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Elliptic curves, eta-quotients and hypergeometric
functions

David Pathakjee, Zef RosnBrick and Eugene Yoong
(Communicated by Kenneth S. Berenhaut)

The well-known fact that all elliptic curves are modular, proven by Wiles, Taylor,
Breuil, Conrad and Diamond, leaves open the question whether there exists a
nice representation of the modular form associated to each elliptic curve. Here
we provide explicit representations of the modular forms associated to certain
Legendre form elliptic curves 2 E1(λ) as linear combinations of quotients of
Dedekind’s eta-function. We also give congruences for some of the modular
forms’ coefficients in terms of Gaussian hypergeometric functions.

1. Introduction and statement of results

Wiles and Taylor [1995] proved that all semistable elliptic curves over Q are modu-
lar. Their result was later extended by Breuil, Conrad, Diamond and Taylor [Breuil
et al. 2001] to all elliptic curves over Q.

This correspondence allows facts about elliptic curves to be proven using mod-
ular forms, and vice versa. (See [Koblitz 1993] for more background on the theory
of elliptic curves and modular forms.)

Let E be an elliptic curve over Q. If q := e2π i z , GF(p) is the finite field with
p elements, and N (p) is the number of points on E over GF(p), then the modu-
larity theorem implies that there exists a corresponding weight-2 newform f (z)=∑
∞

n=1 a(n)qn such that if p is a prime of good reduction, then a(p)=1+ p−N (p).
For example, if η(z) is Dedekind’s eta-function,

η(z) := q
1

24

∞∏
n=1

(1− qn),

then the elliptic curves y2
= x3
+1 and y2

= x3
−x have the corresponding modular

forms η(6z)4 and η(4z)2η(8z)2, respectively; see [Martin and Ono 1997].

MSC2000: primary 11F11, 11F20, 11G05; secondary 11T24, 33C99.
Keywords: number theory, elliptic curves, eta quotients, hypergeometric functions.
The authors wish to thank the NSF for supporting this research, and Ken Ono and Marie Jameson for
their invaluable advice.
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2 DAVID PATHAKJEE, ZEF ROSNBRICK AND EUGENE YOONG

It is natural to ask which elliptic curves have corresponding modular forms that
are quotients of eta-functions. Martin and Ono [1997] have answered this question
by listing all such eta-quotients

f (z)=
∏
δ

η(δz)rδ (δ, rδ ∈ Z)

which are weight-2 newforms, and they gave corresponding modular elliptic curves.
(For more on the theory of eta-quotients, see [Ono 2004, Section 1.4].)
We show, for certain values of λ ∈ Q \ {0, 1}, that the elliptic curves 2 E1(λ)

defined by

2 E1(λ) : y2
= x(x − 1)(x − λ) (1-1)

correspond to modular forms which are linear combinations of eta-quotients.

Remark. The proof of Theorem 1.1 will make clear how one can generate many
more such examples.

Let

fλ(z) :=
∞∑

n=1
2a1(n; λ)q

n (1-2)

be the weight-2 newform corresponding to the elliptic curve 2 E1(λ). It will be
convenient to express eta-quotients using the notation[∏

δ

δrδ

]
:=

∏
δ

η(δz)rδ . (1-3)

For example, in place of
η(2z)2η(4z)2η(5z)η(40z)

η(z)η(8z)
we write [1−12242518−1401

].

Theorem 1.1. If λ ∈
{ 27

16 , 5, 81
49 ,−

7
25

}
, then 2 E1(λ) corresponds to the modular

forms given here:

λ conductor N eta-quotient fλ(z)

27
16 33 [12112

] + 3 · [32332
] + 3 · [1131111331

]

5 40 [1−12242518−1401
] + [115−18110220240−1

]

81
49 42 2 · [1−122317214−1421

] − 3 · [3161211421
]

+ [21326−17121−1422
] + [113−16214121242−1

]

−
7

25 70 [1−122527−110−114235270−1
] − [122−15−17210214−135−1702

]

We show, for all λ ∈Q \ {0, 1}, that the Fourier coefficients of all fλ(z) satisfy
an interesting hypergeometric congruence. For a prime p and an integer n, define
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ordp(n) to be the power of p dividing n, and if α = a
b ∈ Q, then set ordp(α) =

ordp(a)−ordp(b). We show that with this notation, the numbers 2a1(p; λ) satisfy
the following congruences.

Theorem 1.2. Let λ /∈ {0, 1} be rational and let p = 2 f + 1 be an odd prime such
that ordp(λ(λ− 1))= 0. Then

2a1(p; λ)≡ (−1)
p+1

2 (p− 1)
f∑

k=0

(
f + k

k

)(
f
k

)
(−λ)k (mod p).

Remarks. In light of Theorem 1.1, this implies that the congruence in Theorem 1.2
holds for the coefficients of the linear combinations of eta-quotients given above.

• A well-known theorem of Hasse states that for every prime p,

|a(p)|< 2
√

p.

Theorem 1.2 therefore determines 2a1(p; λ) uniquely for primes p > 16.

Example. Consider λ= 27
16 . Then λ(λ−1)= 33

·11
28 and so for p /∈ {2, 3, 11} prime

we observe the congruence by inspecting the coefficients of 2 E1
( 27

16

)
for applicable

primes p<30, where B(p; λ) is defined to be the right-hand side of the congruence
in Theorem 1.2:

p 2a1

(
p; 27

16

)
B
(

p; 27
16

)
5 −2≡ 3 (mod 5) 3
7 4≡ 4 (mod 7) 4

13 −2≡ 11 (mod 13) 11
17 −2≡ 15 (mod 17) 15
19 0≡ 0 (mod 19) 0
23 8≡ 8 (mod 23) 8
29 −6≡ 23 (mod 29) 23

2. Elliptic curves and modular forms

In this section we prove Theorem 1.1. If E is an elliptic curve over Q, then its
conductor N is a product of the primes p of bad reduction for E , with exponents
determined by the extent to which E is singular over GF(p). (An algorithm by Tate
for computing conductors is given in [Cremona 1997].) Moreover, the modularity
theorem implies that the modular form f (z) corresponding to E is an element of
S2(00(N )). In particular, for an elliptic curve 2 E1(λ), proving the correctness of
any representation of fλ(z) in terms of eta-quotients amounts to checking that the
given eta-quotients are elements of S2(00(N )) and checking a finite number of
coefficients of their Fourier expansions against those of fλ.
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We first provide a formula for the dimension of the space of cusp forms of
weight 2 and level N , S2(00(N )). We then show that the eta-quotients making up
the linear combinations are elements of S2(00(N )) and use the dimension formula
to show that equality of two elements of S2(00(N )) always depends only on some
finite set of coefficients.

The linear combinations of eta-quotients in this paper were generated by the
following algorithm:

(1) Given a rational number λ /∈ {0, 1}, compute the conductor N of 2 E1(λ). (The
modular form corresponding to 2 E1(λ) will be an element of S2(00(N )).)

(2) Compute dimC S2(00(N )).

(3) Generate eta-quotients which are elements of S2(00(N )).

(4) Attempt to construct a basis for S2(00(N )) using these eta-quotients.

