 9. If 2< p≤ 7, then the ternary conductor exists and we have fp = 1.
If p ≥ 11 and fp exists, then p|fp.

While Theorem 4 only says that the set of primes q with M(p; q)=M(p) has a
subset having a positive natural density, Conjecture 8 implies that the set actually
has a natural density in Q>0 which can be easily explicitly computed assuming we
know q0. In order to establish this implication one can invoke a quantitative form
of Dirichlet’s prime number theorem to the effect that, for (a, d)= 1, we have, as
x tends to infinity, ∑

p≤x
p≡a (mod d)

1∼
x

ϕ(d) log x
. (2)

This result implies that asymptotically the primes are equidistributed over the prim-
itive congruence classes modulo d. (Recall that Dirichlet’s prime number theorem,
Dirichlet’s theorem for short, says that each primitive residue class contains infin-
itely many primes.)

The main tool in this paper is Kaplan’s lemma, presented in Section 6. The
material in that section (except for Lemma 22, which is new) is taken from [Gallot
and Moree 2009a]. As a demonstration of working with Kaplan’s lemma two
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examples (with and without table) are given in Section 6.1. In [Gallot et al. 2010],
the full version of this paper, details of further proofs using Kaplan’s lemma can
be found. In the shorter version we have merely written “Apply Kaplan’s lemma”.

The above summary of results makes clear how limited presently our knowledge
of M(p; q) is. For the benefit of the interested reader we present a list of open
problems in Section 11.

2. Proof of two propositions and Theorem 4

Proof of Proposition 1. By the definition of M(p; q) we have

A(p; q)⊆ [−M(p; q),M(p; q)] ∩Z.

Let r > q be a prime such that A(pqr) = M(p; q) and suppose, without loss
of generality, that apqr (k) = M(p; q). Gallot and Moree [2009a] showed that
|an(k) − an(k − 1)| ≤ 1 for ternary n (see [Bachman 2010; Bzdęga 2010] for
alternative proofs). Since apqr (k)= 0 for every k large enough, it then follows that
0, 1, . . . ,M(p; q) are in A(p; q). By a result of Kaplan [2007] (see [Zhao and
Zhang 2010] for a different proof), we can find a prime s ≡−r (mod pq) and an
integer k1 such that apqs(k1) = −M(p; q). By a similar arguments as above one
then infers that −M(p; q),−M(p; q)+ 1, . . . ,−1, 0 are all in A(p; q). �

Proof of Proposition 3. Let Rpq be a set of primes, all exceeding q such that every
primitive residue class modulo pq is represented. By [Kaplan 2007, Theorem 2]
we have A(pqr) = A(pqs) if s ≡ r (mod pq) with s, r both primes exceeding q
and hence

M(p; q)=max{A(pqr) : r ∈Rpq}.

Since the computation of Rpq and A(pqr) is a finite one, the computation of
M(p; q) is also finite. �

The remainder of the section is devoted to the proof of Theorem 4.
For coprime positive (not necessary prime) integers p, q, r we define

8′p,q,r (x)=
(x pqr

− 1)(x p
− 1)(xq

− 1)(xr
− 1)

(x − 1)(x pq − 1)(x pr − 1)(xqr − 1)
=

∞∑
k=0

a′p,q,r (k)x
k .

Here we do not assume p < q < r . Hence we have the symmetry 8′p,q,r (x) =
8′p,r,q(x). A routine application of the inclusion-exclusion principle to the roots
of the factors shows that 8′p,q,r (x) is a polynomial. It is referred to as a ternary
inclusion-exclusion polynomial. Inclusion-exclusion polynomials can be defined
in great generality, and the reader is referred to [Bachman 2010] for an introductory
discussion. He shows that such polynomials and thus 8′p,q,r (x) in particular, can
be written as products of cyclotomic polynomials (see Theorem 2 in that reference).
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Analogously to A(pqr) and M(p; q) we define

A′(p, q, r)=max{|a′p,q,r (k)| : k ≥ 0},

M ′(p; q)=max{A′(p, q, r) : r ≥ 1},

M ′(p)=max{M ′(p; q) : q ≥ 1}.

We have8pqr (x)=8′p,q,r (x) if p, q, r are distinct primes, so A(pqr)= A′(p, q, r)
in this case.

Lemma 10. For coprime positive (not necessary prime) integers p, q, r we have
A′(p, q, r1)≤ A′(p, q, r2)≤ A′(p, q, r1)+ 1 if r2 ≡ r1 (mod pq) and r2 > r1.

Proof. Note that r2 > max{p, q}. If r1 > max{p, q}, then Kaplan [2007, proof
of Theorem 2] showed that A′(p, q, r1) = A′(p, q, r2). In the remaining case
r1 < max{p, q}, we have A′(p, q, r1) ≤ A′(p, q, r2) ≤ A′(p, q, r1) + 1 by the
Theorem in [Bachman and Moree 2011]. �

In [Bachman and Moree 2011] it is remarked that A′(p, q, r2)= A′(p, q, r1)+1
can occur.

Lemma 11. If p is a prime, then M ′(p) = M(p). If q is also a prime with q > p
then M ′(p; q)= M(p; q).

Proof. Let p < q be primes. Assume M ′(p; q) = A′(p, q, r), where r is not
necessary a prime. By Dirichlet’s theorem we can find a prime r ′ satisfying

r ′ ≡ r(mod pq) and r ′ >max(q, r).

Therefore we have, by Lemma 10,

M ′(p; q)= A′(p, q, r)≤ A′(p, q, r ′)= A(p, q, r ′)≤ M(p; q).

Since obviously M(p; q)≤ M ′(p; q), we have M ′(p; q)= M(p; q).
Now let only p be a prime. Assume M ′(p) = A′(p, q, r), where q and r are

not necessary primes. Again by Dirichlet’s theorem we find a prime q ′ with q ′ ≡
q (mod pr) and q ′ >max(p, q). Using Lemma 10 we have

M ′(p)= A′(p, q, r)≤ A′(p, q ′, r)≤ M ′(p, q ′)= M(p, q ′)≤ M(p).

