

a journal of mathematics

Trapping light rays aperiodically with mirrors Zachary Mitchell, Gregory Simon and Xueying Zhao

mathematical sciences publishers

2012 vol. 5, no. 1

Trapping light rays aperiodically with mirrors

Zachary Mitchell, Gregory Simon and Xueying Zhao

(Communicated by Joseph O'Rourke)

We construct a configuration of disjoint segment mirrors in the plane that traps a single light ray aperiodically, providing a negative solution to a conjecture of O'Rourke and Petrovici. We expand this to show that any finite number of rays from a source can be trapped aperiodically.

1. Background and statement of results

We consider a point source of light together with a finite collection of disjoint, double-sided segment mirrors in the plane. Light rays travel from the source in fixed directions until they contact a mirror, at which point they reflect according to the laws of geometric optics: the angle of incidence equal to the angle of reflection. Rays that contact mirror endpoints are assumed to die there, and such rays are called *degenerate*. A ray is said to be *trapped* if it never escapes from the convex hull of the mirrors. A ray is said to be trapped *aperiodically* if it reflects at infinitely many distinct mirror points. Such a ray reflects forever but never retraces its own path.

O'Rourke and Petrovici [2001] asked whether the light rays emanating in every direction from a point source could be simultaneously trapped in such a system. The authors show that the set of rays from a source trapped periodically is countable; this can also be shown for the set of degenerate rays. The remaining rays either escape or are trapped aperiodically. Thus, if all the light rays from a point source are trapped by the mirrors, then there must be uncountably many aperiodically trapped rays. The authors' conjecture that mirrors cannot trap a light ray aperiodically would have implied that no mirror system could trap all light from a point source. We provide a counterexample to this conjecture:

Theorem 1. There is a mirror configuration in the plane that traps a light ray aperiodically.

David Milovich tells us this was proved independently in 2002 by Ben Stephens, then a graduate student at MIT, but left unpublished; see [O'Rourke 2005].

MSC2000: 37D50, 78A05.

Keywords: trapping light, mirrors, billiards, dynamical systems.

Funded by NSF REU Award #0502205.

We then build upon this construction inductively to show:

Theorem 2. For any $n \ge 1$, there is a mirror configuration in the plane that traps n distinct aperiodic rays from a single source.

2. Proofs

The bases for both arguments lie in a fundamental result from mathematical billiards: any billiard path in the square with irrational slope traces out an aperiodic trajectory [Tabachnikov 2005, pp. 25–26]. Our method is to recreate the dynamics of the billiard path in the square using disjoint segment mirrors.

Proof of Theorem 1. The construction will focus around the 2×2 square in the (x, y)-plane defined by $\max\{|x|, |y|\} = 1$, i.e., the square with the four vertices $(\pm 1, \pm 1)$. This will be referred to simply as *the square*. We begin with two segment mirrors, the top and bottom of the square. Fix a point p and an angle θ , measured counterclockwise from horizontal, so that the initial position and direction (p, θ) would define an aperiodic billiard trajectory in the square. Although this trajectory is aperiodic, it consists of only four distinct directions: $\theta, -\theta, \pi - \theta$, and $\pi + \theta$.

We place six additional mirrors outside the opened square, four horizontal and two vertical (Figure 1), in such a way that a ray that exits the opened square in one of these four directions necessarily returns to the same point of the square where it exited. Such a ray always hits three mirrors (horizontal, vertical, then horizontal) before returning; thus its direction changes as if it reflects only off of a vertical mirror. Ignoring the path outside the square, the trajectory behaves as though it has reflected off the square's (absent) vertical edge (Figure 2).

A set of mirrors with this property is given explicitly at the end of this proof, as can be verified by simple trigonometry. Within the square, the light ray (p, θ) travels as though all four mirrors of the square were in place. In particular, this ray is trapped aperiodically.

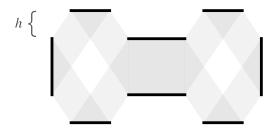


Figure 1. The mirror configuration, along with four strips of parallel rays, representing all four possible directions of escape, shown exiting the central square and returning.

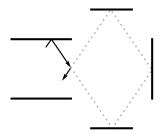


Figure 2. The ray appearing to reflect off the right vertical edge of the square.