Of course, once one is armed with a basis of eta-quotients for S2(00(N )), it is
simple to express fλ(z) in terms of this basis.

Dimension of S2(00(N)). It will be useful to know not only that S2(00(N )) is
finite-dimensional for every positive integer N , but also its exact dimension dN :=

dimC S2(00(N )).
The following formula for dN is a simplification of [Ono 2004, Theorem 1.34],

which gives a formula for the quantity dimC Sk(00(N ),χ)−dimC M2−k(00(N ),χ),
in the case where k = 2 and χ = ε is the trivial character modulo N .

Proposition 2.1. If N is a fixed positive integer and rp := ordp(N ), define

λp :=

{
p

r p
2 + p

r p
2 −1 if rp ≡ 0 (mod 2),

2p
r p−1

2 if rp ≡ 1 (mod 2).

With this notation,

dN = 1 + N
12

∏
p|N

(1 + p−1) −
1
2

∏
p|N

λp −
1
4

∑
x (mod N )

x2
+1≡0 (mod N )

1 − 1
3

∑
x (mod N )

x2
+x+1≡0 (mod N )

1.

Proof. This follows from [Ono 2004, Theorem 1.34], noting that the conductor of
the trivial character is 1 and that M0(00(N ), ε) is the space of constant functions
and hence has dimension 1. �

Proof of Theorem 1.1. Let N be the conductor of E = 2 E1(λ) and let dN =

dimC S2(00(N )) as before. Conditions under which an eta-quotient is an element
of S2(00(N ))) are provided in [Ono 2004, Theorems 1.64 and 1.65]: If f (z) =∏
δ|N η(δz)

rδ is an eta-quotient which vanishes at each cusp of 00(N ), such that
the pairs (δ, rδ) satisfy

∑
δ|N

rδ = 4,
∑
δ|N
δrδ ≡ 0 (mod 24), and

∑
δ|N

N
δ

rδ ≡ 0 (mod 24),
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then f (z) ∈ S2(00(N )). The order of vanishing of such an f (z) at the cusp c
d is

given by [Ono 2004, Theorem 1.65] as

N
24

∑
δ|N

gcd(d, δ)2rδ
gcd(d, N

d )dδ
. (2-1)

It is straightforward to check that the formula above gives a positive order of
vanishing for each eta-quotient at each cusp, that each eta-quotient satisfies the
given congruence conditions, and that the rδ of each eta-quotient sum to 4. These
conditions guarantee that each eta-quotient appearing in the table above lies in
S2(00(N )).

The eta-quotients given for λ = 27
16 form a basis for S2(00(33)). Similarly, for

λ = 5, the given eta-quotients along with [22102
] form a basis; for λ = 81

49 the
given eta-quotients along with [1−122326−17−114221242−1

] form a basis; and for
λ=− 7

25 a complete basis is{
[5272
], [1−1227210114−1351

], [102142
],

[122−1517−1142701
], [122−15−17210214−135−1702

],

[115171351
], [115210−114135−1702

], [51101351701
], [1−122517135−1702

]
}
.

To see this, let gi, j be the j-th Fourier coefficient of the i-th basis vector gi and
define t1 < · · · < tdN to be the first ascending set of indices for which the vectors
{(gi,t j )

dN
j=1}

dN
i=1 are linearly independent. One can find such a sequence by direct

computation of the Fourier coefficients and inspection of the matrices [gi,t j ]
dN
i, j=1

for various choices of small t1 < · · ·< tdN .
Now let vi = (gi,t1, . . . , gi,tdN

) and let b1, . . . , bdN be a basis for S2(00(N )). If
we have h1, h2∈ S2(00(N ))with equal ti -th coefficients, then these coefficients are
zero in the difference h1− h2. But h1− h2 can be written as a linear combination∑

ci bi of basis elements, for constants ci . Hence
∑

civi = 0 in RdN , so by linear
independence all ci = 0, and thus h1 − h2 = 0. It therefore suffices to check that
the coefficients of fλ on q t1, . . . , q tdN match the coefficients that result from the
linear combination of eta-quotients. �

Remark. In practice, these computations can be done using a computer algebra
system such as SAGE.

Example. We show that the modular form corresponding to 2 E1
(27

16

)
is

g(z) := [12112
] + 3 · [32332

] + 3 · [1131111331
].

For convenience, let G = {[12112
], [32332

], [1131111331
]} be the set of eta-

quotients making up the linear combination g(z). The conductor of 2 E1
( 27

16

)
is

33 and so the corresponding modular form f 27
16
(z) is an element of S2(00(33)).
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To show that g(z) is also an element of S2(00(33)), it suffices to show that G ⊂
S2(00(33)). Take gi (z) ∈ G. By [Ono 2004, Theorem 1.64], gi (z) is a modular
form of weight 2 for 00(33). By [Ono 2004, Theorem 1.65], gi (z) vanishes at all
cusps of 00(33), and thus gi (z) ∈ S2(00(33)).

Since ord3(33) = ord11(33) = 1, we have λ3 = λ11 = 2 and evaluation of the
dimension formula in Proposition 2.1 gives

dimC S2(00(33))

= 1 + 33
12

∏
p|33

(1 + p−1) −
1
2

∏
p|33

λp −
1
4

∑
x (mod 33)

x2
+1≡0 (mod 33)

1 − 1
3

∑
x (mod 33)

x2
+x+1≡0 (mod 33)

1

= 1 + 33
12

(
1 + 1

3

) (
1 + 1

11

)
−

1
2(λ3)(λ11) −

1
4(0) −

1
3(0)

= 3.

It remains to show that G is a basis for S2(00(33)). Any dependence relation
satisfied by the elements of G would imply a dependence relation among their
coefficients. It thus suffices to find a set of indices t1 < t2 < t3 such that the 3× 3
matrix formed by the ti -th coefficients of these eta-quotients is nonsingular. For
this particular λ, the first three coefficients suffice.

This implies that any two elements of S2(00(33)) which agree on the first three
coefficients are equal. In fact, we observe that the first three coefficients of the
modular form corresponding to 2 E1

( 27
16

)
are the same as the first three coefficients

of g(z). That is, the coefficients of g(z) = q + q2
− q3
− q4
+ · · · agree with the

coefficients of f 27
16
(z).

3. Gaussian hypergeometric functions and proof of Theorem 1.2

We recall some facts about Gaussian hypergeometric functions over finite fields of
prime order and use the Gaussian hypergeometric function 2 F1

(
φ, φ

ε | λ
)

to prove
Theorem 1.2.

Gaussian hypergeometric functions. Greene [1987] defined Gaussian hypergeo-
metric functions over arbitrary finite fields and showed that they have properties
analogous to those of classical hypergeometric functions. We recall some defini-
tions and notation from [Ono 1998] in the case of fields of prime order.

Definition 3.1. If p is an odd prime, GF(p) is the field with p elements, and A
and B are characters of GF(p), define(

A
B

)
:=

B(−1)
p

J (A, B̄)=
B(−1)

p

∑
x∈GF(p)

A(x)B̄(1− x).



