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(Communicated by Joseph O’Rourke)

We construct a configuration of disjoint segment mirrors in the plane that traps
a single light ray aperiodically, providing a negative solution to a conjecture of
O’Rourke and Petrovici. We expand this to show that any finite number of rays
from a source can be trapped aperiodically.

1. Background and statement of results

We consider a point source of light together with a finite collection of disjoint,
double-sided segment mirrors in the plane. Light rays travel from the source in
fixed directions until they contact a mirror, at which point they reflect according to
the laws of geometric optics: the angle of incidence equal to the angle of reflection.
Rays that contact mirror endpoints are assumed to die there, and such rays are called
degenerate. A ray is said to be trapped if it never escapes from the convex hull of
the mirrors. A ray is said to be trapped aperiodically if it reflects at infinitely many
distinct mirror points. Such a ray reflects forever but never retraces its own path.

O’Rourke and Petrovici [2001] asked whether the light rays emanating in every
direction from a point source could be simultaneously trapped in such a system.
The authors show that the set of rays from a source trapped periodically is count-
able; this can also be shown for the set of degenerate rays. The remaining rays
either escape or are trapped aperiodically. Thus, if all the light rays from a point
source are trapped by the mirrors, then there must be uncountably many aperiod-
ically trapped rays. The authors’ conjecture that mirrors cannot trap a light ray
aperiodically would have implied that no mirror system could trap all light from a
point source. We provide a counterexample to this conjecture:

Theorem 1. There is a mirror configuration in the plane that traps a light ray
aperiodically.

David Milovich tells us this was proved independently in 2002 by Ben Stephens,
then a graduate student at MIT, but left unpublished; see [O’Rourke 2005].
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We then build upon this construction inductively to show:

Theorem 2. For any n ≥ 1, there is a mirror configuration in the plane that traps
n distinct aperiodic rays from a single source.

2. Proofs

The bases for both arguments lie in a fundamental result from mathematical bil-
liards: any billiard path in the square with irrational slope traces out an aperiodic
trajectory [Tabachnikov 2005, pp. 25–26]. Our method is to recreate the dynamics
of the billiard path in the square using disjoint segment mirrors.

Proof of Theorem 1. The construction will focus around the 2× 2 square in the
(x, y)-plane defined by max{|x |, |y|} = 1, i.e., the square with the four vertices
(±1,±1). This will be referred to simply as the square. We begin with two
segment mirrors, the top and bottom of the square. Fix a point p and an angle
θ , measured counterclockwise from horizontal, so that the initial position and di-
rection (p, θ) would define an aperiodic billiard trajectory in the square. Although
this trajectory is aperiodic, it consists of only four distinct directions: θ ,−θ , π−θ ,
and π + θ .

We place six additional mirrors outside the opened square, four horizontal and
two vertical (Figure 1), in such a way that a ray that exits the opened square in one
of these four directions necessarily returns to the same point of the square where it
exited. Such a ray always hits three mirrors (horizontal, vertical, then horizontal)
before returning; thus its direction changes as if it reflects only off of a vertical
mirror. Ignoring the path outside the square, the trajectory behaves as though it
has reflected off the square’s (absent) vertical edge (Figure 2).

A set of mirrors with this property is given explicitly at the end of this proof,
as can be verified by simple trigonometry. Within the square, the light ray (p, θ)
travels as though all four mirrors of the square were in place. In particular, this ray
is trapped aperiodically.

Figure 1. The mirror configuration, along with four strips of
parallel rays, representing all four possible directions of escape,
shown exiting the central square and returning.
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Figure 2. The ray appearing to reflect off the right vertical edge
of the square.

We conclude with the mirror coordinates. Fix h > 0; this parameter gives the
height difference between the top of the square and the height of two higher hori-
zontal mirrors. “P ∼ Q” will denote the closed segment mirror from P to Q. Our
configuration is symmetric about both the x- and y-axes. Coordinates for the three
mirrors that meet the upper right quadrant of the plane are given: (the remaining 5
can be obtained via symmetry)

(−1, 1)∼ (1, 1),

(1+ h | cot θ |, 1+ h)∼ (1+ (h+ 2)| cot θ |, 1+ h),

(1+ (2h+ 2)| cot θ |,−1)∼ (1+ (2h+ 2)| cot θ |, 1). �

Proof of Theorem 2. Suppose 0 < θ1 < π/2 and (p, θ1) is trapped as described
in Theorem 1 in a configuration with h = h1. To trap an additional ray from the
source, we choose another aperiodic direction θ2 and height h2 carefully to ensure
that the new construction does not interact with the old.

