

Total positivity of a shuffle matrix Audra McMillan

2012

vol. 5, no. 1

Total positivity of a shuffle matrix

Audra McMillan

(Communicated by John C. Wierman)

Holte introduced a $n \times n$ matrix P as a transition matrix related to the carries obtained when summing n numbers base b. Since then Diaconis and Fulman have further studied this matrix proving it to also be a transition matrix related to the process of b-riffle shuffling n cards. They also conjectured that the matrix P is totally nonnegative. In this paper, the matrix P is written as a product of a totally nonnegative matrix and an upper triangular matrix. The positivity of the leading principal minors for general n and b is proven as well as the nonnegativity of minors composed from initial columns and arbitrary rows.

1. Introduction

Holte [1997] introduced an $n \times n$ matrix P, with entries

$$P(i, j) = \frac{1}{b^n} \sum_{r=0}^{j-\lfloor i/b \rfloor} (-1)^r \binom{n+1}{r} \binom{n-1-i+(j+1-r)b}{n}$$

where the P(i, j) entry gives the probability that when adding *n* random numbers base *b*, the next carry will be *j*, given that the previous carry was *i*. This matrix was then further studied in [2009a; Diaconis and Fulman 2009b], where it is noted that this is also a transition matrix related to card shuffling, where the P(i, j) entry records the probability that a *b*-riffle shuffle of a permutation with *i* descents will lead to a permutation with *j* descents. Note that the rows and columns of this matrix are indexed by $0, \ldots, n-1$.

Holte proved a number of properties of the matrix P, including that P has eigenvalues given by the geometric sequence $1, b^{-1}, \ldots, b^{-(n-1)}$, implying that the determinant is positive for positive b.

A matrix will be referred to as *totally nonnegative* if every minor is nonnegative and *totally positive* if every minor is positive. Note that in some texts, such as [Pinkus 2010] and [Karlin 1968] these terms are replaced by *totally positive* and

MSC2010: 15B48, 60C05.

Keywords: total positivity, shuffle, minors.

strictly totally positive respectively. Totally nonnegative matrices figure prominently in a wide range of mathematical disciples including, but not limited to, combinatorics, stochastic processes and probability theory. Many properties of totally nonnegative matrices are known including eigenvalue/eigenvector properties and factorisation of such matrices. A good reference for the theory and applications of total positivity is [Pinkus 2010] and some further results on stochastic totally nonnegative matrices are included in [Gasca and Micchelli 1996].

Diaconis and Fulman [2009a, Remark after Lemma 4.2] conjectured that the matrix P is totally nonnegative for all positive integers n and b. Their paper included a proof that for all n and b, P is totally nonnegative of order 2, that is all the 2×2 minors are nonnegative, and that when b is a power of 2, P is totally nonnegative. Unfortunately, their method of proof does not generalise to other b. The aim of this paper is to make progress on the general conjecture.

Recall the following result:

Theorem 1. Let $A = (a_{ij})$ be an $n \times n$ nonsingular matrix whose rows and columns are indexed by $0, \ldots, n-1$. Then A is totally nonnegative if and only if A satisfies

(i)
$$A \begin{pmatrix} 0, ..., k-1 \\ 0, ..., k-1 \end{pmatrix} > 0$$
 for $k = 1, ..., n$,
(ii) $A \begin{pmatrix} i_1, ..., i_k \\ 0, ..., k-1 \end{pmatrix}$ for $0 \le i_1 < \dots < i_k \le n-1$ and $k = 1, ..., n$,
(iii) $A \begin{pmatrix} 0, ..., k-1 \\ j_1, ..., j_k \end{pmatrix}$ for $0 \le j_1 < \dots < j_k \le n-1$ and $k = 1, ..., n$,
where $A \begin{pmatrix} i_1, ..., i_k \\ j_1, ..., j_k \end{pmatrix}$ denotes the minor composed of rows $i_1, ..., i_k$ and columns $j_1, ..., j_k$.