ELLIPTIC CURVES, ETA-QUOTIENTS AND HYPERGEOMETRIC FUNCTIONS 7

Furthermore, if A0, . . . , An and B1, . . . , Bn are characters of GF(p), define the
Gaussian hypergeometric series n+1 Fn

(
A0, A1, ..., An

B1, ..., Bn
| x
)

by the following sum
over all characters χ of GF(p):

n+1 Fn

(
A0, A1, ..., An

B1, ..., Bn
| x
)
:=

p
p− 1

∑
χ

(
A0χ

χ

)(
A1χ

B1χ

)
· · ·

(
Anχ

Bnχ

)
χ(x)

In particular, we are concerned with the Gaussian hypergeometric series 2 F1(λ)

defined by

2 F1(λ) := 2 F1
(
φ, φ

ε | λ
)
=

p
p− 1

∑
χ

(
φχ

χ

)2

χ(λ)

where φ is the quadratic character of GF(p). It is shown in [Ono 1998] that if
λ ∈Q \ {0, 1}, then

2 F1(λ)=−
φ(−1)2a1(p; λ)

p
(3-1)

for every odd prime p such that ordp(λ(λ− 1))= 0.
In addition, define the generalized Apéry number D(n;m, l, r) for every r ∈Q

and every pair of nonnegative integers m and l by

D(n;m, l, r) :=
n∑

k=0

(
n+ k

k

)m(n
k

)l

r lk .

Ono also shows (ibid.) that if p = 2 f + 1 is an odd prime and w = l +m, then

D( f ;m, l, r)≡
(

p
p− 1

)w−1

wFw−1
(
φ, φ, ..., φ

ε, ..., ε | (−r)l
)
(mod p). (3-2)

Proof of Theorem 1.2. By (3-1) and the fact that φ(−1)= (−1)
p−1

2 , we have that

p
p− 1 2 F1(λ)=

(−1)
p+1

2 2a1(p; λ)
p− 1

.

By (3-2), letting l = m = 1 (and thus w = 2) and r =−λ, we have
p

p− 1 2 F1(λ)≡ D ( f ; 1, 1,−λ) (mod p).

Combining these two equations and rearranging, we get

2a1(p; λ)≡ (−1)
p+1

2 (p− 1)D ( f ; 1, 1,−λ) (mod p).

Since

D ( f ; 1, 1,−λ)=
n∑

k=0

(
f + k

k

)(
f
k

)
(−λ)k,
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we have

2a1(p; λ)≡ (−1)
p+1

2 (p− 1)
f∑

k=0

(
f + k

k

)(
f
k

)
(−λ)k (mod p). �

Remark. The binomial product
( f+k

k

)( f
k

)
can be combined into the multinomial

coefficient
( f+k

k, k, f−k

)
and so the congruence in Theorem 1.2 can also be written as

2a1(p; λ)≡ (−1)
p+1

2 (p− 1)
f∑

k=0

(
f + k

k, k, f − k

)
(−λ)k (mod p).
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Trapping light rays aperiodically with mirrors
Zachary Mitchell, Gregory Simon and Xueying Zhao

(Communicated by Joseph O’Rourke)

We construct a configuration of disjoint segment mirrors in the plane that traps
a single light ray aperiodically, providing a negative solution to a conjecture of
O’Rourke and Petrovici. We expand this to show that any finite number of rays
from a source can be trapped aperiodically.

1. Background and statement of results

We consider a point source of light together with a finite collection of disjoint,
double-sided segment mirrors in the plane. Light rays travel from the source in
fixed directions until they contact a mirror, at which point they reflect according to
the laws of geometric optics: the angle of incidence equal to the angle of reflection.
Rays that contact mirror endpoints are assumed to die there, and such rays are called
degenerate. A ray is said to be trapped if it never escapes from the convex hull of
the mirrors. A ray is said to be trapped aperiodically if it reflects at infinitely many
distinct mirror points. Such a ray reflects forever but never retraces its own path.

O’Rourke and Petrovici [2001] asked whether the light rays emanating in every
direction from a point source could be simultaneously trapped in such a system.
The authors show that the set of rays from a source trapped periodically is count-
able; this can also be shown for the set of degenerate rays. The remaining rays
either escape or are trapped aperiodically. Thus, if all the light rays from a point
source are trapped by the mirrors, then there must be uncountably many aperiod-
ically trapped rays. The authors’ conjecture that mirrors cannot trap a light ray
aperiodically would have implied that no mirror system could trap all light from a
point source. We provide a counterexample to this conjecture:

Theorem 1. There is a mirror configuration in the plane that traps a light ray
aperiodically.

David Milovich tells us this was proved independently in 2002 by Ben Stephens,
then a graduate student at MIT, but left unpublished; see [O’Rourke 2005].

MSC2000: 37D50, 78A05.
Keywords: trapping light, mirrors, billiards, dynamical systems.
Funded by NSF REU Award #0502205.
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We then build upon this construction inductively to show:

Theorem 2. For any n ≥ 1, there is a mirror configuration in the plane that traps
n distinct aperiodic rays from a single source.

2. Proofs

The bases for both arguments lie in a fundamental result from mathematical bil-
liards: any billiard path in the square with irrational slope traces out an aperiodic
trajectory [Tabachnikov 2005, pp. 25–26]. Our method is to recreate the dynamics
of the billiard path in the square using disjoint segment mirrors.

Proof of Theorem 1. The construction will focus around the 2× 2 square in the
(x, y)-plane defined by max{|x |, |y|} = 1, i.e., the square with the four vertices
(±1,±1). This will be referred to simply as the square. We begin with two
segment mirrors, the top and bottom of the square. Fix a point p and an angle
θ , measured counterclockwise from horizontal, so that the initial position and di-
rection (p, θ) would define an aperiodic billiard trajectory in the square. Although
this trajectory is aperiodic, it consists of only four distinct directions: θ ,−θ , π−θ ,
and π + θ .

We place six additional mirrors outside the opened square, four horizontal and
two vertical (Figure 1), in such a way that a ray that exits the opened square in one
of these four directions necessarily returns to the same point of the square where it
exited. Such a ray always hits three mirrors (horizontal, vertical, then horizontal)
before returning; thus its direction changes as if it reflects only off of a vertical
mirror. Ignoring the path outside the square, the trajectory behaves as though it
has reflected off the square’s (absent) vertical edge (Figure 2).

A set of mirrors with this property is given explicitly at the end of this proof,
as can be verified by simple trigonometry. Within the square, the light ray (p, θ)
travels as though all four mirrors of the square were in place. In particular, this ray
is trapped aperiodically.

Figure 1. The mirror configuration, along with four strips of
parallel rays, representing all four possible directions of escape,
shown exiting the central square and returning.
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Figure 2. The ray appearing to reflect off the right vertical edge
of the square.