Since obviously M(p)≤ M ′(p), we have M ′(p)= M(p). �

Proof of Theorem 4. We set q1 := q . Let ri be a positive integer satisfying
M ′(p; qi )= A′(p, qi , ri ). Using Lemma 10 (note that A′(p, q, r) is invariant under
permutations of p, q and r ) we deduce

M ′(p; q1)= A′(p, q1, r1)≤ A′(p, q2, r1)≤ A′(p, q2, r2)= M ′(p, q2),
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where q2 = q1 + pr1. By the same argument the sequence q1, q2, q3, . . . with
qi+1 = qi + pri satisfies

M ′(p; q1)≤ M ′(p; q2)≤ M ′(p; q3)≤ · · ·

Since M ′(p; q)≤M ′(p)=M(p) and by, e.g., Lemma 18, M(p) is finite, there are
only finitely many different values for M ′(p; q). Hence there is an index k such
that M ′(p; qk)= M ′(p; qk+i ) for all i ≥ 0. That means

M ′(p; qk)= A′(p, qk, rk)= A′(p, qk+1, rk)= A′(p, qk+1, rk+1)= M ′(p, qk+1),

and by induction A′(p, qk+i , rk) = A′(p, qk+i , rk+i ). Therefore we can assume
rk+i = rk for i ≥ 0. Then we have qk+i = qk+ i · prk . We set q0 := qk and d := rk .
Certainly we have q0≡ q (mod p). Let q ′≥ q0 be a prime with q ′≡ q0 (mod d · p).
There must be an integer m such that q ′ = qk+m . Since M ′(p; q) = M(p; q) by
Lemma 11, we have

M(p; q1)≤ M(p; q0)= M(p; q ′).

Applying this to M(p; q1) with M(p; q1)= M(p), where we have chosen q1 such
that M(p; q1)= M(p), we get infinitely many primes of the form qi = q1+ i · pr1

satisfying M(p; qi ) = M(p). On invoking (2) with a = q1 and d = pr1 the proof
is then completed. �

3. The bounds of Bachman and Bzdęga

Let q∗ and r∗, 0< q∗, r∗< p be the inverses of q and r modulo p respectively. Set
a =min(q∗, r∗, p− q∗, p− r∗). Put b =max(min(q∗, p− q∗),min(r∗, p− r∗)).
In the sequel we will use repeatedly that b ≥ a. Bachman [2003] showed that

A(pqr)≤min
( p−1

2
+ a, p− b

)
. (3)

This was more recently improved by Bzdęga [Bzdęga 2010] who showed that

A(pqr)≤min(2a+ b, p− b). (4)

It is not difficult to show that min(2a + b, p − b) ≤ min( p−1
2 + a, p − b) and

thus Bzdęga’s bound is never worse than Bachman’s and in practice often strict
inequality holds.

Note that if q ≡±1 (mod p), then (3) implies that A(pqr)≤ (p+1)/2, a result
due to Beiter [1968] and, independently, Bloom [1968].

We remark that Bachman and Bzdęga define b as follows:

b =min(b1, p− b1), ab1qr ≡ 1 (mod p), 0< b1 < p.

It is an easy exercise to see that our definition is equivalent to this one.
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We will show that both (3) and (4) give rise to the same upper bound f (q∗) for
M(p; q). Write q∗ ≡ j (mod p), r∗ ≡ k (mod p) with 1 ≤ j, k ≤ p − 1. Thus
the right-hand sides of both (3) and (4) are functions of j and k, which we denote
respectively by GB( j, k) and BB( j, k). We have

BB( j, k)=min(2a+ b, p− b)≤min
(

p− 1
2
+ a, p− b

)
= GB( j, k),

with a =min( j, k, p− j, p− k) and b =max(min( j, p− j),min(k, p− k)).

Lemma 12. Let 1≤ j ≤ p− 1. Denote GB( j, j) by f ( j). We have

max
1≤k≤p−1

BB( j, k)= max
1≤k≤p−1

GB( j, k)= f ( j),

with

f ( j)=
{ 1

2(p− 1)+ j if j < p/4,
p− j if p/4< j ≤ 1

2(p− 1),

and f (p− j)= f ( j) if j > 1
2(p− 1).

Proof. Since the problem is symmetric under replacing j by p− j , without loss of
generality we may assume that j ≤ 1

2(p− 1). If j < p/4, then

GB( j, k)≤
p− 1

2
+ a ≤

p− 1
2
+ j = GB( j, j).

If j > p/4, then

GB( j, k)≤ p− b ≤ p− j = GB( j, j).

Note that

GB( j, j)=
{

BB
(

j, 1
2(p+ 1)− j

)
if j < p/4,

BB( j, j) if j > p/4.

For example, if j < p/4, then the choice q∗ = j , r∗ = 1
2(p+1)− j leads to a = j

and b = 1
2(p+ 1)− j and hence

BB
(

j, 1
2(p+ 1)− j

)
=min

( 1
2(p+ 1)+ j, 1

2(p− 1)+ j
)
= GB( j, j).

Since BB( j, k)≤ GB( j, k)≤ GB( j, j) we are done. �

Theorem 13. Let 2< p < q. Then M(p; q)≤ f (q∗).

Proof. By (4) and the definition of BB( j, k) we have

M(p; q)≤ max
1≤k≤p−1

BB(q∗, k)= f (q∗),

completing the proof. �
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Lemma 12 shows that using either (3) or (4), we cannot improve on the upper
bound given in Theorem 13. Since

max
1≤ j≤p−1

f ( j)= p− 1−
[ p

4

]
=

{ 3
4(p− 1) if p ≡ 1 (mod 4),
1
4(3p− 1) if p ≡ 3 (mod 4),

we infer that

M(p)≤ max
1≤ j≤p−1

max
1≤k≤p−1

GB( j, k)= max
1≤ j≤p−1

f ( j) < 3
4 p.