A proof of this can be found in [Pinkus 2010, Proposition 2.15].

In this paper, we will prove (i) and (ii) for the matrix P, hence reducing the conjecture to condition (iii). Proving these conditions hold for P is equivalent to proving that they hold for $P' = b^n P$, so this matrix will be dealt with instead.

2. Proof of total nonnegativity claims

Firstly, note that

$$P'(i, j) = \sum_{r=0}^{j-\lfloor i/b \rfloor} (-1)^r \binom{n+1}{r} \binom{n-1-i+(j+1-r)b}{n}$$
$$= \sum_{r=0}^{j} (-1)^r \binom{n+1}{r} \binom{n-1-i+(j+1-r)b}{n},$$

which implies

$$P' = \left(\binom{n-1-i+(j+1)b}{n} \right)_{\substack{0 \le i \le n-1 \\ 0 \le j \le n-1}} \left((-1)^{j-i} \binom{n+1}{j-i} \right)_{\substack{0 \le i \le n-1 \\ 0 \le j \le n-1}}$$

where $\binom{n}{k} = 0$ if k < 0. Let's call the first matrix A, and the second B. Note that B is upper unitriangular.

Using the Vandermonde convolution note that

$$\sum_{k=0}^{n-i} \binom{n-i}{n-i-k} \binom{jb}{i+k} = \binom{n-i+jb}{n},$$

so A can be further factored as

$$A = \left[\binom{n-i-1}{j-i} \right]_{i,j} \left[\binom{(j+1)b}{i+1} \right]_{i,j}$$

Let's call these matrices C and D, respectively. Note that C is upper unitriangular, so this factorisation of P' implies that det $P' = \det D$.

Lemma 2. C is totally nonnegative.

Proof. Obviously all the leading principal minors of C are 1, and all other minors composed of k initial columns and k arbitrary rows are 0 since C is upper unitriangular.

Now let $k \in \mathbb{Z}$, $1 \le k \le n$ and $0 \le j_1 < \cdots < j_k \le n - 1$. Again using the Vandermonde convolution we observe that

$$\sum_{p=0}^{k-i-1} \binom{k-i-1}{p} \binom{n-k}{j_{l+1}-i-p} = \binom{n-i-1}{j_{l+1}-i},$$

so

$$C\begin{pmatrix}0,\ldots,k-1\\j_{1},\ldots,j_{k}\end{pmatrix} = \left| \begin{bmatrix}\binom{n-i-1}{j_{l+1}-i} \end{bmatrix}_{i,l} \right| = \left| \begin{bmatrix}\binom{k-i-1}{l-i} \end{bmatrix}_{i,l} \right| \left| \begin{bmatrix}\binom{n-k}{j_{l+1}-i} \end{bmatrix}_{i,l} \right|$$
$$= \left| \begin{bmatrix}\binom{n-k}{j_{l+1}-i} \end{bmatrix}_{i,l} \right|. \tag{*}$$

A sequence $(a_i)_{0 \le i < \infty}$ is called a Pólya frequency sequence of infinite order if the corresponding infinite kernel matrix

$$\begin{pmatrix} a_0 \ a_1 \ a_2 \ \cdots \\ 0 \ a_0 \ a_1 \ \cdots \\ 0 \ 0 \ a_0 \ \cdots \\ \vdots \ \vdots \ \vdots \ \end{pmatrix}$$

is totally nonnegative. The matrix (*) is nonnegative since it is a submatrix of the infinite kernel matrix of the sequence

$$\left(\binom{n-k}{0},\binom{n-k}{1},\ldots,\binom{n-k}{n-k}\right),$$

which is a Pólya frequency sequence of infinite order according to the classification of Pólya frequency sequences in [Karlin 1968, Theorem 5.3, Chapter 8].

Therefore, by Theorem 1, matrix C is totally nonnegative for all n.

Lemma 3. D is totally nonnegative.