We conclude with the mirror coordinates. Fix h > 0; this parameter gives the
height difference between the top of the square and the height of two higher hori-
zontal mirrors. “P ∼ Q” will denote the closed segment mirror from P to Q. Our
configuration is symmetric about both the x- and y-axes. Coordinates for the three
mirrors that meet the upper right quadrant of the plane are given: (the remaining 5
can be obtained via symmetry)

(−1, 1)∼ (1, 1),

(1+ h | cot θ |, 1+ h)∼ (1+ (h+ 2)| cot θ |, 1+ h),

(1+ (2h+ 2)| cot θ |,−1)∼ (1+ (2h+ 2)| cot θ |, 1). �

Proof of Theorem 2. Suppose 0 < θ1 < π/2 and (p, θ1) is trapped as described
in Theorem 1 in a configuration with h = h1. To trap an additional ray from the
source, we choose another aperiodic direction θ2 and height h2 carefully to ensure
that the new construction does not interact with the old.

Intuitively, we choose θ2 to be very steep, thus when the ray (p, θ2) escapes from
the central square, it will also escape through the gaps of the initial construction. So
for θ2, we require that the initial position and direction (p, θ2) follows an aperiodic
trajectory in the square, that θ1 < θ2 < π/2, and that the ray starting at the bottom
right corner of the square and traveling in the direction θ2 escapes from the original
mirror system without reflections. By symmetry, this guarantees that any ray that
exits the opened square in one of the four possible directions θ2,−θ2, π − θ2, or
π + θ2 will not reflect off any of the original mirrors. By choosing the height
h2 for the horizontal mirrors to be sufficiently large, we can ensure that after the
ray (p, θ2) exits the central square, its path will completely surround the original
mirrors; formally, this is achieved when h2>(h1+1) cot θ1 tan θ2, as can be verified
with straightforward trigonometry.

This will guarantee that the new ray will not hit the original mirrors and that
the new mirrors will not interfere with the original ray. (Compare Figure 1 with
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Figure 3. Examples for the cases n = 2 (left) and n = 3 (right).

the left part of Figure 3). In this way, the two rays are simultaneously trapped
aperiodically.

This process can be continued. If θi and hi (for 1 ≤ i < n) have been chosen
in this way, then choose θn such that (p, θn) follows an aperiodic billiard path in
the square, that θn−1 < θn < π/2, and that the ray from (1,−1) in the direction
θn escapes from the system without reflection. Choose hn large enough to ensure
that the path of the new ray will completely surround the original system — again,
this is accomplished when hn > (hn−1+ 1) cot θn−1 tan θn . The ray (p, θn) is now
trapped aperiodically, as are the previous n− 1 rays. Inductively, we can trap any
finite number of rays aperiodically. �

3. Further remarks

It may be of interest to strengthen the second theorem. In its original form, we
had to choose particular rays which avoided mirrors already in place. This allowed
for an easy inductive proof but can be avoided by a direct approach. The finite
collection of directions (to be trapped aperiodically) can be arbitrary:

Any finite collection of rays from a source can be trapped aperiodically with
finitely many disjoint segment mirrors.



TRAPPING LIGHT RAYS APERIODICALLY WITH MIRRORS 13

We omit a formal proof but offer an outline. By rotating the plane about the point
source, we show that we may assume that each ray’s direction is irrational — that
is, that they have irrational slope. Suppose {θi : 1≤ i ≤ n} is a finite collection of
angles, which we can identify with rays eminating from the source. For 1≤ i ≤ n,
let Ri denote the set of rotations that rotate the plane in such a way that the angle
θi becomes a rational direction after rotation. The set of rational directions is
countable, and given a rational direction ρ, there is a unique rotation sending θi to
ρ. So Ri is in bijection with the set of rational directions, hence Ri is countable.
Thus, the set of all rotations that send any θi to a rational direction is countable,
since it is the finite union

⋃n
i=1 Ri . Because there are uncountably many rotations,

some rotation does not send any θi to a rational direction — so this rotation sends
each θi to an irrational direction. After applying such a rotation, we may assume
that all of the given rays have irrational slopes. Hence (after rotating in such a way)
each follows an aperiodic billiard path in the square.

We then proceed as in Theorem 2, creating n copies of the construction of
Theorem 1. In this case, however, the angles θi are predetermined, so only the
heights hi can be adjusted. This degree of freedom is enough. Intuitively, as
hi increases, the mirror configuration expands. Provided each hi is sufficiently
large and they differ from one another by a sufficiently large amount, the mirror
configurations will not interfere with one another (as in Figure 3). In such a system,
each ray is aperiodically trapped.

These constructions do not answer the larger questions of trapping light (namely,
if all light from a source can be trapped), but they do bring to the forefront some ad-
ditional lines of inquiry. We’ve shown that the cardinality of aperiodically trapped
rays can be any finite number, but must this cardinality be finite? Or, a weaker
statement, must this cardinality be countable? These questions were originally
posed in [O’Rourke and Petrovici 2001]. A positive answer to either would resolve
the larger question of whether all light from a point source can be trapped with
segment mirrors.

We would also like to mention that the approach used to prove Theorem 1 can
be applied to polygons other than the square; our original proof was based on a
quadrilateral with a nonperiodic billiard path constructed in [Galperin 1983].
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A generalization of modular forms
Adam Haque

(Communicated by Ken Ono)

We prove a transformation equation satisfied by a set of holomorphic functions
with rational Fourier coefficients of cardinality 2ℵ0 arising from modular forms.
This generalizes the classical transformation property satisfied by modular forms
with rational coefficients, which only applies to a set of cardinality ℵ0 for a given
weight.

Modular forms play a crucial role in number theory, complex analysis, and ge-
ometry. However, from a set-theoretic point of view, the Q-vector space Mr (0) of
holomorphic modular forms of a given weight r on 0 = SL(2,Z) is only a small
subset of the meromorphic functions of q = e2π i z on the open unit disc D centered
at the origin of the complex plane with rational power series coefficients. This
is because the set of all modular forms of a given weight r with rational Fourier
coefficients is countable (has cardinality ℵ0), as can be seen from the fact that
the algebra of all modular forms on 0 over Q is finitely generated by modular
forms with rational coefficients [Ono 2004]. In contrast, since every meromorphic
function of q = e2π i z on the unit disc D with a pole having at most finite order at
q = 0 can be represented as a power series of the form

g(z)=
∞∑

n=−m

a(n)e2π inz (1)

uniformly convergent on compact subsets of D and conversely, it is clear that the
cardinality of the set of meromorphic or holomorphic functions of q = e2π i z with
rational power series coefficients is 2ℵ0 . We discuss this in more detail in the proof
of Corollary 4 and Proposition 5.

Since modular forms are only a small subset of the set of all meromorphic func-
tions, it is interesting to ask whether or not it is possible to generalize the definition
of modularity so as to encompass a set of functions with cardinality 2ℵ0 , while still

MSC2000: 11F11, 11F30.
Keywords: generalized modular forms, Dirichlet multiplication, cardinality.
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preserving some of the remarkable transformation properties of modular forms.
This can be done by allowing the level of the modular form to become infinite.

To be specific, we consider sequences of elements of SL(2,Z), that is, integer
matrices

(a
c

b
d

)
such that |ad − bc| = 1, where the entries depend on a positive

integer k, which will be suppressed from the notation. We will assume that c
is an increasing (and therefore unbounded) function of k, and that the quotient
d/c approaches a finite limit as k →∞. Note that

(a
c

b
d

)
belongs to the modular

group 00(c)— by definition, 00(N ) consists of the matrices in SL(2,Z) whose
lower left entry is a multiple of N . We let SL(2,Z) act on the upper half-plane
{z ∈ C : Im z > 0} in the usual way:(

a b
c d

)
z = az+b

cz+d
.

