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For a quadratic polynomial with rational coefficients, we consider the problem
of bounding the number of rational points that eventually land at a given constant
after iteration, called preimages of the constant. It was shown by Faber, Hutz,
Ingram, Jones, Manes, Tucker, and Zieve (2009) that the number of rational
preimages is bounded as one varies the polynomial. Explicit bounds on the
number of preimages of zero and−1 were addressed in subsequent articles. This
article addresses explicit bounds on the number of preimages of any algebraic
number for quadratic dynamical systems and provides insight into the geometric
surfaces parameterizing such preimages.

1. Introduction

Fix an algebraic number field K and a number c ∈ K and define an endomorphism
of the affine line by

fc : A
1
K → A1

K , fc(x)= x2
+ c.

If we define f N
c to be the N -fold composition of the morphism fc, and f −N

c to be
the inverse image of a in A1

K under f N
c , then for a ∈ A1(K ), the set of rational

iterated preimages of a is given by⋃
N≥1

f −N
c (a)(K )= {x0 ∈ A1(K ) : f N

c (x0)= a for some N ≥ 1}.

Heuristically, finding iterated preimages amounts to solving progressively more
complicated polynomial equations, so K -rational solutions should be a rarity. The
situation becomes more interesting as we vary c, which has the effect of varying
the morphism fc.
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Definition 1.1. Define

κ(a)= sup
c∈K

#
{⋃

N≥1

f −N
c (a)(K )

}
.

A special case of the main theorem in [Faber et al. 2009] shows that κ(a) is finite,
but does not give an explicit bound. Note that it is easy to construct a pair (a, c)with
arbitrarily many rational preimages simply by fixing c and taking a = fc(N )(0).
The fact that κ(a) is finite shows that, for a given a, such c values are rarely defined
over the same field.

When needed for clarity, we include the field K in the notation as κ(a, K ). In
this article, we focus on a weaker notion κ̄(a) that bounds the “typical” number of
rational preimages.

Definition 1.2. Define

κ̄(a, K )= lim sup
c∈K

#
{⋃

N≥1

f −N
c (a)(K )

}
.

In essence κ̄(a) differs from κ(a) by excluding at most finitely many c values from
consideration, thus, κ̄(a)≤ κ(a).

The cases of a = 0 and a =−1 were studied in [Faber et al. 2011; Hyde 2010],
respectively, and it was shown that

κ̄(0,Q)= κ̄(−1,Q)= 6.

In the first of these papers, a significant amount of effort went into the more difficult
task of showing that κ(0,Q)= 6, assuming some standard conjectures. This article
addresses the situation from the more general setting of allowing a to vary and
examining the “preimage surfaces” instead of “preimage curves.” We also allow
arbitrary number fields K . Our main result is the following theorem.

Theorem 1.3. For a ∈Q and for any fixed algebraic number field K we have

κ̄(a, K )=


10 if a =− 1

4 ,

6 or 8 if a is one of the three third critical values,
4 if a ∈ S ∩ K ,
6 otherwise.

The set S is the finite set of a values (in Q) where the elliptic surface with two
rational first preimages and four rational second preimages and the elliptic surface
with two rational first preimages, (at least) two rational second preimages, and (at
least) two rational third preimages both have specialization with rank zero at a.

The elliptic surface parameterizing values of a and c with two rational first
preimages, (at least) two rational second preimages, and (at least) two rational
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third preimages has generic rank two (Theorem 3.3). Thus, finding the set of a
values where the corresponding specialization is an elliptic curve of rank zero is
a generalization of the problem studied by Masser and Zannier [2008]. The same
authors have shown that such sets are finite [Masser and Zannier 2012], implying
the set S is finite. The critical values are defined in Definition 2.1.

The organization of the article is as follows. In Section 3 we examine the lower
bound for κ̄(a) by finding the generic rank over Q of the elliptic surfaces cor-
responding to arrangements of 6 preimages. In Section 4 we examine the upper
bound on κ̄(a) by showing that all arrangements of 2N preimages for some N
correspond to curves of genus greater than 1. In Section 5 we prove Theorem 1.3.
In Section 6 we prove some additional properties of the preimage surfaces that are
tangential to the proof of Theorem 1.3, yet still of interest. First we parameterize
the possible torsion subgroups of the elliptic surface corresponding to two rational
first preimages and four rational second preimages. Then, starting on page 362,
we examine exceptional pairs (a, c) that are excluded by considering κ̄(a) instead
of κ(a).

We present these results for two reasons. First, by working with the “moduli
surfaces” parameterizing arrangements of preimages, our problem can be reduced
to the classical Diophantine problem of finding rational points on curves and sur-
faces. Second, our setting provides a nice example in which elliptic surfaces natu-
rally arise and we apply specialization theorems, rank arguments, height functions,
and use explicitly that the geometry of a curve has implications for its arithmetic
through the use of Falting’s theorem.

We make heavy use of the algebra and number theory systems Magma and
PARI/gp version 2.3.2.

A similar analysis would almost certainly be possible for the families of maps
of the form xd

+ c, where d ≥ 2 is a positive integer. In fact, for any family of
polynomial maps of fixed degree it seems likely that the same methods would apply.
For more general rational maps, at the very least, there would be additional com-
plications for the genus calculations. This problem poses an interesting direction
for further study.

