
inv lve
a journal of mathematics

mathematical sciences publishers

Elliptic curves, eta-quotients and hypergeometric functions
David Pathakjee, Zef RosnBrick and Eugene Yoong

2012 vol. 5, no. 1



msp
INVOLVE 5:1(2012)

Elliptic curves, eta-quotients and hypergeometric
functions

David Pathakjee, Zef RosnBrick and Eugene Yoong
(Communicated by Kenneth S. Berenhaut)

The well-known fact that all elliptic curves are modular, proven by Wiles, Taylor,
Breuil, Conrad and Diamond, leaves open the question whether there exists a
nice representation of the modular form associated to each elliptic curve. Here
we provide explicit representations of the modular forms associated to certain
Legendre form elliptic curves 2 E1(λ) as linear combinations of quotients of
Dedekind’s eta-function. We also give congruences for some of the modular
forms’ coefficients in terms of Gaussian hypergeometric functions.

1. Introduction and statement of results

Wiles and Taylor [1995] proved that all semistable elliptic curves over Q are modu-
lar. Their result was later extended by Breuil, Conrad, Diamond and Taylor [Breuil
et al. 2001] to all elliptic curves over Q.

This correspondence allows facts about elliptic curves to be proven using mod-
ular forms, and vice versa. (See [Koblitz 1993] for more background on the theory
of elliptic curves and modular forms.)

Let E be an elliptic curve over Q. If q := e2π i z , GF(p) is the finite field with
p elements, and N (p) is the number of points on E over GF(p), then the modu-
larity theorem implies that there exists a corresponding weight-2 newform f (z)=∑
∞

n=1 a(n)qn such that if p is a prime of good reduction, then a(p)=1+ p−N (p).
For example, if η(z) is Dedekind’s eta-function,

η(z) := q
1

24

∞∏
n=1

(1− qn),

then the elliptic curves y2
= x3
+1 and y2

= x3
−x have the corresponding modular

forms η(6z)4 and η(4z)2η(8z)2, respectively; see [Martin and Ono 1997].
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It is natural to ask which elliptic curves have corresponding modular forms that
are quotients of eta-functions. Martin and Ono [1997] have answered this question
by listing all such eta-quotients

f (z)=
∏
δ

η(δz)rδ (δ, rδ ∈ Z)

which are weight-2 newforms, and they gave corresponding modular elliptic curves.
(For more on the theory of eta-quotients, see [Ono 2004, Section 1.4].)
We show, for certain values of λ ∈ Q \ {0, 1}, that the elliptic curves 2 E1(λ)

defined by

2 E1(λ) : y2
= x(x − 1)(x − λ) (1-1)

correspond to modular forms which are linear combinations of eta-quotients.

Remark. The proof of Theorem 1.1 will make clear how one can generate many
more such examples.

Let

fλ(z) :=
∞∑

n=1
2a1(n; λ)q

n (1-2)

be the weight-2 newform corresponding to the elliptic curve 2 E1(λ). It will be
convenient to express eta-quotients using the notation[∏

δ

δrδ

]
:=

∏
δ

η(δz)rδ . (1-3)

For example, in place of
η(2z)2η(4z)2η(5z)η(40z)

η(z)η(8z)
we write [1−12242518−1401

].

Theorem 1.1. If λ ∈
{ 27

16 , 5, 81
49 ,−

7
25

}
, then 2 E1(λ) corresponds to the modular

forms given here:

λ conductor N eta-quotient fλ(z)

27
16 33 [12112

] + 3 · [32332
] + 3 · [1131111331

]

5 40 [1−12242518−1401
] + [115−18110220240−1

]

81
49 42 2 · [1−122317214−1421

] − 3 · [3161211421
]

+ [21326−17121−1422
] + [113−16214121242−1

]

−
7

25 70 [1−122527−110−114235270−1
] − [122−15−17210214−135−1702

]

We show, for all λ ∈Q \ {0, 1}, that the Fourier coefficients of all fλ(z) satisfy
an interesting hypergeometric congruence. For a prime p and an integer n, define
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ordp(n) to be the power of p dividing n, and if α = a
b ∈ Q, then set ordp(α) =

ordp(a)−ordp(b). We show that with this notation, the numbers 2a1(p; λ) satisfy
the following congruences.