Let r be a positive integer. Let g be a meromorphic function on the upper half-
plane with a pole of at most finite order at z = i∞. Suppose there is a sequence
c= c(k)with the property that, for any sequence

(a
c

b
d

)
of the form above consistent

with this choice of c, the function g satisfies the transformation equation(
z+ lim

k→∞

d
c

)r
g(z)= lim

k→∞
c−r g

((
a b
c d

)
z
)
. (2)

In that case we say that g is a generalized modular form of weight r , or a modular
form of weight r and level infinity.

To see that this notion is a generalization of traditional modular forms, consider
a modular form g of weight r and level N , and take for c the sequence given by
c(k)= Nk. Any element of any sequence

(a
c

b
d

)
consistent with this choice of c is

an element of 00(N ); therefore, by the definition of a modular form, g satisfies

(cz+ d)r g(z)= g
((

a b
c d

)
z
)

for all k. Dividing both sides by cr and taking the limit as k→∞ we see that (2)
is satisfied.

We will now see how to create uncountably many generalized modular forms
with rational coefficients. We recall the definition of Dirichlet multiplication for
two sequences {h(n)} and {C(n)}:

(h ∗C)n =
∑
d|n

h(d)C
(n

d

)
We will assume C(1) 6= 0 in order to guarantee the existence of the Dirichlet in-
verse {C−1(n)}, the inverse of the sequence {C(n)} under the operation of Dirichlet
multiplication. For efficient notation, we use {An} and {A(n)} interchangeably for
any sequence {An}. Here is our main result.
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Theorem 1. Let
∞∑

n=1

C(n)e2π inz

be a cusp form of even weight r > 0 on 0 with C(1) 6= 0 and {|h(n)|} ∈ `1 (i.e.,∑
∞

n=1 h(n) is absolutely convergent). Then any holomorphic function on the upper
half-plane of the form

g(z)=
∞∑

n=1

(h ∗C)ne2π inz
=

∞∑
n=1

∑
d|n

h(d)C
(n

d

)
e2π inz (3)

is a holomorphic generalized modular form of weight r and level infinity that sat-
isfies the transformation equation(

z+ lim
c(k)→∞

d
c

)r
g(z)= lim

c(k)→∞
c−r g

((
a b
c d

)
z
)
; (4)

here
(a

c
b
d

)
∈ 00(c) with c(k)= lcm(1, 2, 3, . . . , k). Thus g(z) satisfies an approxi-

mate modular transformation equation, with its accuracy increasing as c(k)→∞.
Here we define (4) to be such an approximate modular transformation equation.

This theorem generalizes the result

f
(az+b

cz+d

)
= (cz+ d)r f (z)

when h(n) in (3) is the identity element of Dirichlet multiplication I (n), since in
this case g(z) is a cusp form by definition:

g(z)=
∞∑

n=1

(I ∗C)ne2π inz
=

∞∑
n=1

C(n)e2π inz,

(
z+ d

c

)r
g(z)= c−r g

((
a b
c d

)
z
)
.

Of course, in this case {|I (n)|}∈`1 since I (n)=0 for n>1, and thus the hypotheses
of Theorem 1 are satisfied. We also note that

(a
c

b
d

)
z approaches the real line as

c(k)→∞, since
(a

c
b
d

)
∈ 00(c) implies

az+b
cz+d

=
a
c
−

1
c(cz+d)

, lim
c(k)→∞

Im az+b
cz+d

= 0.

Proof. We prove Theorem 1 using series of modular forms. In particular we use
the cusp form of weight r on 0 given by

f (z)=
∞∑

n=1

C(n)e2π inz,
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where {C(n)} is any cusp form coefficient sequence. It is well known that there
exist functions that are analytic in the upper half-plane and satisfy the functional
equation

f
(az+ b

cz+ d

)
= (cz+ d)r f (z),

where
(a

c
b
d

)
∈0 and ad−bc= 1 (0 being the modular group). From this property,

it is easy to see that if n divides c, that is, if
(a

c
b
d

)
∈00(n), then for positive integer

n we have
f
(

n
az+ b
cz+ d

)
= (cz+ d)r f (nz).

The Fourier expansion for f (mz)

f (mz)=
∞∑

n=1

C(n)e2π imnz

is absolutely convergent in the upper half-plane, since C(n) = O(nr/2) by a stan-
dard argument of Hecke [Apostol 1990]. Assuming Am = O(m p) for some natural
number p we note that the double series

∞∑
m=1

Am f (mz)=
∞∑

m=1

∞∑
n=1

AmCne2π imnz

is absolutely convergent, since both sequences Am and Cn are bounded by poly-
nomials, while of course e2π imnz decays exponentially in absolute value as m or n
increases. Hence rearrangement is justified and we can write

∞∑
m=1

Am f (mz)=
∞∑

n=1

∑
d|n

A(d)C
(n

d

)
e2π inz

=

∞∑
n=1

(A ∗C)ne2π inz.

We also need the identity

e2π i z
=

∞∑
m=1

C−1(m) f (mz) (5)

where C−1(m) is the Dirichlet inverse of the cusp form coefficients. Assuming
absolute convergence, identity (5) follows easily from the following rearrangement:

∞∑
m=1

C−1(m) f (mz)=
∞∑

m=1

∞∑
n=1

C−1(m)C(n)e2π imnz

=

∞∑
n=1

(C−1
∗C)ne2π inz

= e2π i z.
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To prove absolute convergence it is sufficient to prove that C−1(m) is bounded by
a polynomial in m. This follows from the fact that C(n)= O(nr/2) [Apostol 1990],
together with the following lemma:

Lemma 2. If a sequence {C(n)} ⊆ C with C(1) 6= 0 is bounded by a polynomial
in n, then its Dirichlet inverse C−1(m) is also bounded by a polynomial in n.
In symbols, if |C(n)| = O(nd1) for some d1 ∈ R, there exists d2 ∈ R such that
|C−1(n)| = O(nd2).

Proof. We prove this by induction. If |C(n)| = O(nd1), then letting |C(1)| = P ,
we find that there exists k ∈ R such that |C(n)| ≤ Pnk for any positive integer n.
We use the standard recursive definition

C−1(n)=−
1

C(1)

∑
d|n
d<n

C
(n

d

)
C−1(d), (6)

which is equivalent to (C ∗ C−1)n = I (n), where I (n) is the identity element of
Dirichlet multiplication. We find that |C(1)| = P implies |C−1(1)| = 1/P . We
make the inductive hypothesis

|C−1(d)| ≤
1
P

dk+2 for all d < n, d ∈ N.

Using the recursive definition (6) we obtain

|C−1(n)| ≤
∣∣∣ 1
C(1)

∣∣∣ ∑
d |n
d<n

∣∣∣C(n
d

)∣∣∣|C−1(d)| ≤
∣∣∣ 1
C(1)

∣∣∣ ∑
d |n
d<n

(n
d

)k
dk+2
≤

1
P

nk
∑
d |n
d<n

d2.