2. Preimage curves and surfaces

In this section we summarize the necessary geometric theory of preimage curves
developed in [Faber et al. 2011; 2009], and then introduce the preimage surfaces
we consider in this article. Let K be a number field. As in the introduction, we
define a morphism fc : A

1
K → A1

K for any c ∈ K by the formula fc(x) = x2
+ c.

We could view fc as an endomorphism of P1
K , but the point at infinity is totally

invariant for this type of morphism and, thus, dynamically uninteresting. Fix a
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point a ∈ K and a positive integer N . Define an algebraic set

Y pre(N , a)= V ( f N
c (x)− a)⊂ A2

K = Spec K [x, c].

If Y pre(N , a) is geometrically irreducible, we define the N-th preimage curve, de-
noted Xpre(N , a), to be the unique complete curve birational to Y pre(N , a).

Definition 2.1. We say a is an N-th critical value of fc if

f N
c0
(0)= a and

d f N
c (0)
dc

∣∣∣
c=c0
= 0.

Theorem 2.2 [Faber et al. 2009, Corollary 2.4 and Theorem 3.2]. Suppose N is a
positive integer and a ∈ K is not a critical value of f j

c for any 2 ≤ j ≤ N. Then
Y pre(N , a) is nonsingular, geometrically irreducible, and the genus of Xpre(N , a)
is (N − 3)2N−2

+ 1.

For a ∈ K , define a morphism ψ : Y pre(N , a)→ AN by

ψ(x, c)=
(
x, fc(x), f 2

c (x), f 3
c (x), . . . , f N−1

c (x)
)
.

We recall the following theorem.

Theorem 2.3 [Faber et al. 2011, Proposition 4.2].

(a) The projective closure of the image of ψ is a complete intersection of quadrics
with homogenous ideal

J = (Z2
N−1+ Zi Z N − Z2

i−1− aZ2
N : i = 1, 2, 3, . . . , N − 1).

(b) The points of V (J ) on the hyperplane Z N = 0 have homogeneous coordinates

(ε0 : · · · : εN−1 : 0), εi =±1.

In particular, there are 2N−1 of them. Moreover, they are all nonsingular
points of V (J ).

(c) If Y pre(N , a) is nonsingular, then Xpre(N , a)∼= V (J ) and the complement of
the affine part Xpre(N , a)r Y pre(N , a) consists of 2N−1 points.

Definition 2.4. We define the N-th preimage surface Xpre(N ) as the surface fibered
over P1

K by a. The fiber over a is given by Xpre(N , a) if Y pre(N , a) is geometrically
irreducible and V (J ) otherwise. In particular, for each a ∈ K not a critical value
of fc, we get a nonsingular curve in PN

K .

Xpre(N )

π

��

Xpre(N , a)
_

π

��
P1

K a
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Note that for a fixed a0, the affine points (x0, c0, 1) on the curve Xpre(N , a0) are
in bijection with the N -th preimages x0 ∈ f −N

c0
(a0).

We will consider the N -th preimage surfaces in the language of function fields.
In particular, consider the function field K (a) which is comprised of all rational
functions in a with K -rational coefficients. We consider the surfaces defined as

Y pre(N )= V ( f N
c (x)− a)⊂ A2

K (a)

and

Xpre(N )= V (Z2
N−1+ Zi Z N − Z2

i−1− aZ2
N : i = 1, 2, 3, . . . , N − 1)⊂ PN

K (a).

The genus formula (Theorem 2.2) applies to each fiber for which Y pre(N , a) is
nonsingular and geometrically irreducible. In particular, Xpre(1) and Xpre(2) have
fibers of genus 0, Xpre(3) has fibers of genus 1, and Xpre(N ) for N ≥ 4 has fibers of
genus> 1 (with finitely many exceptional fibers for each N ). Therefore, for N > 3
and all but finitely many a ∈ K , it follows from Falting’s theorem that there are
only finitely many points (x, c) ∈ Xpre(N , a). Thus, except for the finitely many a
values, the N -th preimages for N > 3 have no contribution to κ̄(a). This premise
is the content of Corollary 4.2 and the rest of Section 4 addresses the exceptional
a values.

Throughout this article we discuss arrangements of preimages. For example, by
a 222 arrangement we mean that there are two rational first preimages, (at least) two
rational second preimages, and (at least) two rational third preimages. Similarly, a
2424 arrangement has two rational first preimages, four rational second preimages,
(at least) 2 rational third preimages, and (at least) four rational fourth preimages.
Note that any 226 arrangement would have to be part of a 246 arrangement since
the forward image of a rational point is still a rational point.

3. Arrangements of six preimages

By examining the arrangements of six preimages we are able to prove the following
lower bound for κ̄(a).

Theorem 3.1. Let K be a number field. There is a finite set S such that{
κ̄(a)≥ 6 if a ∈ K\(S ∩ K ),
κ̄(a)= 4 if a ∈ S ∩ K .

Proof. The 22 curve over the function field K (a) is the curve whose points corre-
spond to two rational first preimages and (at least) two rational second preimages.
It has fibers of genus 0 [Faber et al. 2009] and at least one Q-rational section for
each choice of a, (1, 1, 0). Thus, each fiber has infinitely many rational points and
κ̄(a)≥ 4.
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Theorem 3.3 shows that the 222 surface has generic rank at least 2 (exactly 2
over Q). Theorem 3.2 shows that the 24 surface has generic rank 0 over Q. Let
S be the (possibly empty) set of a values for which both the 222 and 24 surface
specialize to rank 0. By [Masser and Zannier 2012] the set of a values where the
222 surface has rank 0 is finite and thus, S is finite. If a ∈ S ∩ K , κ̄(a) = 4,
otherwise κ̄(a)≥ 6. �

Second preimages. We consider the situation where the preimage tree is full to the
second level; that is, there are two rational first preimages and four rational second
preimages:

a

t

fc

;;

−t

fc

dd

s

fc

@@

−s u

fc

bb
fc

;;

−u.

fc
``

.