Intuitively, we choose θ2 to be very steep, thus when the ray (p, θ2) escapes from
the central square, it will also escape through the gaps of the initial construction. So
for θ2, we require that the initial position and direction (p, θ2) follows an aperiodic
trajectory in the square, that θ1 < θ2 < π/2, and that the ray starting at the bottom
right corner of the square and traveling in the direction θ2 escapes from the original
mirror system without reflections. By symmetry, this guarantees that any ray that
exits the opened square in one of the four possible directions θ2,−θ2, π − θ2, or
π + θ2 will not reflect off any of the original mirrors. By choosing the height
h2 for the horizontal mirrors to be sufficiently large, we can ensure that after the
ray (p, θ2) exits the central square, its path will completely surround the original
mirrors; formally, this is achieved when h2>(h1+1) cot θ1 tan θ2, as can be verified
with straightforward trigonometry.

This will guarantee that the new ray will not hit the original mirrors and that
the new mirrors will not interfere with the original ray. (Compare Figure 1 with
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Figure 3. Examples for the cases n = 2 (left) and n = 3 (right).

the left part of Figure 3). In this way, the two rays are simultaneously trapped
aperiodically.

This process can be continued. If θi and hi (for 1 ≤ i < n) have been chosen
in this way, then choose θn such that (p, θn) follows an aperiodic billiard path in
the square, that θn−1 < θn < π/2, and that the ray from (1,−1) in the direction
θn escapes from the system without reflection. Choose hn large enough to ensure
that the path of the new ray will completely surround the original system — again,
this is accomplished when hn > (hn−1+ 1) cot θn−1 tan θn . The ray (p, θn) is now
trapped aperiodically, as are the previous n− 1 rays. Inductively, we can trap any
finite number of rays aperiodically. �

3. Further remarks

It may be of interest to strengthen the second theorem. In its original form, we
had to choose particular rays which avoided mirrors already in place. This allowed
for an easy inductive proof but can be avoided by a direct approach. The finite
collection of directions (to be trapped aperiodically) can be arbitrary:

Any finite collection of rays from a source can be trapped aperiodically with
finitely many disjoint segment mirrors.
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We omit a formal proof but offer an outline. By rotating the plane about the point
source, we show that we may assume that each ray’s direction is irrational — that
is, that they have irrational slope. Suppose {θi : 1≤ i ≤ n} is a finite collection of
angles, which we can identify with rays eminating from the source. For 1≤ i ≤ n,
let Ri denote the set of rotations that rotate the plane in such a way that the angle
θi becomes a rational direction after rotation. The set of rational directions is
countable, and given a rational direction ρ, there is a unique rotation sending θi to
ρ. So Ri is in bijection with the set of rational directions, hence Ri is countable.
Thus, the set of all rotations that send any θi to a rational direction is countable,
since it is the finite union

⋃n
i=1 Ri . Because there are uncountably many rotations,

some rotation does not send any θi to a rational direction — so this rotation sends
each θi to an irrational direction. After applying such a rotation, we may assume
that all of the given rays have irrational slopes. Hence (after rotating in such a way)
each follows an aperiodic billiard path in the square.

We then proceed as in Theorem 2, creating n copies of the construction of
Theorem 1. In this case, however, the angles θi are predetermined, so only the
heights hi can be adjusted. This degree of freedom is enough. Intuitively, as
hi increases, the mirror configuration expands. Provided each hi is sufficiently
large and they differ from one another by a sufficiently large amount, the mirror
configurations will not interfere with one another (as in Figure 3). In such a system,
each ray is aperiodically trapped.

These constructions do not answer the larger questions of trapping light (namely,
if all light from a source can be trapped), but they do bring to the forefront some ad-
ditional lines of inquiry. We’ve shown that the cardinality of aperiodically trapped
rays can be any finite number, but must this cardinality be finite? Or, a weaker
statement, must this cardinality be countable? These questions were originally
posed in [O’Rourke and Petrovici 2001]. A positive answer to either would resolve
the larger question of whether all light from a point source can be trapped with
segment mirrors.

We would also like to mention that the approach used to prove Theorem 1 can
be applied to polygons other than the square; our original proof was based on a
quadrilateral with a nonperiodic billiard path constructed in [Galperin 1983].
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