So,

|C−1(n)| ≤
1
P

nk
∑
d |n
d<n

d2
=

1
P

nk+2
∑
d|n
d>1

1
d2 ≤

1
P

nk+2(ζ(2)− 1)≤
1
P

nk+2,

where ζ(s) is the Riemann zeta function. It follows that

|C−1(n)| ≤
1
P

nk+2,

and this completes the induction. �

Any complex analytic function J (q) can be written as a power series for q in
the open unit disc D centered at q = 0:

J (q)=
∞∑

n=0

Anqn.

Making the substitution q = e2π i z with J (e2π i z) = g(z) and assuming J (0) = 0
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for convenience, we find

g(z)=
∞∑

n=1

Ane2π inz.

Using the absolute convergence of

e2π inz
=

∞∑
m=1

C−1(m) f (mnz)

in the upper half-plane, and assuming An is bounded by a polynomial in n, we use
rearrangement of series to write

∞∑
n=1

(A ∗C−1)n f (nz)=
∞∑

m=1

∞∑
n=1

(A ∗C−1)nCme2π imnz

=

∞∑
n=1

(A ∗C−1
∗C)ne2π inz

=

∞∑
n=1

Ane2π inz
= g(z).

This is justified by the discussion above and Lemma 2, which imply that all the
series above are absolutely convergent. Now consider the partial sums of the series

gk(z)=
k∑

n=1

(A ∗C−1)n f (nz).

From this definition, assuming z = x + iy, we have

|g(z)− gk(z)| = O(e−2πky). (7)

This is because the cusp forms f (nz) decay exponentially as n increases [Shimura
2007], so there exists M ∈ R+ such that | f (nz)| < Me−2πny for all n. Hence, as
k→∞ we have by the triangle inequality:

|g(z)− gk(z)| =
∣∣∣∣ ∞∑
n=k+1

(A ∗C−1)n f (nz)
∣∣∣∣

< Me−2πky
∞∑

n=1

(A ∗C−1)ne−2πny
= O(e−2πky).

From the functional equation f
(

n az+b
cz+d

)
= (cz+d)r f (nz), valid if n|c and ad−

bc = 1, we obtain(
z+ d

c

)r
gk(z)= c−r

k∑
n=1

(A ∗C−1)n f
(

n az+b
cz+d

)
, ad − bc = 1,

by choosing c(k) = lcm[1, 2, 3, . . . , k].
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Given this c, we can always choose a, b, d such that
(a

c
b
d

)
∈ 00(n) for all n ≤ k

and with d/c approaching a finite limit as k→∞. For example, one can take
( 1

c
0
1

)
or, more generally, (

a b
c d

)
=

(
cν+ 1 −cν2

c −cν+ 1

)
for some integer ν. Hence, we can write(

z+ d
c

)r
gk(z)= c−r

k∑
n=1

(A ∗C−1)n f
(

n
(

a b
c d

)
z
)
. (8)

This approach, however, does not work for arbitrary holomorphic functions f (z)
since the error term

c−r
∞∑

n=k+1

(A ∗C−1)n f
(

n
(

a b
c d

)
z
)

diverges as k and c approach∞. One way to circumvent this difficulty is to choose
an sequence of real numbers h(n) with {|h(n)|} ∈ `1, and set

An = (h ∗C)n, or, equivalently, (A ∗C−1)n = h(n), (9)

so that

g(z)=
∞∑

n=1

(h ∗C)ne2π inz. (10)

In this case, An is bounded by a polynomial in n and the error term is

c−r
∞∑

n=k+1

h(n) f
(

n
(

a b
c d

)
z
)
.

Lemma 3. Let
(a

c
b
d

)
be a sequence as on page 16. As c→∞, we have∣∣∣∣ f

(
n
(

a b
c d

)
z
)∣∣∣∣< Mn−r/2 |cz+ d|r

(Im z)r/2
,

where the constant M does not depend on n, a, b, d.

Proof. Since f is a cusp form of weight r , we have

| f (z)| (Im z)r/2 < M (11)

in the upper half-plane, for some bound M > 0. We sketch the proof; see [Apostol
1990] for details. Let ϕ(z)= | f (z)| (Im z)r/2 First, ϕ(z)→ 0 as Im z→+∞, since
f decays exponentially with Im z, and therefore faster than any polynomial. By
compactness, then, ϕ(z) must be bounded in the fundamental region{

z : Im z > 0, |z| ≥ 1, Re z ≤ 1
2

}
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for the action of the modular group 0 on the upper half-plane. But ϕ is invariant
under 0 (basically because Im z acts like the absolute value of a modular form of
weight −2, so the weights cancel out). Thus the value of ϕ at any point z equals
its value at some point in the fundamental domain, and is therefore bounded.

From (11) we can write∣∣∣∣ f
(

n
(

a b
c d

)
z
)∣∣∣∣(Im

(
n
(

a b
c d

)
z
))r/2

< M.

Since (
Im
(

n
(

a b
c d

)
z
))r/2

= |cz+ d|−r nr/2(Im z)r/2,

we obtain the desired inequality. �

We recall that r > 0 for holomorphic cusp forms [Apostol 1990]. Thus, if
{|h(n)|} ∈ `1, the error term

c−r
∞∑

n=k+1

h(n) f
(

n
(

a b
c d

)
z
)

is clearly absolutely convergent and approaches 0 as k→∞. Hence, from (7), (8),
and (9), we have successively(

z+ d
c

)r
gk(z)= c−r

∞∑
n=1

h(n) f
(

n
(

a b
c d

)
z
)
+ O(ε(k)), , (12)

for some function ε(k) satisfying limk→∞ ε(k)= 0. This leads to(
z+ d

c

)r
g(z)= c−r

∞∑
n=1

h(n) f
(

n
(

a b
c d

)
z
)
+ O(ε(k))+ O(e−2πky),

(
z+ d

c

)r
g(z)= c−r

∞∑
n=1

h(n) f
(

n
(

a b
c d

)
z
)
+ O(ε(k)).

From (12) we obtain, using the Fourier expansion f (nz) =
∞∑

m=1
C(m)e2π imnz

and absolute convergence to justify rearrangements,(
z+ d

c

)r
g(z)= c−r

∞∑
m=1

∞∑
n=1

h(n)C(m)e2π imn
(

a
c

b
d
)

z
+ O(ε(k))

= c−r
∞∑

n=1

(h ∗C)ne2π in
(

a
c

b
d
)

z
+ O(ε(k)).

From (10) we have(
z+ lim

c(k)→∞

d
c

)r
g(z)= lim

c(k)→∞
c−r g

((
a b
c d

)
z
)
,
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with c(k)= lcm(1, 2, 3, . . . , k), which completes the proof of Theorem 1. We note
that g(z) is holomorphic in the upper half-plane since |h(n)|} ∈ `1 and C(n) =
O(nr/2) result in uniform convergence of the series (10) on compact subsets. �

Corollary 4. If there exists a cusp form of even weight r over Q with C(1) 6= 0,
then the set G of generalized modular forms of weight r and level infinity with
rational coefficients has cardinality 2ℵ0 :

|G| = 2ℵ0 .