We can define this curve over the function field K (a) as

X24 = V (s2
− t z− (t2

− az2), u2
+ t z− (t2

− az2))⊆ P3
K (a).

The fibers (when nonsingular) have genus one with at least one rational section
(1, 1, 1, 0) so we can produce a minimal Weierstrass model (using Magma) as an
elliptic curve over the function field K (a) as

E24(a) : v2w = u3
+ (4a− 1)u2w+ 16auw2

+ (64a2
− 16a)w3

with j-invariant

j (a)=
(16a2

− 56a+ 1)3

a(4a+ 1)4

and discriminant

1(a)= a(4a+ 1)4.

The only fibers which are not elliptic curves are a = 0 and a =−1
4 . This is in fact

a rational elliptic surface since it has a Weierstrass model satisfying deg(ai ) ≤ i
for ai the coefficients of an elliptic curve in Weierstrass form [Shioda 1990, page
237].

Theorem 3.2. E24(a)(Q(a)) has rank 0 and torsion subgroup Z/4Z generated by

T (a)= (2, 8a+ 2, 1).
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Proof. We use the main theorem of [Oguiso and Shioda 1991] to see that the rank
over Q(a) is zero. We compute the Kodaira symbols in Magma to get

[ << I 4, 1>> , << I 1∗, 1>> , << I 1, 1>> ].

From row 72 in the table [Oguiso and Shioda 1991] we have that the rank of
E24(a)(Q(a)) is zero. Examining the torsion, we see that the point

(2, 8a+ 2, 1)

has order 4 and the specialization E24(1)(Q) has torsion subgroup Z/4Z. Since
the specialization map is injective on torsion on all nonsingular fibers, E24(a) has
torsion subgroup exactly Z/4Z. �

Third preimages. From Theorem 2.3 we see that the elliptic surface parameteriz-
ing third preimages of a over the function field K (a) is given by

X222 = V (z2
2+ z1z3− z2

0− az2
3, z2

2+ z2z3− z2
1− az2

3)⊆ P3
K (a).

Using the cuspidal point (−1, 1, 1, 0) from Theorem 2.3 as the section at infinity
we can find a minimal model in Magma as

E222(a) : v2w = u3
+
(
16a+ 942

13

)
u2w+

( 10048
13 a+ 293084

169

)
uw2

+
(
1024a2

+
1620800

169 a+ 30250696
2197

)
w3

with j-invariant

j (a)=
(16a2

+ 3)2

(4a+ 1)2(256a3+ 368a2+ 104a+ 23)

and discriminant

1(a)= (4a+ 1)2(256a3
+ 368a2

+ 104a+ 23).

As expected, the only fibers which are not elliptic curves are the fibers over a=−1
4

and the three third critical values. This is in fact a rational elliptic surface since it
has a Weierstrass model satisfying deg(ai )≤ i for ai the coefficients of an elliptic
curve in Weierstrass form [Shioda 1990, page 237].

Theorem 3.3. E222(a)(Q(a)) has rank 2 generated by the two independent sec-
tions

P(a)=
(
−

262
13 , 32a+ 8, 1

)
and Q(a)=

(
−

366
13 , 32a+ 8, 1

)
.

Proof. We use the main theorem of [Oguiso and Shioda 1991] to see that the rank
over Q(a) is exactly two. We compute the Kodaira symbols in Magma to get

[ << I 1, 3>> , << I 2, 1>> , << I 1∗, 1>> ].



350 BENJAMIN HUTZ, TREVOR HYDE AND BENJAMIN KRAUSE

From row 30 in the table [Oguiso and Shioda 1991] we have that the rank of
E222(a)(Q(a)) = 2. Since the specialization map is injective on torsion on all
fibers where E222 is nonsingular, and the specialization E222(0) has no torsion,
there are no rational torsion sections. We can see P(a) and Q(a) are actually the
generators by finding a specialization E222(a0) which is rank 2 with generators
P(a0) and Q(a0). For a = 4 we have

E222(4) : v2w = u3
+

1774
13 u2w+ 815580

169 uw2
+

150527944
2197 w3

and from Magma the generators are(
−

262
13 , 136, 1

)
and

(
−

1146
13 , 136, 1

)
.

In terms of P(4) and Q(4) these are

P(4) and P(4)+ Q(4).

Thus, P(4) and Q(4) generate the Mordell-Weil group E222(4) and, hence, P(a)
and Q(a) generate the Mordell-Weil group of E222(a). �

4. Arrangements of eight or more preimages

We examine when the genus of the fibers of preimage surfaces of various arrange-
ments of 2N preimages is greater than 1 and, thus, by Falting’s theorem have a
finite number of rational points over an algebraic number field. In particular, if
every 2N arrangement has genus greater than 1 for some N , then κ̄(a) < 2N . The
difficulty lies in determining the genus when the fiber is singular. We treat the
nonsingular case in the following theorem.

Theorem 4.1. If the curve (fiber) defining an arrangement of 2N rational preim-
ages of a is nonsingular, then it has genus (N − 3)2N−2

+ 1.