Theorem 1.2. Let λ /∈ {0, 1} be rational and let p = 2 f + 1 be an odd prime such
that ordp(λ(λ− 1))= 0. Then

2a1(p; λ)≡ (−1)
p+1

2 (p− 1)
f∑

k=0

(
f + k

k

)(
f
k

)
(−λ)k (mod p).

Remarks. In light of Theorem 1.1, this implies that the congruence in Theorem 1.2
holds for the coefficients of the linear combinations of eta-quotients given above.

• A well-known theorem of Hasse states that for every prime p,

|a(p)|< 2
√

p.

Theorem 1.2 therefore determines 2a1(p; λ) uniquely for primes p > 16.

Example. Consider λ= 27
16 . Then λ(λ−1)= 33

·11
28 and so for p /∈ {2, 3, 11} prime

we observe the congruence by inspecting the coefficients of 2 E1
( 27

16

)
for applicable

primes p<30, where B(p; λ) is defined to be the right-hand side of the congruence
in Theorem 1.2:

p 2a1

(
p; 27

16

)
B
(

p; 27
16

)
5 −2≡ 3 (mod 5) 3
7 4≡ 4 (mod 7) 4

13 −2≡ 11 (mod 13) 11
17 −2≡ 15 (mod 17) 15
19 0≡ 0 (mod 19) 0
23 8≡ 8 (mod 23) 8
29 −6≡ 23 (mod 29) 23

2. Elliptic curves and modular forms

In this section we prove Theorem 1.1. If E is an elliptic curve over Q, then its
conductor N is a product of the primes p of bad reduction for E , with exponents
determined by the extent to which E is singular over GF(p). (An algorithm by Tate
for computing conductors is given in [Cremona 1997].) Moreover, the modularity
theorem implies that the modular form f (z) corresponding to E is an element of
S2(00(N )). In particular, for an elliptic curve 2 E1(λ), proving the correctness of
any representation of fλ(z) in terms of eta-quotients amounts to checking that the
given eta-quotients are elements of S2(00(N )) and checking a finite number of
coefficients of their Fourier expansions against those of fλ.
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We first provide a formula for the dimension of the space of cusp forms of
weight 2 and level N , S2(00(N )). We then show that the eta-quotients making up
the linear combinations are elements of S2(00(N )) and use the dimension formula
to show that equality of two elements of S2(00(N )) always depends only on some
finite set of coefficients.

The linear combinations of eta-quotients in this paper were generated by the
following algorithm:

(1) Given a rational number λ /∈ {0, 1}, compute the conductor N of 2 E1(λ). (The
modular form corresponding to 2 E1(λ) will be an element of S2(00(N )).)

(2) Compute dimC S2(00(N )).

(3) Generate eta-quotients which are elements of S2(00(N )).

(4) Attempt to construct a basis for S2(00(N )) using these eta-quotients.

Of course, once one is armed with a basis of eta-quotients for S2(00(N )), it is
simple to express fλ(z) in terms of this basis.

Dimension of S2(00(N)). It will be useful to know not only that S2(00(N )) is
finite-dimensional for every positive integer N , but also its exact dimension dN :=

dimC S2(00(N )).
The following formula for dN is a simplification of [Ono 2004, Theorem 1.34],

which gives a formula for the quantity dimC Sk(00(N ),χ)−dimC M2−k(00(N ),χ),
in the case where k = 2 and χ = ε is the trivial character modulo N .

Proposition 2.1. If N is a fixed positive integer and rp := ordp(N ), define

λp :=

{
p

r p
2 + p

r p
2 −1 if rp ≡ 0 (mod 2),

2p
r p−1

2 if rp ≡ 1 (mod 2).

With this notation,

dN = 1 + N
12

∏
p|N

(1 + p−1) −
1
2

∏
p|N

λp −
1
4

∑
x (mod N )

x2
+1≡0 (mod N )

1 − 1
3

∑
x (mod N )

x2
+x+1≡0 (mod N )

1.