We conclude with the mirror coordinates. Fix h > 0; this parameter gives the height difference between the top of the square and the height of two higher horizontal mirrors. " $P \sim Q$ " will denote the closed segment mirror from P to Q. Our configuration is symmetric about both the x- and y-axes. Coordinates for the three mirrors that meet the upper right quadrant of the plane are given: (the remaining 5 can be obtained via symmetry)

$$(-1,1) \sim (1,1),$$

$$(1+h|\cot\theta|,1+h) \sim (1+(h+2)|\cot\theta|,1+h),$$

$$(1+(2h+2)|\cot\theta|,-1) \sim (1+(2h+2)|\cot\theta|,1).$$

Proof of Theorem 2. Suppose $0 < \theta_1 < \pi/2$ and (p, θ_1) is trapped as described in Theorem 1 in a configuration with $h = h_1$. To trap an additional ray from the source, we choose another aperiodic direction θ_2 and height h_2 carefully to ensure that the new construction does not interact with the old.

Intuitively, we choose θ_2 to be very steep, thus when the ray (p,θ_2) escapes from the central square, it will also escape through the gaps of the initial construction. So for θ_2 , we require that the initial position and direction (p,θ_2) follows an aperiodic trajectory in the square, that $\theta_1 < \theta_2 < \pi/2$, and that the ray starting at the bottom right corner of the square and traveling in the direction θ_2 escapes from the original mirror system without reflections. By symmetry, this guarantees that *any* ray that exits the opened square in one of the four possible directions $\theta_2, -\theta_2, \pi - \theta_2$, or $\pi + \theta_2$ will not reflect off any of the original mirrors. By choosing the height h_2 for the horizontal mirrors to be sufficiently large, we can ensure that after the ray (p,θ_2) exits the central square, its path will completely surround the original mirrors; formally, this is achieved when $h_2 > (h_1 + 1) \cot \theta_1 \tan \theta_2$, as can be verified with straightforward trigonometry.

This will guarantee that the new ray will not hit the original mirrors and that the new mirrors will not interfere with the original ray. (Compare Figure 1 with

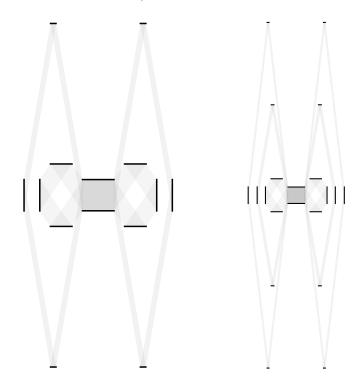


Figure 3. Examples for the cases n = 2 (left) and n = 3 (right).

the left part of Figure 3). In this way, the two rays are simultaneously trapped aperiodically.

This process can be continued. If θ_i and h_i (for $1 \le i < n$) have been chosen in this way, then choose θ_n such that (p,θ_n) follows an aperiodic billiard path in the square, that $\theta_{n-1} < \theta_n < \pi/2$, and that the ray from (1,-1) in the direction θ_n escapes from the system without reflection. Choose h_n large enough to ensure that the path of the new ray will completely surround the original system — again, this is accomplished when $h_n > (h_{n-1}+1)\cot\theta_{n-1}\tan\theta_n$. The ray (p,θ_n) is now trapped aperiodically, as are the previous n-1 rays. Inductively, we can trap any finite number of rays aperiodically.

3. Further remarks

It may be of interest to strengthen the second theorem. In its original form, we had to choose particular rays which avoided mirrors already in place. This allowed for an easy inductive proof but can be avoided by a direct approach. The finite collection of directions (to be trapped aperiodically) can be arbitrary:

Any finite collection of rays from a source can be trapped aperiodically with finitely many disjoint segment mirrors.

We omit a formal proof but offer an outline. By rotating the plane about the point source, we show that we may assume that each ray's direction is irrational — that is, that they have irrational slope. Suppose $\{\theta_i: 1 \leq i \leq n\}$ is a finite collection of angles, which we can identify with rays eminating from the source. For $1 \leq i \leq n$, let R_i denote the set of rotations that rotate the plane in such a way that the angle θ_i becomes a rational direction after rotation. The set of rational directions is countable, and given a rational direction ρ , there is a unique rotation sending θ_i to ρ . So R_i is in bijection with the set of rational directions, hence R_i is countable. Thus, the set of all rotations that send any θ_i to a rational direction is countable, since it is the finite union $\bigcup_{i=1}^n R_i$. Because there are uncountably many rotations, some rotation does not send any θ_i to a rational direction — so this rotation sends each θ_i to an irrational direction. After applying such a rotation, we may assume that all of the given rays have irrational slopes. Hence (after rotating in such a way) each follows an aperiodic billiard path in the square.

We then proceed as in Theorem 2, creating n copies of the construction of Theorem 1. In this case, however, the angles θ_i are predetermined, so only the heights h_i can be adjusted. This degree of freedom is enough. Intuitively, as h_i increases, the mirror configuration expands. Provided each h_i is sufficiently large and they differ from one another by a sufficiently large amount, the mirror configurations will not interfere with one another (as in Figure 3). In such a system, each ray is aperiodically trapped.