4. Earlier work on M( p; q)

Implicit in the literature are various results on M(p; q) (although we are the first
to explicitly study M(p; q)). Most of these are mentioned in the rest of this paper.
Here we rewrite the main result of [Gallot and Moree 2009b] in terms of M(p; q)
and use it for p = 11, to deal with q ≡ 4 (mod 11), and p = 13, to deal with
q ≡ 5 (mod 13).

Theorem 14. Let p ≥ 11 be a prime. Given any 1 ≤ β ≤ p− 1 we let β∗ be the
unique integer 1 ≤ β∗ ≤ p − 1 with ββ∗ ≡ 1 (mod p). Let B−(p) be the set of
integers satisfying

1≤ β ≤
p− 3

2
, p ≤ β + 2β∗+ 1, β > β∗.

Let B+(p) be the set of integers satisfying

1≤ β ≤
p− 3

2
, p ≤ β +β∗, β ≥ β∗/2.

Let B(p) be the union of these (disjoint) sets. As (p−3)/2∈B(p), it is nonempty.
Let q ≡ β (mod p) be a prime satisfying q > p. Suppose that the inequality
q > q−(p) := p(p−β∗)(p−β∗− 2)/(2β) holds if β ∈B−(p) and

q > q+(p) :=
p(p− 1−β)

γ (p− 1−β)− p+ 1+ 2β
,

with γ =min((p−β∗)/(p−β), (β∗−β)/β∗) if β ∈B+(p). Then

M(p; q)≥ p−β >
p+ 1

2

and hence M(p)≥ p−min{B(p)}.

We have B(11)= {4},B(13)= {5},B(17)= {7} and B(19)= {8}. In general one
can show [Cobeli et al. ≥ 2011] using Kloosterman sum techniques that∣∣∣|B(p)| − p

16

∣∣∣≤ 24p3/4 log p.
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The lower bound for M(p) resulting from this theorem, p − min{B(p)}, never
exceeds 2p/3 and this together with extensive numerical experimentation led in
[Gallot and Moree 2009b] to the proposal of a corrected Beiter conjecture, now
proved by Zhao and Zhang (Theorem 2).

Under the appropriate conditions on p and q, Theorem 14 says that M(p; q)≥
p − β, whereas Theorem 13 yields M(p; q) ≤ f (β∗). Thus studying the case
p−β = f (β∗) with β ∈B(p), leads to a small subset of cases where M(p; q) can
be exactly computed using Theorem 14.

Theorem 15. Let p ≥ 13 with p ≡ 1 (mod 4) be a prime. Let x0 be the smallest
positive integer such that x2

0 + 1 ≡ 0 (mod p). If x0 > p/3, q ≡ x0 (mod p) and
q ≥ q+(p) (with β = x0), then M(p; q)= p− x0.

Proof. Some easy computations show that if p − β = f (β∗) and β ∈ B(p), we
must have β ∈B+(p), 1

2(p− 1) < β∗ < 3
4 p and hence f (β∗)= β∗ and so

β ∈B+(p), 1≤β≤
p− 3

2
, β+β∗= p, β∗≤2β,

p− 1
2

<β∗<
3
4

p. (5)

Note that β + β∗ = p, p ≥ 13, has a solution with β < p/2 if and only if p ≡ 1
(mod 4) and β = x0 (and hence β∗ = p − x0) with x0 the smallest solution of
x2

0 + 1 ≡ 0 (mod p). If x0 > p/3, then β = x0 satisfies (5). Since by assumption
q ≥ q+(p) and q ≡ x0 (mod p), we have M(p; q)≥ p−x0 by Theorem 14. On the
other hand, by Theorem 13, we have M(p; q)≤ f (p− x0)= f (x0)= p− x0. �

Remark. The set of primes p satisfying p≡ 1 (mod 4) and x0> p/3 (which starts
{13, 29, 53, 73, 89, 173, . . . }) has natural density 1

6 . This follows on taking α2=
1
2

and α1=
1
3 in the result from [Duke et al. 1995] that if f is a quadratic polynomial

with complex roots and 0 ≤ α1 < α2 ≤ 1 are prescribed real numbers, then as x
tends to infinity,

#{(p, v) : p ≤ x, f (v)≡ 0 (mod p), α1 ≤ v/p < α2} ∼ (α2−α1)π(x).

5. Computation of M(3; q)

Note that for all primes q and r with 1 < q < r , there exists some unique h ≤
(q−1)/2 and k > 0 such that r = (kq+1)/h or r = (kq−1)/h. If n ≡ 0 (mod 3)
is ternary, then either A(n)= 1 or A(n)= 2 as M(3)= 2. The following result due
to Sister Beiter [Beiter 1978] allows one to compute A(n) in this case.

Theorem 16. Let n ≡ 0 (mod 3) be ternary.

• If h = 1, then A(n)= 1 if and only if k ≡ 0 (mod 3).

• If h > 1, then A(n)= 1 if and only if one of the following conditions holds:
(a) k ≡ 0 (mod 3) and h+ q ≡ 0 (mod 3).
(b) k ≡ 0 (mod 3) and h+ r ≡ 0 (mod 3).
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We have seen that M(3; 5)= 2. The next result extends this.

Theorem 17. Let q > 3 be a prime. We have M(3; q)= 2.

Proof. In case q ≡ 1 (mod 3), then let r be a prime such that r ≡ 1+ q (mod 3q).
Since (1+ q, 3q) = 1, Dirichlet’s theorem says there are in fact infinitely many
such primes. If q ≡ 2 (mod 3), let r be a prime such that r ≡ 1+ 2q (mod 3q).
Since (1+ 2q, 3q) = 1, there are infinitely many such primes. The prime r was
chosen so as to ensure that h = 1 and 3 - k. Using Theorem 16 it then follows that
A(3qr)= 2 and hence M(3; q)= 2. �

6. Kaplan’s lemma reconsidered

Our main tool will be the following result of Kaplan, the proof of which uses the
identity

8pqr (x)= (1+x pq
+x2pq

+· · · )(1+x+· · ·+x p−1
−xq
−· · ·−xq+p−1)8pq(xr ).