Proof. This follows from [Ono 2004, Theorem 1.34], noting that the conductor of
the trivial character is 1 and that M0(00(N ), ε) is the space of constant functions
and hence has dimension 1. �

Proof of Theorem 1.1. Let N be the conductor of E = 2 E1(λ) and let dN =

dimC S2(00(N )) as before. Conditions under which an eta-quotient is an element
of S2(00(N ))) are provided in [Ono 2004, Theorems 1.64 and 1.65]: If f (z) =∏
δ|N η(δz)

rδ is an eta-quotient which vanishes at each cusp of 00(N ), such that
the pairs (δ, rδ) satisfy

∑
δ|N

rδ = 4,
∑
δ|N
δrδ ≡ 0 (mod 24), and

∑
δ|N

N
δ

rδ ≡ 0 (mod 24),
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then f (z) ∈ S2(00(N )). The order of vanishing of such an f (z) at the cusp c
d is

given by [Ono 2004, Theorem 1.65] as

N
24

∑
δ|N

gcd(d, δ)2rδ
gcd(d, N

d )dδ
. (2-1)

It is straightforward to check that the formula above gives a positive order of
vanishing for each eta-quotient at each cusp, that each eta-quotient satisfies the
given congruence conditions, and that the rδ of each eta-quotient sum to 4. These
conditions guarantee that each eta-quotient appearing in the table above lies in
S2(00(N )).

The eta-quotients given for λ = 27
16 form a basis for S2(00(33)). Similarly, for

λ = 5, the given eta-quotients along with [22102
] form a basis; for λ = 81

49 the
given eta-quotients along with [1−122326−17−114221242−1

] form a basis; and for
λ=− 7

25 a complete basis is{
[5272
], [1−1227210114−1351

], [102142
],

[122−1517−1142701
], [122−15−17210214−135−1702

],

[115171351
], [115210−114135−1702

], [51101351701
], [1−122517135−1702

]
}
.

To see this, let gi, j be the j-th Fourier coefficient of the i-th basis vector gi and
define t1 < · · · < tdN to be the first ascending set of indices for which the vectors
{(gi,t j )

dN
j=1}

dN
i=1 are linearly independent. One can find such a sequence by direct

computation of the Fourier coefficients and inspection of the matrices [gi,t j ]
dN
i, j=1

for various choices of small t1 < · · ·< tdN .
Now let vi = (gi,t1, . . . , gi,tdN

) and let b1, . . . , bdN be a basis for S2(00(N )). If
we have h1, h2∈ S2(00(N ))with equal ti -th coefficients, then these coefficients are
zero in the difference h1− h2. But h1− h2 can be written as a linear combination∑

ci bi of basis elements, for constants ci . Hence
∑

civi = 0 in RdN , so by linear
independence all ci = 0, and thus h1 − h2 = 0. It therefore suffices to check that
the coefficients of fλ on q t1, . . . , q tdN match the coefficients that result from the
linear combination of eta-quotients. �

Remark. In practice, these computations can be done using a computer algebra
system such as SAGE.

Example. We show that the modular form corresponding to 2 E1
(27

16

)
is

g(z) := [12112
] + 3 · [32332

] + 3 · [1131111331
].

For convenience, let G = {[12112
], [32332

], [1131111331
]} be the set of eta-

quotients making up the linear combination g(z). The conductor of 2 E1
( 27

16

)
is

33 and so the corresponding modular form f 27
16
(z) is an element of S2(00(33)).
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To show that g(z) is also an element of S2(00(33)), it suffices to show that G ⊂
S2(00(33)). Take gi (z) ∈ G. By [Ono 2004, Theorem 1.64], gi (z) is a modular
form of weight 2 for 00(33). By [Ono 2004, Theorem 1.65], gi (z) vanishes at all
cusps of 00(33), and thus gi (z) ∈ S2(00(33)).

Since ord3(33) = ord11(33) = 1, we have λ3 = λ11 = 2 and evaluation of the
dimension formula in Proposition 2.1 gives

dimC S2(00(33))

= 1 + 33
12

∏
p|33

(1 + p−1) −
1
2

∏
p|33

λp −
1
4

∑
x (mod 33)

x2
+1≡0 (mod 33)

1 − 1
3

∑
x (mod 33)

x2
+x+1≡0 (mod 33)

1

= 1 + 33
12

(
1 + 1

3

) (
1 + 1

11

)
−

1
2(λ3)(λ11) −

1
4(0) −

1
3(0)

= 3.