Proof. D is a submatrix of the upper triangular Pascal matrix

$$\left[\binom{j}{i}\right]_{i,j}$$

which is simply the reflection of *C* about the antidiagonal where the dimension is nb + 1, and hence is totally nonnegative [Pinkus 2010, Propositions 1.2 and 1.3]. Therefore *D* is totally nonnegative.

Corollary 4. A is totally nonnegative.

Proof. Since the product of totally nonnegative matrices is totally nonnegative, A is totally nonnegative.

Proposition 5. Conditions (i) and (ii) of Theorem 1 hold for matrix P' for general n and b.

Proof. Let $k \in \mathbb{Z}$, $1 \le k \le n$ and $0 \le i_1 < \cdots < i_k \le n - 1$. From the Cauchy–Binet formula and the fact that *B* is upper unitriangular,

$$P'\begin{pmatrix}i_1,\ldots,i_k\\0,\ldots,k-1\end{pmatrix} = A\begin{pmatrix}i_1,\ldots,i_k\\0,\ldots,k-1\end{pmatrix} \ge 0$$

and

$$P'\begin{pmatrix}0, \dots, k-1\\0, \dots, k-1\end{pmatrix} = A\begin{pmatrix}0, \dots, k-1\\0, \dots, k-1\end{pmatrix}$$
$$= \sum_{0 \le m_1 < \dots < m_k \le n-1} C\begin{pmatrix}0, \dots, k-1\\m_1, \dots, m_k\end{pmatrix} D\begin{pmatrix}m_1, \dots, m_k\\0, \dots, k-1\end{pmatrix}$$
$$\ge D\begin{pmatrix}0, \dots, k-1\\0, \dots, k-1\end{pmatrix} = \left| \left[\binom{(j+1)b}{i+1} \right]_{i,j} \right|.$$

Here the inequality follows from the fact that C and D are totally nonnegative and C is upper unitriangular.

However this is simply the determinant of a smaller version of D, with n replaced by k and therefore by the previous factorisation of P', this is equal to the

determinant of the P' matrix of dimension k, which is positive (as stated earlier) so we are done.

One might hope that condition (iii) could be proved similarly by noting that

$$P'\begin{pmatrix}0,\ldots,k-1\\j_1,\ldots,j_k\end{pmatrix} = \sum_{0\leq m_1<\cdots< m_k\leq n-1} A\begin{pmatrix}0,\ldots,k-1\\m_1,\ldots,m_k\end{pmatrix} B\begin{pmatrix}m_1,\ldots,m_k\\j_1,\ldots,j_k\end{pmatrix}.$$

However the proof of condition (ii) relied on the fact that the minors of B involved were clearly seen to be 0 or 1 so this equation easily simplified. This is not the case for the above equation since little has been established about general minors of B. Progress might still be made if all minors of size k were nonnegative for some k however small examples show this to be unlikely, for example this is not true for minors of size 2 for any n. If the conjecture is true, it seems likely that a new approach is required to prove condition (iii).

3. Acknowledgements

This work was supported by the University of Sydney School of Mathematics vacation scholarship. A special thanks is given to Dr. Anthony Henderson for his support with this project.

References

- [Diaconis and Fulman 2009a] P. Diaconis and J. Fulman, "Carries, shuffling, and an amazing matrix", *Amer. Math. Monthly* **116**:9 (2009), 788–803. MR 2011d:60027 Zbl 1229.60011
- [Diaconis and Fulman 2009b] P. Diaconis and J. Fulman, "Carries, shuffling, and symmetric functions", *Adv. in Appl. Math.* **43**:2 (2009), 176–196. MR 2010m:60028 Zbl 1172.60002
- [Gasca and Micchelli 1996] M. Gasca and C. A. Micchelli (editors), *Total positivity and its applications* (Jaca, 1994), Mathematics and its Applications **359**, Kluwer, Dordrecht, 1996. MR 97f:00029 Zbl 0884.00045
- [Holte 1997] J. M. Holte, "Carries, combinatorics, and an amazing matrix", *Amer. Math. Monthly* **104**:2 (1997), 138–149. MR 98g:15034 Zbl 0889.15021
- [Karlin 1968] S. Karlin, *Total positivity, I*, Stanford University Press, Stanford, CA, 1968. MR 37 #5667 Zbl 0219.47030
- [Pinkus 2010] A. Pinkus, *Totally positive matrices*, Cambridge Tracts in Mathematics **181**, Cambridge University Press, Cambridge, 2010. MR 2010k:15065 Zbl 1185.15028