Lemma 18 [Kaplan 2007]. Let 2< p < q < r be primes and k ≥ 0 be an integer.
Put

bi =

{
apq(i) if r i ≤ k,
0 otherwise.

We have

apqr (k)=
p−1∑
m=0

(b f (m)− b f (m+q)), (6)

where f (m) is the unique integer such that f (m) ≡ r−1(k − m) (mod pq) and
0≤ f (m) < pq.

(If we need to stress the k-dependence of f (m), we will write fk(m) instead of
f (m), see, e.g., Lemma 22 and its proof.) This lemma reduces the computation
of apqr (k) to that of apq(i) for various i . These binary cyclotomic polynomial
coefficients are computed in the following lemma. For a proof see, e.g., [Lam and
Leung 1996; Thangadurai 2000].

Lemma 19. Let p < q be odd primes. Let ρ and σ be the (unique) nonnegative
integers for which 1+ pq = (ρ + 1)p+ (σ + 1)q. Let 0 ≤ m < pq. Then either
m = α1 p+ β1q or m = α1 p+ β1q − pq with 0 ≤ α1 ≤ q − 1 the unique integer
such that α1 p ≡ m (mod q) and 0 ≤ β1 ≤ p − 1 the unique integer such that
β1q ≡ m (mod p). The cyclotomic coefficient apq(m) equals

1 if m = α1 p+β1q with 0≤ α1 ≤ ρ, 0≤ β1 ≤ σ,

−1 if m = α1 p+β1q − pq with ρ+ 1≤ α1 ≤ q − 1, σ + 1≤ β1 ≤ p− 1,
0 otherwise.
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We say that [m]p = α1 is the p-part of m and [m]q = β1 is the q-part of m. It is
easy to see that

m =


[m]p p+ [m]qq if [m]p ≤ ρ and [m]q ≤ σ ;
[m]p p+ [m]qq − pq if [m]p > ρ and [m]q > σ ;
[m]p p+ [m]qq − δm pq otherwise,

with δm ∈ {0, 1}. Using this observation we find that, for i < pq ,

bi =


1 if [i]p ≤ ρ, [i]q ≤ σ and [i]p p+ [i]qq ≤ k/r;
−1 if [i]p > ρ, [i]q > σ and [i]p p+ [i]qq − pq ≤ k/r;

0 otherwise.

Thus in order to evaluate apqr (n) using Kaplan’s lemma it suffices to compute
[ f (m)]p, [ f (m)]q , and [ f (m+ q)]q (note that [ f (m)]p = [ f (m+ q)]p).

For future reference we provide a version of Kaplan’s lemma in which the com-
putation of bi has been made explicit, and thus is self-contained.

Lemma 20. Let 2 < p < q < r be primes and let k ≥ 0 be an integer. We put
ρ = [(p− 1)(q − 1)]p and σ = [(p− 1)(q − 1)]q . Furthermore, we put

bi =


1 if [i]p ≤ ρ, [i]q ≤ σ and [i]p p+ [i]qq ≤ k/r;
−1 if [i]p > ρ, [i]q > σ and [i]p p+ [i]qq − pq ≤ k/r;

0 otherwise.

We have

apqr (k)=
p−1∑
m=0

(b f (m)− b f (m+q)), (7)

where f (m) is the unique integer such that f (m) ≡ r−1(k − m) (mod pq) and
0≤ f (m) < pq.

Note that if i and j have the same p-part, then bi b j 6= −1, that is bi and b j cannot
be of opposite sign. From this it follows that |b f (m) − b f (m+q)| ≤ 1, and thus we
infer from Kaplan’s lemma that |apqr (k)| ≤ p and hence M(p)≤ p.

Using the mutual coprimality of p, q and r we arrive at the following trivial,
but useful, lemma.

Lemma 21. We have {[ f (m)]q : 0 ≤ m ≤ p − 1} = {0, 1, 2, . . . , p − 1} and
|{[ f (m)]p : 0≤m ≤ p−1}| = p. The same conclusions hold if we replace [ f (m)]q
and [ f (m)]p by [ f (m+ q)]q , respectively [ f (m+ q)]p.

Working with Kaplan’s lemma one first computes apq( f (m)) and then b f (m). As
a check on the correctness of the computations we note that the following identity
should be satisfied.
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Lemma 22. We have
p−1∑
m=0

apq( fk(m))=
p−1∑
m=0

apq( fk(m+ q)).

Proof. Choose an integer k1≡ k (mod pq) such that k1 > pqr . Then apqr (k1)= 0.
By Lemma 18 we find that

0= apqr (k1)=

p−1∑
m=0

(
apq( fk1(m))− apq( fk1(m+ q))

)
.

Since fk(m) only depends on the congruence class of k modulo pq , fk1(m)= fk(m)
and the result follows. �

6.1. Working with Kaplan’s lemma: examples. In this section we carry out some
sample computations using Kaplan’s lemma. For more involved examples the
reader is referred to [Gallot and Moree 2009b].

We remark that the result that an(k)= (p+1)/2 in Lemma 23 is due to Herbert
Möller [1971]. The proof we give here of this is rather different. The foundation
for Möller’s result is due to Emma Lehmer, who showed [1936] that

an
( 1

2(p− 3)(qr + 1)
)
=

1
2(p− 1)

with p, q, r and n satisfying the conditions of Lemma 23.

Lemma 23. Let p < q < r be primes satisfying

p > 3, q ≡ 2 (mod p), r ≡
p− 1

2
(mod p), r ≡

q − 1
2

(mod q).

For k = (p− 1)(qr + 1)/2 we have apqr (k)= (p+ 1)/2.