Proof. A complete intersection in Pm is defined as a subscheme Y of Pm whose
homogeneous ideal I can be generated by r = codim(Y,Pm) elements [Hartshorne
1977, Exercise II.8.4]. Each surface arranging 2N points can be described by the
equations

fc(z1)= a and fc(zi )= (−1)εz j for 2≤ i ≤ N

where 1 ≤ j < N and ε = ±1 depending on the arrangment of points. After
homogenization and elimination of c from this system of equations we obtain a
description of each fiber as a curve defined by N−1 degree two hypersurfaces in PN

and, hence, a complete intersection. From [Hirzebruch 1966, §22] or [Arslan and
Sertöz 1998, Corollary 2] we get a formula for the arithmetic genus of a complete
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intersection of N − 1 degree two hypersurfaces in PN as

pa =

N−1∑
m=1

(−1)m+1
(

N − 1
m

)
φN (−2m)

where φN (z) comes from the Hilbert polynomial of the 2N curve and is given by

φN (z)=
(z+ 1)(z+ 2) · · · (z+ N )

N !
=

(
z+ N

N

)
.

Since the arithmetic genus is equal to the geometric genus for nonsingular curves
[Hartshorne 1977, Proposition IV.1.1], the genus is independent of the arrangement
of the preimages and from [Faber et al. 2009, Theorem 1.5] we get the simpler
formula

g = (N − 3)2N−2
+ 1. �

Corollary 4.2. If the curve (fiber) defining an arrangement of 2N rational preim-
ages of a is nonsingular, then the genus is greater than 1 for 2N ≥ 8.

We have thus reduced the computation of κ̄(a, K ) to checking a values where
the fiber is singular for arrangements with 8 (or more) rational preimages (224,
242, 2222). The method is as follows.

(a) Using the Jacobian criterion, determine all of the singular fibers (a values).

(b) Determine the δ-invariants of each singular point to determine the genus of
each singular fiber.

Recall that the δ-invariant of a singularity P is defined as

δP =
∑

Q

1
2 m Q(m Q − 1),

where the sum ranges over the infinitely near points of P and m Q are their multi-
plicities. See [Sendra et al. 2008, Section 3.2] for the basic definitions and the case
of plane curves and [Brieskorn and Knörrer 1986, Section 9.2, Theorem 7] for a
more general discussion. As the singularity analysis computations are identical in
form for all of the singularities, we outline the method, include the first such com-
putation, and omit the details for the other singularities. The singularity analysis
proceeds as follows.

(a) Let C ⊆ PN be a singular curve with singular point P . We move P to
(0, . . . , 0, 1) and dehomogenize.

(b) Project onto a singular plane curve with isomorphic tangent space at the sin-
gular point.

(c) Analyze the singularity of the plane curve with blow-ups and compute the
δ-invariant.
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Examining the 224 surface. One possible 224 arrangement of 8 preimages is this:

a

t

fc

<<

−t

fc
__

s

fc

==

−s

fc

aa

q

fc

@@

−q r

fc

aa
fc

==

−r

fc

^^

Every other 224 arrangement differs only by renaming, so this is the only distinct
224 arrangement. The curve is defined by three degree two equations in P4 as

C224= V (az2
− t2
−(t z−s2), az2

− t2
−(sz−q2), az2

− t2
−(−sz−r2))⊆P4

K (a).

Theorem 4.3. The a values for which the fiber of the 224 surface is singular are
given by

a ∈
{
−

1
4 , 0, a1, a2, a3

}
,

where a1, a2, a3 are the three third critical values of fc

Proof. We apply the Jacobian criterion to determine the singular points. For each
singular point, we can determine the associated a value(s). Examining the hyper-
plane at infinity z = 0 we have the 8 cuspidal points (±1,±1,±1, 1, 0) ∈ P4. To
check the singularity of these points, we use the Jacobian criterion on the affine
chart A4

q 6=0 with generators

{az2
− t2
− (t z− s2), az2

− t2
− (sz− 1), az2

− t2
− (−sz− r2)}

to have the Jacobian matrix at z = 0 0 2s −2t −t
0 0 −2t −s
2r 0 −2t s

 .
The determinant of one such maximal minor is −8rst , and since r, s, t 6= 0, this is
nonzero, so the cuspidal points are all nonsingular.

Now we consider the points in the affine chart A4
z 6=0 which has generators

{a− t2
− (t − s2), a− t2

− (s− q2), a− t2
− (−s− r2)}.
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The Jacobian matrix is given by 0 0 2s −2t − 1
2q 0 −1 −2t
0 2r 1 −2t


and the determinants of the maximal minors are

{8qrs, 4qr(−2t − 1), 2q(4st − 2t − 1),−2r(4st + 2t + 1)}.

The combinations that result in all 4 determinants vanishing are the following.

(a) If q = r = 0, then we have c =±s and so c = 0 and so a = 0.

(b) If q = 0 and (4st + 2t + 1) = 0, then we must have s 6= − 1
2 so we can solve

t = − 1
4s+2 = −

1
4c+2 . Then we have s2

+ c = c2
+ c = t and the roots of

4c3
+6c2

+2c+1= d f 3
c (0)
dc combined with a = fc( fc( fc(0))) to get the three

third critical values.

(c) If q 6= 0, r = 0, and (4st − 2t − 1)= 0, then we must have t 6= 0 and we can
solve s = 2t+1

4t =−c. Then we have s2
− s = t and the roots of 16t3

+4t2
−1

which give the three third critical values.