These constructions do not answer the larger questions of trapping light (namely, if all light from a source can be trapped), but they do bring to the forefront some additional lines of inquiry. We've shown that the cardinality of aperiodically trapped rays can be any finite number, but must this cardinality be finite? Or, a weaker statement, must this cardinality be countable? These questions were originally posed in [O'Rourke and Petrovici 2001]. A positive answer to either would resolve the larger question of whether all light from a point source can be trapped with segment mirrors.

We would also like to mention that the approach used to prove Theorem 1 can be applied to polygons other than the square; our original proof was based on a quadrilateral with a nonperiodic billiard path constructed in [Galperin 1983].

Acknowledgements

This work is a result of the Mathematics REU at Pennsylvania State University, 2009. The authors would like to thank Joseph O'Rourke and David Milovich for their helpful correspondence as well as Misha Guysinsky, Andrey Gogolev, and others at Penn State for their support.

References

[Galperin 1983] G. A. Galperin, "Nonperiodic and not everywhere dense billiard trajectories in convex polygons and polyhedrons", *Comm. Math. Phys.* **91**:2 (1983), 187–211. MR 85a:58082

[O'Rourke 2005] J. O'Rourke, "The Open Problem Project, Problem 31: trapping light rays with segment mirrors", Oct 2005, available at http://maven.smith.edu/~orourke/TOPP/P31.html.

[O'Rourke and Petrovici 2001] J. O'Rourke and O. Petrovici, "Narrowing light rays with mirrors", pp. 137–140 in *Proc. 13th Canad. Conf. Comput. Geom.* (Waterloo, Ont., 2001), 2001.

[Tabachnikov 2005] S. Tabachnikov, *Geometry and billiards*, Student Mathematical Library **30**, American Mathematical Society, Providence, RI, 2005. MR 2006h:51001 Zbl 1119.37001