Proof (taken from [Gallot and Moree 2009a]). Using that q ≡ 2 (mod p), we infer
from 1+ pq = (ρ+1)p+(σ+1)q that σ = 1

2(p−1) and (ρ+1)p= 1+ 1
2(p−1)q

(and hence ρ = (p − 1)(q − 2)/(2p)). Invoking the Chinese remainder theorem
one checks that

−r−1
≡ 2≡−

(
q − 2

p

)
p+ q (mod pq). (8)

Furthermore, writing f (0) as a linear combination of p and q we see that

f (0)≡
k
r
≡

(
p− 1

2

)
q +

p− 1
2r
≡

(
p− 1

2

)
q + 1− p ≡ ρp (mod pq). (9)

Since f (m)≡ f (0)− m
r (mod pq) we find using (8), (9) and the observation that

ρ−m(q − 2)/p ≥ 0 for 0≤ m ≤ (p− 1)/2, that [ f (m)]p = ρ−m(q − 2)/p ≤ ρ
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and [ f (m)]q = m ≤ σ for 0 ≤ m ≤ (p − 1)/2. Since [ f (m)]p p + [ f (m)]qq =
ρp + 2m ≤ ρp + p − 1 = [k/r ], we deduce that apq( f (m)) = b f (m) = 1 in this
range; see also the following table:

m [ f (m)]p [ f (m)]q f (m) apq( f (m)) b f (m)

0 ρ 0 ρp 1 1
1 ρ− (q − 2)/p 1 ρp+ 2 1 1
...

...
...

... 1 1
j ρ− j (q − 2)/p j ρp+ 2 j 1 1
...

...
...

... 1 1
(p− 1)/2 0 (p− 1)/2 (p− 1)q/2 1 1

Note that f (m) ≡ f (0)−m/r ≡ ρp + 2m (mod pq), from which one easily
infers that f (m)=ρp+2m for 0≤m≤ p−1 (as ρp+2m≤ρp+2(p−1)< pq). In
the range 1

2(p+1)≤m≤ p−1 we have f (m)≥ρp+ p+1= (p−1)q/2+2> k/r ,
and hence b f (m) = 0.

On noting that f (m+q)≡ f (m)−q/r ≡ f (m)+2q ≡ρp+2m+2q (mod pq),
one easily finds, for 0 ≤ m ≤ p − 1, that f (m + q) = ρp + 2m + 2q > k/r and
hence b f (m+q) = 0.

Invoking Kaplan’s lemma one finds

apqr (k)=
p−1∑
m=0

b f (m)−

p−1∑
m=0

b f (m+q) =
p+ 1

2
− 0=

p+ 1
2

. �

Lemma 24. Let 3< p < q < r be primes satisfying

q ≡ 1 (mod p), r−1
≡

p+ q
2

(mod pq).

For k = (p− 1)qr/2− pr + 2 we have apqr (k)=−min
(q−1

p
+ 1, p+1

2

)
.

Proof. Let 0≤ m ≤ p− 1. We have

ρ =
(p− 1)(q − 1)

p
and σ = 0,

k ≡ 1 (mod p), k ≡ 0 (mod q), k ≡ 2 (mod r),

so that we can compute

[ f (m)]q ≡ q−1r−1(k−m)≡ (1−m)/2 (mod p),

[ f (m+ q)]q ≡ q−1r−1(k−m− q)≡−m/2 (mod p),

[ f (m)]p = [ f (m+ q)]p ≡ p−1r−1(k−m)≡−m/2 (mod q).
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This leads to

[ f (m)]q =


(p+ 1−m)/2 for m even,
(2p+ 1−m)/2 for m odd and m 6= 1,
0 for m = 1,

[ f (m+ q)]q =


(p−m)/2 for m odd,
(2p−m)/2 for m even and m 6= 0,
0 for m = 0,

[ f (m)]p = [ f (m+ q)]p =


(q −m)/2 for m odd,
(2q −m)/2 for m even and m 6= 0,
0 for m = 0.

We consider four cases:

Case 1: [ f (m)]p ≤ ρ and [ f (m)]q ≤ σ . In this case m = 1. Therefore

[ f (m)]p p+ [ f (m)]qq =
p(q − 1)

2
>

k
r
.

Case 2: [ f (m)]p > ρ and [ f (m)]q > σ . This case only arises if m is even and
m ≥ 2. Then we have

[ f (m)]p p+ [ f (m)]qq − pq =
2q −m

2
p+

p+ 1−m
2

q − pq

=
q(p+ 1−m)−mp

2
≤

q(p− 1)
2

− p+
2
r
=

k
r
.

However, not all even m ≥ 2 satisfy [ f (m)]p > ρ. For this it is necessary that

2q −m
2

>
(p− 1)(q − 1)

p
.

That means
m
2
<

q − 1
p
+ 1

and since 0< m
2
≤

p−1
2

we have exactly min
(q−1

p
,

p−1
2

)
different values of m.

Case 3: [ f (m + q)]p ≤ ρ and [ f (m + q)]q ≤ σ . In this case we have m = 0.
Therefore

[ f (m+ q)]p p+ [ f (m+ q)]qq = 0≤
k
r
.

Case 4: [ f (m + q)]p > ρ and [ f (m + q)]q > σ . We must have 2|m and m ≥ 2.
We find

[ f (m+ q)]p p+ [ f (m+ q)]qq − pq =
2q −m

2
p+

2p−m
2

q − pq >
k
r
.
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This case analysis shows that (respectively)

p−1∑
m=0

b f (m)=1

1= 0,
p−1∑
m=0

b f (m)=−1

1=min
(q−1

p
,

p−1
2

)
,

p−1∑
m=0

b f (m+q)=1

1= 1,
p−1∑
m=0

b f (m+q)=−1

1= 0.

Kaplan’s lemma then yields

apqr (k)=
(

0−min
(q−1

p
,

p−1
2

))
−(1−0)=−min

(q−1
p
+1, p+1

2

)
. �

The next two lemmas are proved by application of Kaplan’s lemma; see [Gallot
et al. 2010] for details.

Lemma 25. Let 3< p < q < r be primes satisfying

q ≡−2(mod p), r−1
≡ p− 2 (mod pq) and q > p2/2.