Received: 2011-02-24 Revised: 2011-07-17 Accepted: 2011-09-04

amcm7623@uni.sydney.edu.au School of Mathematics and Statistics, University of Sydney, Sydney, NSW 2006, Australia

EDITORS

MANAGING EDITOR

Kenneth S. Berenhaut, Wake Forest University, USA, berenhks@wfu.edu

BOARD OF EDITORS

	DOARD OI	EDITORS		
John V. Baxley	Wake Forest University, NC, USA baxley@wfu.edu	Chi-Kwong Li	College of William and Mary, USA ckli@math.wm.edu	
Arthur T. Benjamin	Harvey Mudd College, USA benjamin@hmc.edu	Robert B. Lund	Clemson University, USA lund@clemson.edu	
Martin Bohner	Missouri U of Science and Technology, USA bohner@mst.edu	Gaven J. Martin	Massey University, New Zealand g.j.martin@massey.ac.nz	
Nigel Boston	University of Wisconsin, USA boston@math.wisc.edu	Mary Meyer	Colorado State University, USA meyer@stat.colostate.edu	
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA budhiraj@email.unc.edu	Emil Minchev	Ruse, Bulgaria eminchev@hotmail.com	
Pietro Cerone	Victoria University, Australia pietro.cerone@vu.edu.au	Frank Morgan	Williams College, USA frank.morgan@williams.edu	
Scott Chapman	Sam Houston State University, USA scott.chapman@shsu.edu	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran moslehian@ferdowsi.um.ac.ir	
Jem N. Corcoran	University of Colorado, USA corcoran@colorado.edu	Zuhair Nashed	University of Central Florida, USA znashed@mail.ucf.edu	
Toka Diagana	Howard University, USA tdiagana@howard.edu	Ken Ono	Emory University, USA ono@mathcs.emory.edu	
Michael Dorff	Brigham Young University, USA mdorff@math.byu.edu	Timothy E. O'Brien	Loyola University Chicago, USA tobrie1@luc.edu	
Sever S. Dragomir	Victoria University, Australia sever@matilda.vu.edu.au	Joseph O'Rourke	Smith College, USA orourke@cs.smith.edu	
Behrouz Emamizadeh	The Petroleum Institute, UAE bemamizadeh@pi.ac.ae	Yuval Peres	Microsoft Research, USA peres@microsoft.com	
Errin W. Fulp	Wake Forest University, USA fulp@wfu.edu	YF. S. Pétermann	Université de Genève, Switzerland petermann@math.unige.ch	
Joseph Gallian	University of Minnesota Duluth, USA jgallian@d.umn.edu	Robert J. Plemmons	Wake Forest University, USA plemmons@wfu.edu	
Stephan R. Garcia	Pomona College, USA stephan.garcia@pomona.edu	Carl B. Pomerance	Dartmouth College, USA carl.pomerance@dartmouth.edu	
Ron Gould	Emory University, USA rg@mathcs.emory.edu	Vadim Ponomarenko	San Diego State University, USA vadim@sciences.sdsu.edu	
Andrew Granville	Université Montréal, Canada andrew@dms.umontreal.ca	Bjorn Poonen	UC Berkeley, USA poonen@math.berkeley.edu	
Jerrold Griggs	University of South Carolina, USA griggs@math.sc.edu	James Propp	U Mass Lowell, USA jpropp@cs.uml.edu	
Ron Gould	Emory University, USA rg@mathcs.emory.edu	Józeph H. Przytycki	George Washington University, USA przytyck@gwu.edu	
Sat Gupta	U of North Carolina, Greensboro, USA sngupta@uncg.edu	Richard Rebarber	University of Nebraska, USA rrebarbe@math.unl.edu	
Jim Haglund	University of Pennsylvania, USA jhaglund@math.upenn.edu	Robert W. Robinson	University of Georgia, USA rwr@cs.uga.edu	
Johnny Henderson	Baylor University, USA johnny_henderson@baylor.edu	Filip Saidak	U of North Carolina, Greensboro, USA f_saidak@uncg.edu	
Natalia Hritonenko	Prairie View A&M University, USA nahritonenko@pvamu.edu	James A. Sellers	Penn State University, USA sellersj@math.psu.edu	
Charles R. Johnson	College of William and Mary, USA crjohnso@math.wm.edu	Andrew J. Sterge	Honorary Editor andy@ajsterge.com	
Karen Kafadar	University of Colorado, USA karen.kafadar@cudenver.edu	Ann Trenk	Wellesley College, USA atrenk@wellesley.edu	
K. B. Kulasekera	Clemson University, USA kk@ces.clemson.edu	Ravi Vakil	Stanford University, USA vakil@math.stanford.edu	
Gerry Ladas	University of Rhode Island, USA gladas@math.uri.edu	Ram U. Verma	University of Toledo, USA verma99@msn.com	
David Larson	Texas A&M University, USA larson@math.tamu.edu	John C. Wierman	Johns Hopkins University, USA wierman@jhu.edu	
Suzanne Lenhart	University of Tennessee, USA lenhart@math.utk.edu	Michael E. Zieve	University of Michigan, USA zieve@umich.edu	
PRODUCTION				