Received: 2010-05-04 Revised: 2011-06-25 Accepted: 2011-07-06

Holland, MI 49423, United States

Santa Cruz, Santa Cruz, CA 95064, United States

zhao23x@mtholyoke.edu Department of Mathematics, Mount Holyoke College,

South Hadley, MA 01075, United States

EDITORS

MANAGING EDITOR

Kenneth S. Berenhaut, Wake Forest University, USA, berenhks@wfu.edu

BOARD OF EDITORS

John V Raylov	Wake Forset University NC USA	Chi-Kwong Li	College of William and Mary USA	
John V. Baxley	Wake Forest University, NC, USA baxley@wfu.edu	· ·	College of William and Mary, USA ckli@math.wm.edu	
Arthur T. Benjamin	Harvey Mudd College, USA benjamin@hmc.edu	Robert B. Lund	Clemson University, USA lund@clemson.edu	
Martin Bohner	Missouri U of Science and Technology, USA bohner@mst.edu	Gaven J. Martin	Massey University, New Zealand g.j.martin@massey.ac.nz	
Nigel Boston	University of Wisconsin, USA boston@math.wisc.edu	Mary Meyer	Colorado State University, USA meyer@stat.colostate.edu	
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA budhiraj@email.unc.edu	Emil Minchev	Ruse, Bulgaria eminchev@hotmail.com	
Pietro Cerone	Victoria University, Australia pietro.cerone@vu.edu.au	Frank Morgan	Williams College, USA frank.morgan@williams.edu	
Scott Chapman	Sam Houston State University, USA scott.chapman@shsu.edu	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran moslehian@ferdowsi.um.ac.ir	
Jem N. Corcoran	University of Colorado, USA corcoran@colorado.edu	Zuhair Nashed	University of Central Florida, USA znashed@mail.ucf.edu	
Toka Diagana	Howard University, USA tdiagana@howard.edu	Ken Ono	Emory University, USA ono@mathcs.emory.edu	
Michael Dorff	Brigham Young University, USA mdorff@math.byu.edu	Timothy E. O'Brien	Loyola University Chicago, USA tobrie1@luc.edu	
Sever S. Dragomir	Victoria University, Australia sever@matilda.vu.edu.au	Joseph O'Rourke	Smith College, USA orourke@cs.smith.edu	
Behrouz Emamizadeh	The Petroleum Institute, UAE bemamizadeh@pi.ac.ae	Yuval Peres	Microsoft Research, USA peres@microsoft.com	
Errin W. Fulp	Wake Forest University, USA fulp@wfu.edu	YF. S. Pétermann	Université de Genève, Switzerland petermann@math.unige.ch	
Joseph Gallian	University of Minnesota Duluth, USA jgallian@d.umn.edu	Robert J. Plemmons	Wake Forest University, USA plemmons@wfu.edu	
Stephan R. Garcia	Pomona College, USA stephan.garcia@pomona.edu	Carl B. Pomerance	Dartmouth College, USA carl.pomerance@dartmouth.edu	
Ron Gould	Emory University, USA rg@mathcs.emory.edu	Vadim Ponomarenko	San Diego State University, USA vadim@sciences.sdsu.edu	
Andrew Granville	Université Montréal, Canada andrew@dms.umontreal.ca	Bjorn Poonen	UC Berkeley, USA poonen@math.berkeley.edu	
Jerrold Griggs	University of South Carolina, USA griggs@math.sc.edu	James Propp	U Mass Lowell, USA jpropp@cs.uml.edu	
Ron Gould	Emory University, USA rg@mathcs.emory.edu	Józeph H. Przytycki	George Washington University, USA przytyck@gwu.edu	
Sat Gupta	U of North Carolina, Greensboro, USA sngupta@uncg.edu	Richard Rebarber	University of Nebraska, USA rrebarbe@math.unl.edu	
Jim Haglund	University of Pennsylvania, USA jhaglund@math.upenn.edu	Robert W. Robinson	University of Georgia, USA rwr@cs.uga.edu	
Johnny Henderson	Baylor University, USA johnny_henderson@baylor.edu	Filip Saidak	U of North Carolina, Greensboro, USA f_saidak@uncg.edu	
Natalia Hritonenko	Prairie View A&M University, USA nahritonenko@pvamu.edu	James A. Sellers	Penn State University, USA sellersj@math.psu.edu	
Charles R. Johnson	College of William and Mary, USA crjohnso@math.wm.edu	Andrew J. Sterge	Honorary Editor andy@ajsterge.com	
Karen Kafadar	University of Colorado, USA karen.kafadar@cudenver.edu	Ann Trenk	Wellesley College, USA atrenk@wellesley.edu	
K. B. Kulasekera	Clemson University, USA kk@ces.clemson.edu	Ravi Vakil	Stanford University, USA vakil@math.stanford.edu	
Gerry Ladas	University of Rhode Island, USA gladas@math.uri.edu	Ram U. Verma	University of Toledo, USA verma99@msn.com	
David Larson	Texas A&M University, USA larson@math.tamu.edu	John C. Wierman	Johns Hopkins University, USA wierman@jhu.edu	
Suzanne Lenhart	University of Tennessee, USA lenhart@math.utk.edu	Michael E. Zieve	University of Michigan, USA zieve@umich.edu	
PRODUCTION				

Silvio Levy, Scientific Editor Sheila Newbery, Senior Production Editor Cover design: ©2008 Alex Scorpan

See inside back cover or http://msp.berkeley.edu/involve for submission instructions.

The subscription price for 2012 is US \$105/year for the electronic version, and \$145/year (+\$35 shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to Mathematical Sciences Publishers, Department of Mathematics, University of California, Berkeley, CA 94704-3840, USA.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, Department of Mathematics, University of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOWTM from Mathematical Sciences Publishers.

A NON-PROFIT CORPORATION

Typeset in LATEX

Copyright ©2012 by Mathematical Sciences Publishers

David Pathakjee, Zef RosnBrick and Eugene Yoong	1
Trapping light rays aperiodically with mirrors ZACHARY MITCHELL, GREGORY SIMON AND XUEYING ZHAO	9
A generalization of modular forms ADAM HAQUE	15
Induced subgraphs of Johnson graphs RAMIN NAIMI AND JEFFREY SHAW	25
Multiscale adaptively weighted least squares finite element methods for convection-dominated PDEs BRIDGET KRAYNIK, YIFEI SUN AND CHAD R. WESTPHAL	39
Diameter, girth and cut vertices of the graph of equivalence classes of zero-divisors BLAKE ALLEN, ERIN MARTIN, ERIC NEW AND DANE SKABELUND	51
Total positivity of a shuffle matrix AUDRA MCMILLAN	61
Betti numbers of order-preserving graph homomorphisms LAUREN GUERRA AND STEVEN KLEE	67
Permutation notations for the exceptional Weyl group F_4 PATRICIA CAHN, RUTH HAAS, ALOYSIUS G. HELMINCK, JUAN LI AND JEREMY SCHWARTZ	81
Progress towards counting D_5 quintic fields ERIC LARSON AND LARRY ROLEN	91
On supersingular elliptic curves and hypergeometric functions KEENAN MONKS	99