(d) If q, r 6= 0, s = 0, and t =− 1
2 , then we have c =− 1

2 and so a =− 1
4 .

�

We will treat a =− 1
4 on page 358.

Theorem 4.4. The genus of C224 is

g =
{

4 if a = 0,
1 if a ∈ {a1, a2, a3},

where a1, a2, a3 are the three third critical values of fc.

Proof. There is one singular point for a = 0 and four singular points for each ai .
In all cases δP = 1 so the genus drops by 1 for each singular point.

We now compute the δ-invariant of one of the singular points for a1. The 224
curve for a1 is defined as

V (a1z2
− t2
− (t z− s2), a1z2

− t2
− (sz− q2), a1z2

− t2
− (−sz− r2))

and if α is a root of
4x3
+ 6x2

+ 2x + 1

then
a1 = α

4
+ 2α3

+α2
+α =− 1

4α
2
+

1
2α−

1
8 .
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We label the coordinates as (q, r, s, t, z) and the singular point is

P = (0,−β, α, α2
+α, 1)

where β2
=−2α. We move P to (0, 0, 0, 0, 1) with a translation

(q, r, s, t, z) 7→ (q, r −βz, s+αz, t + (α2
+α)z)

to get a new curve C̃ and singular point P̃ = (0, 0, 0, 0, 1). We dehomogenize
to affine coordinates (Q, R, S, T ) = (q/z, r/z, s/z, t/z) and compute the tangent
space at P̃ as 

−2Tα2
− 2Tα− T + 2Sα = 0,

−2Tα2
− 2Tα− S = 0,

−2Tα2
− 2Tα+ S− 2βR = 0.

(1)

Notice that the second equation of (1) implies the first using the degree 4 polyno-
mial satisfied by α. Thus, the tangent space is given by

−2Tα2
− 2Tα− S = 0, −2Tα2

− 2Tα+ S− 2βR = 0.

Since we want to project C̃ to a plane curve preserving the tangent space at P̃ we
define

u =−2Tα2
− 2Tα− S, v =−2Tα2

− 2Tα+ S− 2βR,

with inverse

S = βR−
u
2
+
v

2
, T =

βR
−2α2− 2α

+
u

−4α2− 4α
+

v

−4α2− 4α
,

and make the change of variables (Q, R, S, T ) 7→ (Q, R, u, v) to get a new curve
C̃ ′ and point P̃ ′. The tangent space at P̃ ′ is given by u = v = 0. We now project
C̃ ′ onto a plane curve in the Q R-plane. To project we eliminate the variables u, v
from the three defining equations of C̃ ′ to get the single equation

(2α+ 1)Q8
+
(
(−8α− 4)R2

+ (16βα+ 8β)R+ (16α2
− 4)

)
Q6

+
(
(12α+ 6)R4

+ (−48βα− 24β)R3
+ (−144α2

− 64α+ 4)R2

+ (96βα2
+ 32βα− 8β)R+ (−64α2

− 24α− 8)
)
Q4

+
(
(−8α− 4)R6

+ (48βα+ 24β)R5
+ (240α2

+ 128α+ 4)R4

+ (−320βα2
− 192βα− 16β)R3

+ (384α2
+ 208α+ 128)R2

+ (−128βα2
− 96βα− 64β)R− 32α

)
Q2

+ (2α+ 1)R8
+ (−16βα− 8β)R7

+ (−112α2
− 64α− 4)R6

+ (224βα2
+ 160βα+ 24β)R5

+ (−320α2
− 152α− 136)R4

+ (128βα2
+ 32βα+ 96β)R3

+ (−64α2
+ 64α)R2

= 0,
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defining a plane curve in A2 with variables (Q, R). Notice that the only points of
the form (0, 0, u, v) on C̃ ′ is the point (0, 0, 0, 0) (in the other words, the singular
point is the only point that projects onto (0, 0)), so we proceed with analyzing the
plane curve singularity (0, 0). Blowing-up once resolves the singularity and we
see that it has multiplicity 2. So we compute

δP =
1
2
(2 · 1)= 1.

A similar analysis is done on all of the other singularities to get δP = 1 for all
P for all a ∈ {0, a1, a2, a3}. Hence, we have{

g = 5− 1= 4 if a = 0,
g = 5− (1+ 1+ 1+ 1)= 1 if a = a1, a2, a3. �

Examining the 242 surface. One possible 242 arrangement of 8 preimages is this:

a

t

fc

<<

−t

fc

aa

s

fc

@@

−s u

fc

aa
fc

==

−u

fc

^^

q

fc

@@

−q

fc

^^

Every other 242 arrangement differs only by renaming, so this is the only distinct
242 arrangement. The surface is defined by 3 degree two equations in P4 as

C242= V
(
az2
− t2
−(t z−s2), az2

− t2
−(−t z−u2), az2

− t2
−(sz−q2)

)
⊆P4

K (a).

Theorem 4.5. The a values for which the fiber of the 242 surface is singular are
given by

a ∈
{
−

1
4 , 0, 2, a1, a2, a3

}
where a1, a2, a3 are the three third critical values of fc.