Proof. This follows from Theorem 1, which implies that, for all {h(n)} such that
{|h(n)|} ∈ `1,

g(z)=
∞∑

n=1

(h ∗C)ne2π inz

is a generalized modular form of weight r over Q, assuming that {C(n)} is the
rational Fourier coefficient sequence of a weight r cusp form with C(1) 6= 0.

Now let
A = (Q[0, 1])N =

{
(a : N→Q[0, 1])

}
be the set of sequences {a(n)} with a(n) ∈ Q[0, 1] for n ∈ N. We recall from set
theory that |Q[0, 1]| = ℵ0 and |(Q[0, 1])N| = ℵℵ0

0 = 2ℵ0 [Jech 1997]. Further, let

B =
{
{h(n)} ∈ A : {|h(n)|} ∈ `1}

be the subset of A consisting of sequences whose sum converges absolutely. We
know that {a(n)}∈ A implies {a(n)/n2

}∈ B, since |a(n)|≤1 and by the comparison
test for series and the absolute convergence of

∑
∞

n=1 1/n2. Thus the mapping
{a(n)} → {a(n)/n2

} defines an injection β : A→ B.
Next, Theorem 1 implies that there exists an injection γ : B→ G, which sends

a sequence {h(n)} ∈ B to

g(z)=
∞∑

n=1

(h ∗C)ne2π inz,

with g(z) ∈ G. The composite map γβ : A→ G thus defines an injection from
A to G, as long as

∑
∞

n=1 C(n)e2π inz is a cusp form of weight r with C(1) 6= 0.
Hence |G| ≥ 2ℵ0 = |A|.

At the same time, there is an injection from G into the set S of all formal power
series of q = e2π i z over Q. This set has the same cardinality as the set QN of maps
N→ Q. Hence |S| = |QN

| = ℵ
ℵ0
0 = 2ℵ0 . We conclude that |G| ≤ 2ℵ0 . Hence

|G| = 2ℵ0 . �

We note that Corollary 4 holds for r = 12 and all even r ≥ 16. This is because
the standard 1(z) function is a cusp form of weight 12 with C(1) 6= 0, and for
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even r ≥ 16 an example of such a cusp form is 1(z)Er−12(z) with Er−12(z) an
Eisenstein series.

Proposition 5. Mr (0) has cardinality ℵ0 as a vector space over Q.

Proof. This follows from the result that every entire modular form f ∈ Mr (0) is a
polynomial of the form [Ono 2004]

f =
∑

4a+6b=r

ca,bGa
4Gb

6,

where G4 and G6 are Eisenstein series with integer coefficients, ca,b ∈ C, and
a, b ∈ Z+. If f has rational coefficients, then we conclude ca,b ∈Q since G4 and
G6 have integer coefficients. Algebraically, this implies the following vector space
isomorphism over Q:

Mr (0)∼=Qdim Mr (0).

It is a well-known theorem in set theory that Q is countable, and in general the
Cartesian products of any finite number of countable sets is countable [Jech 1997].
Thus, we conclude Mr (0) over Q has cardinality ℵ0. These results allow us to
gauge the strength of Theorem 1, which generalizes the notion of modularity to
encompass a much larger set of holomorphic functions than the classical entire
modular forms. �
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Induced subgraphs of Johnson graphs
Ramin Naimi and Jeffrey Shaw

(Communicated by Jerrold Griggs)

The Johnson graph J (n, N ) is defined as the graph whose vertices are the n-
subsets of the set {1, 2, . . . , N }, where two vertices are adjacent if they share
exactly n − 1 elements. Unlike Johnson graphs, induced subgraphs of Johnson
graphs (JIS for short) do not seem to have been studied before. We give some
necessary conditions and some sufficient conditions for a graph to be JIS, includ-
ing: in a JIS graph, any two maximal cliques share at most two vertices; all trees,
cycles, and complete graphs are JIS; disjoint unions and Cartesian products of
JIS graphs are JIS; every JIS graph of order n is an induced subgraph of J (m, 2n)
for some m ≤ n. This last result gives an algorithm for deciding if a graph is JIS.
We also show that all JIS graphs are edge move distance graphs, but not vice
versa.

1. Introduction

We work with finite, simple graphs. Let F = {S1, . . . , Sm} be a family of finite
sets. The intersection graph of F , denoted �(F), is the graph whose vertices
are the elements of F , where two vertices Si and S j , i 6= j , are adjacent if they
share at least one element. More generally, for a fixed positive integer p, the
p-intersection graph of F , denoted �p(F), is the graph whose vertices are the
elements of F , where two vertices are adjacent if they share at least p elements.
(Thus �p(F) is a subgraph of �1(F) = �(F).) McKee and McMorris [1999]
give an extensive and excellent survey of intersection graphs, which also includes
a section on p-intersection graphs. Here we narrow attention to p-intersection
graphs of families of (p + 1)-sets, so that two vertices Si and S j are adjacent if
|Si ∩ S j | = |Si | − 1= |S j | − 1, i.e., Si and S j differ by exactly one element.

Another way to view these graphs is as induced subgraphs of Johnson graphs.
Given positive natural numbers n≤ N , the Johnson graph J (n, N ) is defined as the
graph whose vertices are the n-subsets of the set {1, 2, . . . , N }, where two vertices
are adjacent if they share exactly n− 1 elements. Hence a graph G is isomorphic

MSC2000: 05C62.
Keywords: Johnson graph, intersection graph, distance graph.

25

http://www.mathscipub.org/
http://pjm.math.berkeley.edu/inv
http://dx.doi.org/10.2140/involve.2012.5-1


26 RAMIN NAIMI AND JEFFREY SHAW

to an induced subgraph of a Johnson graph if and only if it is possible to assign,
for some fixed n, an n-set Sv to each vertex v of G such that distinct vertices have
distinct corresponding sets, and vertices v and w are adjacent if and only if Sv and
Sw share exactly n− 1 elements. When this happens, we say the family of n-sets
F = {Sv : v ∈ V (G)} realizes G as an induced subgraph of a Johnson graph, which
we abbreviate by saying G is JIS. Thus, F realizes G as a JIS graph if and only if
G is isomorphic to �n−1(F), which in turn is isomorphic to an induced subgraph
of J (n, N ), where N =

∣∣⋃
S∈F S

∣∣.
Although there is a considerable amount of literature written on Johnson graphs,

we have not been able to find any on their induced subgraphs. It would be desirable
to obtain “nice” necessary and sufficient conditions for when a graph is JIS. In this
paper, we only give some necessary conditions and some sufficient conditions.

A clique in a graph G is a complete subgraph of G. A clique L in G is called
a maximal clique, or a maxclique for short, if there is no larger clique L ′ ⊆ G
that contains L . In Section 2 we describe how the maxcliques of a graph play a
role in whether or not it is JIS. In particular, Proposition 2(1) states that any two
distinct maxcliques in a JIS graph can share at most two vertices. It follows, for
example, that the graph “K5 minus one edge” is not JIS, since it contains two
maximal 4-cliques that share three vertices.