For k = p+1
2 (1+ r(2− p+ q))+ r + q − rq we have apqr (k)=−(p+ 1)/2.

Remark. Numerical experimentation suggests that with this choice of k, a condi-
tion of the form q > p2c1, with c1 some absolute positive constant, is unavoidable.

Lemma 26. Let 3< p < q < r be primes satisfying

q ≡−1 (mod p), r−1
≡

p+ q
2

(mod pq) and q ≥ p2
− 2p.

For k = p(q − 1)r/2− rq + p− 1 we have apqr (k)=−(p+ 1)/2.

Proof of Proposition 9. The first assertion follows by Theorem 6, so assume p≥11.
We will argue by contradiction. So suppose that p - fp. Put β = (p − 3)/2. By
the Chinese remainder theorem and Dirichlet’s theorem there are infinitely many
primes q1 such that q1 ≡ 2 (mod p) and q1 ≡ 1 (mod fp). Further, there are
infinitely many primes q2 such that q2 ≡ β (mod p) and q2 ≡ 1 (mod fp). By the
definition of fp there exists an integer c such that M(p; q)=c for all q≡1 (mod fp)

that are large enough. However, by Lemma 23 we have M(p; q1)= (p+1)/2 and
by Theorem 14 (note that β ∈B(p)) we have M(p; q2)> (p+1)/2 for all q2 large
enough. This contradiction shows that p - fp. �

The results from this section together with those from Section 3 allow one to
establish the following theorem. In Section 10 we will discuss the sharpness of the
lower bounds for q.

Theorem 27. Let 2< p < q be primes.

(a) If q ≡ 2 (mod p), then M(p; q)= (p+ 1)/2.

(b) If q ≡−2 (mod p) and q > p2/2, then M(p; q)= (p+ 1)/2.

(c) If q ≡ 1 (mod p) and q ≥ (p− 1)p/2+ 1, then M(p; q)= (p+ 1)/2.

(d) If q ≡−1 (mod p) and q ≥ p2
− 2p, then M(p; q)= (p+ 1)/2.
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Proof. By Theorem 17 we have M(3; q)= 2= (3+ 1)/2, so assume p > 3.

(a) We have M(p; q)≥ (p+1)/2 by Lemma 23, and M(p; q)≤ f (2∗)= f ((p+
1)/2)= (p+ 1)/2 by Theorem 13.

(b)+(c)+(d) Similar to that of part (a). Note that f ((−2)∗) = f ((p − 1)/2) =
(p+ 1)/2 and f (1)= f (p− 1)= (p+ 1)/2. �

Theorem 28. Let q > 5 be a prime. Then M(5; q)= 3.

Proof. The proof is most compactly given in a table:

q̄ q0 M(5; q) result

1 11 3 Theorem 27(c)
2 7 3 Theorem 27(a)
3 13 3 Theorem 27(b)
4 19 3 Theorem 27(d)

Interpretation: the third row, for example, says that for q ≡ 3 (mod 5), q ≥ 13, we
have M(5; q)= 3 by Theorem 27(b). �

7. Computation of M(7; q)

Theorem 27, together with the next two lemmas (again proved by application of
Kaplan’s lemma), allows one to compute M(7; q). These lemmas concern the
computation of M(p; q) with q ≡ (p± 1)/2 (mod p).

Lemma 29. Let p ≥ 5 be a prime. Let q ≥ max(3p, p(p + 1)/4) be a prime
satisfying q ≡ (p− 1)/2 (mod p). Let r > q be a prime satisfying

r−1
≡

p+ 1
2

(mod p), r−1
≡ p (mod q).

For k = p− 1+ r(1+ q(p− 1)/2− p(p+ 1)/2) we have apqr (k)= (p+ 1)/2.

Lemma 30. Let p ≥ 5 be a prime. Let q ≥ max(3p, p(p− 1)/4+ 1) be a prime
satisfying q ≡ (p+ 1)/2 (mod p). Let r > q be a prime satisfying

r−1
≡

p− 1
2

(mod p), r−1
≡ p (mod q).

For k = q + p− 1+ r(q(p− 1)/2− p(p+ 1)/2) we have apqr (k)= (p+ 1)/2.

Theorem 31.

(a) If q ≥max(3p, p(p+1)/4) is a prime satisfying q ≡ (p−1)/2 (mod p), then
(p+ 1)/2≤ M(p; q)≤ (p+ 3)/2.

(b) If q ≥max(3p, p(p−1)/4+1) is a prime satisfying q ≡ (p+1)/2 (mod p),
then (p+ 1)/2≤ M(p; q)≤ (p+ 3)/2.
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Proof. This follows on noting that

f
(( p+1

2

)∗ )
= f (2)= p+3

2
= f (p− 2)= f

(( p−1
2

)∗ )
,

and combining Lemmas 29 and 30 with Theorem 13. �

Theorem 32. We have M(7; 11) = 4, M(7; 13) = 3 and for q ≥ 17 a prime,
M(7; q)= 4.

Proof. Again we encode the proof in a table:

q̄ q0 M(7; q) result

1 29 4 Theorem 27(c)
2 23 4 Theorem 27(a)
3 31 4 Theorem 31(a)∗

4 53 4 Theorem 31(b)∗

5 47 4 Theorem 27(b)
6 41 4 Theorem 27(d)

For the entries marked with asterisks we also need the fact that M(7)≤ 4 (see just
before Theorem 2). Since M(7; 11)=M(7; 17)=M(7; 19)= 4 and M(7; 13)= 3
(the only cases not covered in the table), the proof is completed. �

Proof of Theorem 6. Combine Theorems 17, 28 and 32. �

8. Computation of M(11; q)

We have M(11; q)≤ M(11)= 7 (by Theorem 2 and Table 1). Moreover:

Theorem 33 [Gallot and Moree 2009b]. Let q < r be primes with q ≡ 4 (mod 11)
and r ≡−3 (mod 11). Let 1≤ α ≤ q−1 be the unique integer such that 11rα ≡ 1
(mod q). Suppose that q/33<α≤ (3q−1)/77. Then a11qr (10+(6q−77α)r)=−7.