Silvio Levy, Scientific Editor

Sheila Newbery, Senior Production Editor

Cover design: ©2008 Alex Scorpan

See inside back cover or http://msp.berkeley.edu/involve for submission instructions.

The subscription price for 2012 is US \$105/year for the electronic version, and \$145/year (+\$35 shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to Mathematical Sciences Publishers, Department of Mathematics, University of California, Berkeley, CA 94704-3840, USA.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, Department of Mathematics, University of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOW[™] from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers

http://msp.org/

A NON-PROFIT CORPORATION

Typeset in LATEX

Copyright ©2012 by Mathematical Sciences Publishers

2012 vol. 5 no. 1

Elliptic curves, eta-quotients and hypergeometric functions DAVID PATHAKJEE, ZEF ROSNBRICK AND EUGENE YOONG	1
Trapping light rays aperiodically with mirrors ZACHARY MITCHELL, GREGORY SIMON AND XUEYING ZHAO	9
A generalization of modular forms ADAM HAQUE	15
Induced subgraphs of Johnson graphs RAMIN NAIMI AND JEFFREY SHAW	25
Multiscale adaptively weighted least squares finite element methods for convection-dominated PDEs BRIDGET KRAYNIK, YIFEI SUN AND CHAD R. WESTPHAL	39
Diameter, girth and cut vertices of the graph of equivalence classes of zero-divisors BLAKE ALLEN, ERIN MARTIN, ERIC NEW AND DANE SKABELUND	51
Total positivity of a shuffle matrix AUDRA MCMILLAN	61
Betti numbers of order-preserving graph homomorphisms LAUREN GUERRA AND STEVEN KLEE	67
Permutation notations for the exceptional Weyl group F_4 PATRICIA CAHN, RUTH HAAS, ALOYSIUS G. HELMINCK, JUAN LI AND JEREMY SCHWARTZ	81
Progress towards counting D ₅ quintic fields ERIC LARSON AND LARRY ROLEN	91
On supersingular elliptic curves and hypergeometric functions KEENAN MONKS	99