Proof. We apply the Jacobian criterion to determine the singular points. For each
singular point, we can determine the associated a value(s). Examining the hyper-
plane at infinity, z = 0, we have the 8 cuspidal points (±1,±1,±1, 1, 0) ∈ P4. To
check the singularity of these points, we use the Jacobian criterion on the affine
chart A4

q 6=0 with generators{
az2
− t2
− (t z− s2), az2

− t2
− (−t z− u2), az2

− t2
− (sz− 1)

}
.
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The Jacobian matrix at z = 0 is given by2s 0 −2t −t
0 2u −2t t
0 0 −2t −s

 .
The determinant of one maximal minor is −8sut , and since s, u, t 6= 0, this is
nonzero, so the cuspidal points are all nonsingular.

Now we consider the points in the affine chart A4
z 6=0 which has generators

{a− t2
− (t − s2), a− t2

− (−t − u2), a− t2
− (s− q2)}.

The Jacobian matrix is given by 0 2s −2t − 1 0
0 0 −2t + 1 2u

2q −1 −2t 0

 .
The determinants of the maximal minors are{

2u(4st + 2t + 1), 4qu(−2t − 1), 8qus, 4qs(−2t + 1)
}
.

The combinations that result in all 4 vanishing are as follows:

(a) If q = 0 and u = 0, then f 2
c (0) = a and f 3

c (0) = a which is the polynomial
equation

fc( fc( fc(0)))− fc( fc(0))= c4
+ 2c3

= c3(c+ 2)= 0

so c = 0 or c =−2. So we have a = 0 or a = 2.

(b) If q = 0 and (4st + 2t + 1) = 0, then we must have s 6= − 1
2 so we can solve

t = −1/(4s + 2) = −1/(4c+ 2). Then we have s2
+ c = c2

+ c = t and the
roots of

4c3
+ 6c2

+ 2c+ 1=
d f 3

c (0)
dc

combined with a = fc( fc( fc(0))) to get the three third critical values.

(c) If u = 0 and s = 0, then c =±t and so t = c = 0 and so a = 0.

(d) If u = 0 and t = 1
2 , then c =− 1

2 and so a =− 1
4 .

(e) If s = 0 and t =− 1
2 , then c =− 1

2 and so a =− 1
4 . �

We will treat a =− 1
4 on page 358.

Theorem 4.6. The genus of C242 is g =


3 if a = 0,
4 if a = 2,
3 if a ∈ {a1, a2, a3}.
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Proof. We proceed as in the proof of Theorem 4.4 for analyzing the singularities.
For a = 0 there is one singularity that required two blow-ups to resolve and we

get multiplicity 2 for both of the infinitely near points and, hence, δP =
1
2(2 · 1)+

1
2(2 · 1)= 2 and g = 5− 2= 3.

For a = 2 there is one singular point with δP = 1 and, hence, g = 5− 1= 4.
For a ∈ {a1, a2, a3} each curve has two singular points both with δP = 1 and,

hence, g = 5− (1+ 1)= 3. �

Examining the 2222 surface. One possible 2222 arrangement of 8 preimages is
this: a

t

fc
??

−t

fc
^^

s

fc

??

−s

fc

__

q

fc

@@

−q

fc

^^

u

fc
@@

−u

fc
^^

Every other 2222 arrangement differs only by renaming, so this is the only distinct
2222 arrangement. The surface is defined by 4 degree two equations in P5 as

C2222= V (az2
− t2
−(t z−s2), az2

− t2
−(sz−q2), az2

− t2
−(qz−u2))⊆P5

K (a).

From [Faber et al. 2009, Theorem 1.3] the only singular fibers are for a the N -th
critical values for 2 ≤ N ≤ 4. For N = 2 we get a = −1

4 , which will be treated
on page 358. For N = 3 we get the three third critical values which we label
a3,1, a3,2, a3,3. For N = 4 we get the seven 4-th critical values, which we label a4,i

for 1≤ i ≤ 7, and which satisfy

a = fc( fc( fc( fc(0)))) for 8c7
+ 28c6

+ 36c5
+ 30c4

+ 20c3
+ 6c2

+ 2c+ 1= 0.

Theorem 4.7. The genus of C2222 is

g =
{

3 if a ∈ {a3,1, a3,2, a3,3},

4 if a ∈ {a4,i : 1≤ i ≤ 7}.

Proof. A fiber of the 2222 surface is isomorphic [Faber et al. 2011, Proposition
4.2] to the degree 16 plain curve defined by the equation

f 4
c (x)= a.
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For a ∈ {a3,i } there are three singular points, one of which is (0, 1, 0) and the other
two depend on a. The (0, 1, 0) point requires several blow-ups and has δP = 100
and each of the other two points have δP = 1 for a final genus of g = 1

2(15 · 14)−
102= 105− 102= 3.

For a ∈ {a4,i } there are two singular points, one of which is (0, 1, 0) and the
other depends on a. The (0, 1, 0) point has δP = 100 and the point has δP = 1 for
a final genus of g = 1

2(15 · 14)− 101= 105− 101= 4. �

Corollary 4.8. For any a ∈ Q\
{
−

1
4

}
and any algebraic number field K there are

only finitely many c ∈ K for which there are at least two K -rational 4-th preimages
of a.

The bound κ̄(− 1
4). For a = −1

4 the preimages curves are in fact reducible since
we have an equation in the generators of the form

s2
+
(
t − 1

2 z
)2
=
(
s−

(
t − 1

2 z
))(

s+
(
t − 1

2 z
))
,

where s is a second preimage of a for which s2
+ c = t and t2

+ c = a, and an
equation of the form

u2
−
(
t + 1

2 z
)2
=
(
u−

(
t + 1

2 z
)(

u−
(
t + 1

2 z
))
,

where u is a second preimage of a for which u2
+ c = −t . After splitting the

preimage curves into their distinct irreducible components we can again proceed
with genus calculations.