Lemma 34. Let q be a prime such that q ≡ 4 (mod 11). For q > 37, M(11; q)= 7,
and M(11; 37)= 6.

Proof. By computation one finds that M(11; 37)= 6. Now assume q > 37. Notice
that it is enough to show that M(11; q) ≥ 7. For q ≥ 191 the interval I (q) :=
(q/33, (3q − 1)/77] has length exceeding 1 and so contains at least one integer
α1. Then by the Chinese remainder theorem and Dirichlet’s theorem we can find
a prime r1 such that both r1 ≡ −3 (mod 11) and 11r1α1 ≡ 1 (mod q). Then we
invoke Theorem 33 with r = r1 and α = α1. It remains to deal with the primes 59
and 103. One checks that both intervals I (59) and I (103) contain an integer and
so we can proceed as in the case q ≥ 191 to conclude the proof. �
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Lemma 35. Let p = 11.

(a) For ≥ 133, q ≡ 3 (mod 11), r−1
≡

q−19
2

(mod pq) and k = q + 7r (q−19)
2

we have apqr (k)= 7.

(b) For q≡7 (mod 11), r−1
≡

q+7
2
(mod pq) and k=6qr+4 we have apqr (k)=7.

(c) For q≡8 (mod 11), r−1
≡

q−3
2
(mod pq) and k=6qr+4 we have apqr (k)=7.

The proof is an application of Kaplan’s lemma.

Theorem 36. For q ≥ 13 we have

q (mod 11) 1 2 3 4 5 6 7 8 9 10
M(11; q) 6 6 7 7 6,7 6,7 7 7 6 6

except when q ∈ {17, 23, 37, 43, 47}. We have M(11; 17) = 5, M(11; 23) = 3,
M(11; 37)= 6, M(11; 43)= 5 and M(11; 47)= 6.

Remarks. (1) If q≡±5 (mod 11) and q ≥ 61, then M(p, q)∈ {6, 7}. We believe
that M(p; q)= 6.

(2) By Corollary 41 and 42 following Theorem 40, one infers that M(11; 17)≤ 5,
M(11; 23)≤ 3 and M(11; 43)≤ 5.

Proof of 36.

q̄ q0 M(11; q) result

1 67 6 Theorem 27(c)
2 13 6 Theorem 27(a)
3 157 7 Lemma 35(a)∗

4 59 7 Lemma 34
5 71 6,7 Theorem 31(a)∗

6 61 6,7 Theorem 31(b)∗

7 29 7 Lemma 35(b)∗

8 19 7 Lemma 35(c)∗

9 97 6 Theorem 27(b)
10 109 6 Theorem 27(d)

Here the asterisks indicate that we need the fact that M(11) = 7. The proof is
completed by directly computing the values of M(p; q) not covered by the table.

�

9. Computation for p = 19

By Theorem 2 we have M(19)≤ 2 ·19/3 and hence M(19)≤ 12. By Theorem 14
we find that M(19; q) ≥ 11 for every q ≡ 8 (mod 19) and q ≥ 179 and hence
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M(19) ≥ 11. Since A(19 · 53 · 859) = 12, it follows that M(19) = 12. The next
result even shows that M(19; q)= M(19) for a positive fraction of the primes.

Theorem 37. We have M(19)=12. Moreover, M(19, q)=12 if q≡±4 (mod 19),
with q > 23. Furthermore, M(19; 23)= 11.

The proof is an almost direct consequence of the following lemma, itself proved
by applying Kaplan’s lemma.

Lemma 38. Put p= 19 and let q ≡±4 (mod 19) be a prime. Suppose there exists
an integer a satysifying

qa ≡−1 (mod 3) and
q

6p
< a ≤

5q − 18
6p

. (10)

Let r>q be a prime satisfying r(q−ap)≡3 (mod pq). Then apqr (7qr+q)=−12,
if q ≡−4 (mod 19), and a19qr (7qr + r)=−12 if q ≡ 4 (mod 19).

Proof of Theorem 37. For q>90 the interval in (10) is of length>3 and so contains
an integer a satisfying qa ≡−1 (mod 3). It remains to deal with q ∈ {23, 53, 61}.
Computation shows that M(19; 23) = 11. For q = 53 and q = 61 one finds an
integer a satisfying condition (10). �

Proof of Theorem 5. By Theorem 14 and Dirichlet’s theorem the claim follows for
p = 13. Using Lemmas 34 and 35 the result follows for p = 11. On invoking
Theorems 6 and 37, the proof is then completed. �

10. Small values of M( p; q)

Typically if M(p; q) is constant for all q large enough with q ≡ a (mod d), then
M(p; q) assumes a smaller value for some small q in this progression. A (partial)
explanation of this phenomenon is provided in this section. We will show that if
ap+ bq = 1 with a and b small in absolute value, then M(p; q) is small. On the
other hand we will show that M(p; q) cannot be truly small.

Proposition 39. Let 2< p < q be odd primes. Then M(p; q)≥ 2.

Proof. We say 8n(x) is flat if A(n) = 1. ChunGang Ji [2010] proved that if
p < q < r are odd prime and 2r ≡±1 (mod pq), then 8pqr (x) is flat if and only
if p = 3 and q ≡ 1 (mod 3). It follows that M(p; q) ≥ 2 for p > 3. Now invoke
Theorem 17 to deal with the case p = 3. �

Theorem 40. Let 2< p < q be odd primes and ρ and σ be the (unique) nonnega-
tive integers for which 1+ pq = (ρ+ 1)p+ (σ + 1)q. Then

M(p; q)≤
{

p+ ρ− σ if ρ ≤ σ,
q + σ − ρ if ρ > σ.
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Corollary 41. Let h, k be integers with k > h and q = (kp − 1)/h a prime. If
p ≥ k+ h, then M(p; q)≤ k+ h.