It remains to show that G is a basis for S2(00(33)). Any dependence relation
satisfied by the elements of G would imply a dependence relation among their
coefficients. It thus suffices to find a set of indices t1 < t2 < t3 such that the 3× 3
matrix formed by the ti -th coefficients of these eta-quotients is nonsingular. For
this particular λ, the first three coefficients suffice.

This implies that any two elements of S2(00(33)) which agree on the first three
coefficients are equal. In fact, we observe that the first three coefficients of the
modular form corresponding to 2 E1

( 27
16

)
are the same as the first three coefficients

of g(z). That is, the coefficients of g(z) = q + q2
− q3
− q4
+ · · · agree with the

coefficients of f 27
16
(z).

3. Gaussian hypergeometric functions and proof of Theorem 1.2

We recall some facts about Gaussian hypergeometric functions over finite fields of
prime order and use the Gaussian hypergeometric function 2 F1

(
φ, φ

ε | λ
)

to prove
Theorem 1.2.

Gaussian hypergeometric functions. Greene [1987] defined Gaussian hypergeo-
metric functions over arbitrary finite fields and showed that they have properties
analogous to those of classical hypergeometric functions. We recall some defini-
tions and notation from [Ono 1998] in the case of fields of prime order.

Definition 3.1. If p is an odd prime, GF(p) is the field with p elements, and A
and B are characters of GF(p), define(

A
B

)
:=

B(−1)
p

J (A, B̄)=
B(−1)

p

∑
x∈GF(p)

A(x)B̄(1− x).
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Furthermore, if A0, . . . , An and B1, . . . , Bn are characters of GF(p), define the
Gaussian hypergeometric series n+1 Fn

(
A0, A1, ..., An

B1, ..., Bn
| x
)

by the following sum
over all characters χ of GF(p):

n+1 Fn

(
A0, A1, ..., An

B1, ..., Bn
| x
)
:=

p
p− 1

∑
χ

(
A0χ

χ

)(
A1χ

B1χ

)
· · ·

(
Anχ

Bnχ

)
χ(x)

In particular, we are concerned with the Gaussian hypergeometric series 2 F1(λ)

defined by

2 F1(λ) := 2 F1
(
φ, φ

ε | λ
)
=

p
p− 1

∑
χ

(
φχ

χ

)2

χ(λ)

where φ is the quadratic character of GF(p). It is shown in [Ono 1998] that if
λ ∈Q \ {0, 1}, then

2 F1(λ)=−
φ(−1)2a1(p; λ)

p
(3-1)

for every odd prime p such that ordp(λ(λ− 1))= 0.
In addition, define the generalized Apéry number D(n;m, l, r) for every r ∈Q

and every pair of nonnegative integers m and l by

D(n;m, l, r) :=
n∑

k=0

(
n+ k

k

)m(n
k

)l

r lk .

Ono also shows (ibid.) that if p = 2 f + 1 is an odd prime and w = l +m, then

D( f ;m, l, r)≡
(

p
p− 1

)w−1

wFw−1
(
φ, φ, ..., φ

ε, ..., ε | (−r)l
)
(mod p). (3-2)

Proof of Theorem 1.2. By (3-1) and the fact that φ(−1)= (−1)
p−1

2 , we have that

p
p− 1 2 F1(λ)=

(−1)
p+1

2 2a1(p; λ)
p− 1

.

By (3-2), letting l = m = 1 (and thus w = 2) and r =−λ, we have
p

p− 1 2 F1(λ)≡ D ( f ; 1, 1,−λ) (mod p).

Combining these two equations and rearranging, we get

2a1(p; λ)≡ (−1)
p+1

2 (p− 1)D ( f ; 1, 1,−λ) (mod p).

Since

D ( f ; 1, 1,−λ)=
n∑

k=0

(
f + k

k

)(
f
k

)
(−λ)k,
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we have

2a1(p; λ)≡ (−1)
p+1

2 (p− 1)
f∑

k=0

(
f + k

k

)(
f
k

)
(−λ)k (mod p). �

Remark. The binomial product
( f+k

k

)( f
k

)
can be combined into the multinomial

coefficient
( f+k

k, k, f−k

)
and so the congruence in Theorem 1.2 can also be written as

2a1(p; λ)≡ (−1)
p+1

2 (p− 1)
f∑

k=0

(
f + k

k, k, f − k

)
(−λ)k (mod p).
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