Theorem 4.9. For any fixed number field K , κ̄
(
−

1
4

)
= 10.

Proof. Using the Jacobian criterion we compute that the following curves are all
nonsingular, and we apply the genus formula from [Hirzebruch 1966, §22] or [Ar-
slan and Sertöz 1998, Corollary 2] to compute the following genera.

g =
{

1 in the cases 224, 2222, 244, 2422
5 in the cases 22222, 2224, 2242, 246, 2442, 2424, 24222.

Using Magma, we see that the 244 curve is a rank 1 elliptic curve over Q isomor-
phic to

v2w = u3
+ u2w− 9uw2

+ 7w3

so has infinitely many rational points. Therefore, there are infinitely many c with
10 rational preimages of − 1

4 and only finitely many c values with 12 (or more)
rational preimages of −1

4 . �
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5. Proof of Theorem 1.3

Proof. The case a =− 1
4 was covered in Theorem 4.9.

For a a third critical value we have genus 1 for the 224 curve and, hence, for
a large enough extension of Q it has positive rank and infinitely many rational
points. Also, it has no Q-rational points. The 242 curve has genus greater than 1
and, hence, has only finitely many rational points. Thus, for κ̄(a, K ) to be at least
10 there must be infinitely many rational points on a curve corresponding to an
arrangement with rational 4-th preimages, which is not possible by Corollary 4.8.
So it is possible for κ̄(a, K ) to be either 6 or 8 depending on the field.

For all other values of a we have the genus of the 224 and 242 curves are
greater than 1 and, hence, have only finitely many rational points. Any arrangement
with more points must contain one of these two arrangements, hence κ̄(a, K )≤ 6.
Theorem 3.3 shows that the 222 surface has generic rank 2 and [Masser and Zannier
2012] shows that the set of a where the rank is 0 is finite. Every a value for which
both E222 and E24 specialize to rank 0 has κ̄(a)= 4, otherwise κ̄(a)= 6. �

6. Other properties of preimage surfaces

In this section we collect some additional properties of the preimages surfaces that
are tangential to the proof of Theorem 1.3, yet still of interest.

Parametrization of torsion subgroups of E24. Recall that Mazur’s theorem [1977]
gives a description of the possible torsion subgroups of elliptic curves over Q and
that the specialization map is injective on nonsingular fibers. These facts combined
with Theorem 3.2 implies that the possible torsion subgroups for a nonsingular
specialization of E24(a) must be isomorphic to one of the following groups:

{Z/2Z×Z/4Z, Z/2Z×Z/8Z, Z/4Z, Z/8Z, Z/12Z}.

We characterize the a values giving rise to a specialization with each of these
possible torsion subgroups in the following theorem.

Theorem 6.1. (a) E24(a)(Q) contains a subgroup isomorphic to Z/2Z×Z/4Z if
and only if

a =−t2 for t ∈Q\
{
0,±1

2

}
.

(b) E24(a)(Q) contains a subgroup isomorphic to Z/8Z if and only if

a = 1
4 t2(t2

− 2) for t ∈Q\{0,±1}.

(c) E24(a)(Q) contains a subgroup isomorphic to Z/2Z×Z/8Z if and only if

a =−
(4t2
− 4t − 1)2(4t2

+ 4t − 1)2

4(4t2+ 1)4
for t ∈Q\

{
0,± 1

2

}
.
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(d) E24(a)(Q) contains a subgroup isomorphic to Z/12Z if and only if

a =
(13691470144t2

− 235376t + 1)(13903463744t2
− 235376t + 1)3

9527265101250297856000000t6(117688t − 1)2

for t ∈Q\
{
0, 1

117688

}
.

Proof. (a) First suppose a =−t2 for some t ∈Q\
{
0,±1

2

}
. Then

{O, (4t2
+ 1, 0, 1), (4t, 0, 1), (−4t, 0, 1)}

is a subgroup of E24(−t2)(Q) isomorphic to Z/2Z× Z/2Z. Since there is also a
generic torsion point of order 4 (Theorem 3.2), E24(−t2)(Q) contains a subgroup
isomorphic to Z/2Z× Z/4Z. Next, suppose E24(a)(Q) contains a subgroup iso-
morphic to Z/2Z×Z/2Z and, hence, also a subgroup isomorphic to Z/2Z×Z/4Z.
Thus, E24(a)(Q) has three points of order two. Points of order two must be rational
roots of the Weierstrass equation

x3
+ (4a− 1)x2

+ (16a)x + 16a(4a− 1)= (x + 4a− 1)(x2
+ 16a). (2)

So, x2
+16a must have 2 rational roots, or equivalently, a=−(x/4)2=−t2. Hence,

there are three rational roots of (2) if and only if a = −t2 for t ∈ Q. However, if
t =±1

2 then the roots will not be distinct, so we must have a=−t2 for t ∈Q\{±1
2}.

For t = 0 we get a = 0 which is a degenerate case (a singular fiber of Xpre(2)).

(b) Suppose a = t2(t2
− 2)/4 for some t ∈ Q\{0,±1}. Then it can be verified

directly that the point P = (2t (t2
+ t−1), 2(t−1)t (t+1)3, 1) is in E24(a)(Q) and

[2]P = (2, 2(4a+ 1), 1) is the generator of the cyclic subgroup of order four. So,
P generates a cyclic group of order eight.