Corollary 42. Let h, k be integers with k> h and q = (kp+1)/h a prime. If p> h
and q > k+ h, then M(p; q)≤ k+ h.

Proof of Theorem 40. Let us assume that ρ≤σ , the other case being similar. Using
Lemma 21 and Lemma 19 we infer that the number of 0≤m≤ p−1 with b f (m)=1
is at most ρ+1. Likewise the number of m with b f (m+q)=−1 is at most p−1−σ .
By Kaplan’s lemma it then follows that apqr (k)≤ ρ+1+(p−1−σ)= p+ρ−σ .
Since the number of 0≤m ≤ p− 1 with b f (m) =−1 is at most p− 1−σ and the
number of m with b f (m+q)=1 is at most ρ+1, we infer that apqr (k)≥−(p+ρ−σ)
and hence the result is proved. �

Theorem 43. Let q ≡ 1 (mod p). Then

M(p; q)=min
(q−1

p
+ 1, p+1

2

)
.

Proof. For p = 3 the result follows by Theorem 17, so assume p ≥ 5. Sis-
ter Beiter [Beiter 1968], and independently Bloom [Bloom 1968], proved that
M(p; q) ≤ (p+ 1)/2 if q ≡ ±1 (mod p) (alternatively we invoke Theorem 13).
By Corollary 42 we have M(p; q) ≤ (q − 1)/p + 1. By Lemma 24 the proof is
then completed. �

Numerical experiments suggest that in Theorem 27(b) the condition q > p2/2
can perhaps be dropped. By Theorem 43 the condition q ≥ (p−1)p/2+1 in part
(c) is optimal. In (d) we need q ≥ (p−1)p/2−1; otherwise M(p; q) < (p+1)/2
by Corollary 41.

Lemma 44. Let p ≥ 7 be a prime such that q = 2p− 1 is also a prime. Let r > q
be a prime such that (p+ q)r ≡ −2 (mod pq). Put k = rq(p− 1)/2+ 2p− pq.
Then apqr (k)= 3.

The proof is an application of Kaplan’s lemma.

Proof of Theorem 7. On combining Lemma 44 with Corollary 41, one deduces that
M(p; 2p− 1)= 3 if p ≥ 5 and 2p− 1 is a prime. �

11. Conjectures, questions, problems

The open problem that we think is the most interesting is Conjecture 8. If one
could prove it and obtain an effective upper bound for the ternary conductor fp

(say 16p) and an effective upper bound for the minimal ternary prime (say p3),
one would have a finite procedure to compute M(p).
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Problem 45. Bachman [2010] introduced inclusion-exclusion polynomials. These
polynomials generalize the ternary cyclotomic polynomials. Study M(p; q) in this
setting (here p and q can be any coprime natural numbers), cf. Section 2 where we
denoted this function by M ′(p; q). For example, using [Bachman 2010, Theorem
3] by an argument similar to that given in Proposition 3 it is easily seen that there
is a finite procedure to compute M ′(p; q).

Problem 46. The analogue of M(p; q) for inverse cyclotomic polynomials can be
defined [Moree 2009]. Study it.

Question 47. Can one compute the average value of M(p; q), that is does the limit

lim
x→∞

1
π(x)

∑
p<q≤x

M(p; q)

exist and if yes, what is its value?

Question 48. Is Theorem 5 still true if we put δ(13)= 1/3 and cross out the words
“a subset having”?

Question 49. If q > p is prime and q ≡−2 (mod p), then do we have M(p; q)=
(p+ 1)/2?

Question 50. Suppose that p > 11 is a prime.
If 6p− 1 is prime, then do we have M(p, 6p− 1)= 7?
If (5p− 1)/2 is prime, then do we have M(p, (5p− 1)/2)= 7?
If (5p+ 1)/2 is prime then do we have M(p, (5p+ 1)/2)= 7?
Find more similar results.

Question 51. Given an integer k ≥ 1, does there exist p0(k) and a function qk(p)
such that if q ≡ 2/(2k + 1)(mod p), q ≥ qk(p) and p ≥ p0(k), then M(p; q) =
(p+ 2k+ 1)/2?

Question 52. Is it true that M(11; q) = 6 for all large enough q satisfying q ≡
±5 (mod 6)? If so one can finish the computation of M(11; q).

Question 53. Is it true that for q sufficiently large the values of M(13;q), M(17;q),
M(19;q) and M(23;q) are given by Table 2 on the next page?

The next question was raised by the referee of this paper.

Question 54. Suppose that for all sufficiently large primes q ≡ q0 (mod fp) we
have M(p; q) < M(p). Is it possible to prove that M(p; q) < M(p) for every
prime q ≡ q0 (mod fp)?

Question 55. For a given prime p, let m(p) denote lim inf M(p; q), with q > p.
Determine m(p). Is it true that limp→∞m(p)/p = c for some constant c > 0?
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q (mod 13) 1 2 3 4 5 6 7 8 9 10 11 12
M(13; q) 7 7 7 8 8 7 7 8 8 7 7 7

q (mod 17) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
M(17; q) 9 9 9 10 10 9 10 9 9 10 9 10 10 9 9 9

q (mod 19) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
M(19; q) 10 10 10 12 11 9 11 11 10 10 11 11 9 11 12 10

q (mod 19)
(continued)

17 18
M(19; q) 10 10

q (mod 23) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
M(23; q) 12 12 12 14 14 11 13 11 14 13 12 12 13 14 11 13

q (mod 23)
(continued)

17 18 19 20 21 22
M(23; q) 11 14 14 12 12 12

Table 2. Conjectural values of M(13; q), M(17; q), M(19; q)
and M(23; q) (for q large). See Question 53.

By Proposition 39 we have m(p) ≥ 2 for p > 2. Note that the results in this
paper imply that m(p)= (p+1)/2 for 2< p≤ 11. If the answer to Question 53 is
yes, then m(p)= (p+1)/2 for 2< p≤ 17 and m(p)= (p−1)/2 for 19≤ p≤ 23.
(The issue of lower bounds for M(p; q) was raised by the referee.)
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