Now suppose that E24(a)(Q) has a cyclic subgroup of order eight. If we let
P = (x, y, 1) be the generator of the subgroup, then [2]P generates a cyclic group
of order four (the generic torsion subgroup). So, we must have x([2]P)= 2. This
gives us the equation

x4
− 8x3

− 64ax2
+ 8x2

− 512a2x − 1024a3
+ 256a2

+ 64a = 0.

Then using the solution to the quartic we have the solutions

x = 2± 2
√

4a+ 1+
1
2

√
24+ (8a− 1)±

512+ 4096a2+ 256(8a− 1)

16
√

4a+ 1

x = 2± 2
√

4a+ 1−
1
2

√
24+ (8a− 1)±

512+ 4096a2+ 256(8a− 1)

16
√

4a+ 1
.
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In order to have x ∈ Q, and since x is clearly not 2, we must have
√

4a+ 1 ∈ Q.
So a = b2

−1
4 for some b ∈Q. The above roots become

x = 2(1± b+ b
√

1± b)

x = 2(1± b− b
√

1± b)

from which it follows that b=±(t2
−1). Thus, a = t2(t2

−2)
4 . Note that for t =±1

we get a =− 1
4 and for t = 0 we get a = 0 which are all singular fibers.

(c) Clearly, E24(a)(Q) has a subgroup isomorphic to Z/2Z×Z/8Z if and only if
E2(a) has a subgroup isomorphic to Z/2Z×Z/4Z and a subgroup isomorphic to
Z/8Z. From the two previous parts, it follows that a = −t2

1 and a = 1
4 t2

2 (t
2
2 − 2).

These two equations define a curve of genus zero which can be parameterized with
Magma and substituted into a =−t2

1 to get the stated form. For t = 0,±1
2 we get

a =− 1
4 , which is a singular fiber.

(d) Since specialization is injective on torsion for nonsingular fibers , E24(a)(Q)
has a subgroup isomorphic to Z/12Z if and only if there is a point Q = [x, y] ∈
E24(a)(Q) for which [3]Q generates the generic Z/4Z torsion subgroup. In par-
ticular, we must have x([3]Q)= 2. So we need to find solutions to

x([3]Q)− 2
x − 2

= 0

where we divide out by x−2 since we only wish to exclude the a values which have
purely Z/4Z torsion. From the algcurve package in Maple we get the parametriza-
tion given. The two excluded t values correspond to the two singular fibers a = 0
and a =− 1

4 . �

Corollary 6.2. The a∈Q for which E24(a)(Q) has torsion subgroup exactly Z/4Z,
in other words, the a ∈ Q for which the specialization map is an isomorphism on
torsion, is a Zariski dense set.

Proof. From Mazur’s theorem and the injectivity of the specialization map, the
possible torsion groups of E24(a)(Q) are

{Z/2Z×Z/4Z, Z/2Z×Z/8Z, Z/4Z, Z/8Z, Z/12Z}.

The condition on a for E24(a)(Q)tors to not be Z/4Z is a closed condition from
Theorem 6.1 and the j-invariant. Therefore, every a ∈ Q outside of this Zariski
closed set satisfies E24(a)(Q)tors ∼= Z/4Z and there is at least one such a,

E23(1)(Q)tors ∼= Z/4Z. �
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Exceptional (c, a) values over Q.

Rank zero. The methods of [Masser and Zannier 2008; 2012], in principle, can
compute the full set S, but in practice such computations are difficult. However,
computing the set S ∩ K for [K :Q] ≤ 2 from Theorem 1.3 is feasible since we
have an explicit (small) bound on the order of a torsion point.

We must have both P(a) and Q(a) are torsion on the 222 surface. We have
a bound of 18 for the order of a torsion point over a quadratic number field K
[Kamienny 1992; Kenku and Momose 1988]. Finding the a for which P(a) or
Q(a) is torsion of a given order is solving polynomials equation in a. If there are
any a values for which they are both torsion, we compute the rank of E24(a).

Theorem 6.3. Let S be the set of a values from Theorem 1.3 for which κ̄(a) = 4.
Let K be a quadratic number field. Then, S ∩ K =∅.

Proof. Direction computation. �

Full trees of preimages. We can find an a value with arbitrarily many Q-rational
preimages by taking a to be the n-th forward image of any wandering Q-rational
point. This gives a very deep but potentially sparse preimage tree. Consequently,
one may ask if you can find an a and c which gives a full tree to some level.
Clearly, if you allow K/Q to be of large degree, the answer is any level, so we
address this question over Q. For example, here is a list of (c, a) with a 246
preimage arrangement.(
−

5248
2025 ,

726745984
284765625

)
,
(
−

17536
5625 ,

878382976
244140625

)
,
(
−

9153
6400 ,−

437896611
400000000

)
,
(
−

24361
14400 ,−

42
25

)
,(

−
20817
25600 ,−

1078371711
6400000000

)
,

(
−

180625
97344 ,

2845625
5483712

)
,

(
−

158848
99225 ,

20844352384
683722265625

)
.

Remark 6.4. We were unable to find any pairs (c, a) over Q with the full 248
arrangement, but it seems reasonable to expect that such an arrangement exists. We
searched by choosing the smallest third preimage having height at most log 30,000,
since choosing two third preimages which map to same second preimage (up to
sign) fixes a unique c value and, hence, a unique a value.
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