The conditions given in Section 2 are necessary, but not sufficient, for a graph to
be JIS. In Section 3 we show that the complete bipartite graph K2,3, as well as a few
other graphs, satisfy all these necessary conditions but are not JIS. In Section 3 we
also give some sufficient conditions for a graph to be JIS, including the following:

• All complete graphs and all cycles are JIS.

• A graph is JIS if and only if all its connected components are JIS.

• The Cartesian product of two JIS graphs is JIS.

Despite not having a “nice” characterization of JIS graphs, for any graph G the
question “Is G JIS?” is decidable; this follows from Theorem 10, which says that
every JIS graph of order n is isomorphic, for some m ≤ n, to an induced subgraph
of the Johnson graph J (m, 2n). In other words, every JIS graph of order n can,
for some m ≤ n, be realized by m-subsets of {1, 2, . . . , 2n}. This gives us a simple
(albeit slow) algorithm for determining if a graph G is JIS: Do an exhaustive search
among all n-families of m-subsets of {1, . . . , 2n}, where n is the order of G and
m ≤ n, to see if any of them realizes G as a JIS graph.

The p-intersection number of a graph G is defined as the smallest k such that
G is isomorphic to the p-intersection graph of a family of subsets of {1, . . . , k}
([McKee and McMorris 1999], p. 91). Thus, an immediate corollary of Theorem 10
is that every JIS graph of order n has, for some m≤ n, (m−1)-intersection number
at most 2n.
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In the final section of this paper we discuss edge move distance graphs and their
relationship to JIS graphs.

2. Maxcliques in JIS Graphs

Given n-sets S1, . . . , Sk with n ≥ 1 and k ≥ 2, we say they share an immediate
subset if

∣∣⋂k
i=1 Si

∣∣= n−1. Similarly, S1, . . . , Sk share an immediate superset if∣∣⋃k
i=1 Si

∣∣= n+ 1. Observe that for k = 2, S1 and S2 share an immediate subset if
and only if they share an immediate superset: |S1∪ S2| = |S1|+ |S2|− |S1∩ S2| =

2n−|S1∩S2|; hence |S1∪S2|= n+1 if and only if |S1∩S2|= n−1. We begin with
the following elementary result on realizations of complete graphs as JIS graphs.

Lemma 1. Let S1, . . . , Sk be n-sets that pairwise share an immediate subset, where
n ≥ 1 and k ≥ 3. Then S1, . . . , Sk share an immediate subset or an immediate
superset, but not both.

Proof. We first show that for k ≥ 3, if S1, . . . , Sk share an immediate subset, then
they do not share an immediate superset. Suppose T = S1 ∩ · · · ∩ Sk has n − 1
elements. Then, for each i , Si \ T has exactly one element, xi . For all j 6= i ,
xi 6∈ S j since Si 6= S j . It follows that S1 ∪ · · · ∪ Sk has at least n− 1+ k ≥ n+ 2
elements, since k ≥ 3. Thus S1, . . . , Sk do not share an immediate superset.

Now suppose S1, . . . , Sk pairwise share an immediate subset. We use induction
on k to prove that they share an immediate subset or an immediate superset.

Assume k = 3. Let T = S1 ∩ S2. If T ⊂ S3, then |S1 ∩ S2 ∩ S3| = |T | = n− 1,
and we’re done. So assume T 6⊂ S3. Note that |S1 \ T | = |S2 \ T | = 1. Hence,
for S3 to share n− 1 elements with each of S1 and S2, it must contain an (n− 2)-
subset of T , as well as S1 \ T and S2 \ T , and no other elements. It follows that
|S1 ∪ S2 ∪ S3| = n+ 1, as desired.

Now assume k ≥ 4. Then, by our induction hypothesis, S1, . . . , Sk−1 share an
immediate subset or an immediate superset; and similarly for S2, . . . , Sk . We have
four cases:

Case 1: S1, . . . , Sk−1 share an immediate subset and S2, . . . , Sk share an immediate
subset. Then S1, . . . , Sk share S2 ∩ S3 as an immediate subset.

Case 2: S1, . . . , Sk−1 share an immediate superset and S2, . . . , Sk share an imme-
diate superset. Then S1, . . . , Sk share S2 ∪ S3 as an immediate superset.

Case 3: S1, . . . , Sk−1 share an immediate subset and S2, . . . , Sk share an immediate
superset. Let T = S1 ∩ · · · ∩ Sk−1. Then, for 1 ≤ i ≤ k − 1, Si \ T has exactly
one element, xi ; and, for 1 ≤ j ≤ k − 1 with j 6= i , xi 6∈ S j since Si 6= S j . Since
|S2 ∪ · · · ∪ Sk | = n+ 1= |S2 ∪ S3|, Sk is a proper subset of S2 ∪ S3 = T ∪ {x2, x3}.
And since S2, S3, Sk share an immediate superset, they do not share an immediate
subset; hence T 6⊂ Sk . This implies that x2, x3 ∈ Sk since Sk has n elements and



28 RAMIN NAIMI AND JEFFREY SHAW

T ∪ {x2, x3} has n + 1 elements. But x2, x3 6∈ S1, so |S1 ∩ Sk | < n − 1, which
contradicts the hypothesis of the lemma.

Case 4: S1, . . . , Sk−1 share an immediate superset and S2, . . . , Sk share an imme-
diate subset. This case is similar to Case 3. �

We now use Lemma 1 to establish restrictions on how maxcliques in a JIS graph
can intersect or connect to each other by edges.

Proposition 2. Suppose G is JIS and L and L ′ are distinct maxcliques in G.

(1) L and L ′ share at most two vertices.

(2) If L and L ′ share exactly two vertices, then no vertex in V (L) \ V (L ′) is
adjacent to a vertex in V (L ′) \V (L).

(3) If L and L ′ share exactly one vertex, then each vertex in either of the two sets
V (L) \V (L ′) and V (L ′) \V (L) is adjacent to at most one vertex in the other
set.

Proof. Let {Sv : v ∈ V (G)} be a family of n-sets that realizes G as a JIS graph.

(1) Suppose towards contradiction that L and L ′ are distinct maxcliques that share
three (or more) vertices, u, v, and w. Let x be a vertex of L not in L ′, and x ′

a vertex of L ′ not in L; x and x ′ exist since L and L ′ are distinct and maximal.
Then, by Lemma 1, the sets Sx , Su , Sv, and Sw share an immediate subset or an
immediate superset. Similarly for Sx ′ , Su , Sv, and Sw. But Su , Sv, and Sw cannot
share both an immediate subset and an immediate superset. It follows that Sx and
Sx ′ share an immediate subset or an immediate superset, which implies that x and
x ′ are adjacent. Hence every vertex of L is adjacent to every vertex of L ′, but this
contradicts the assumption that L is a maxclique in G.

(2) Let L and L ′ be distinct maxcliques that share exactly two vertices, v and w.
Suppose towards contradiction that there exist adjacent vertices x ∈ V (L) \V (L ′)
and x ′ ∈ V (L ′)\V (L). Then the induced subgraph of G containing {x, x ′, v, w} is
a 4-clique. Let L ′′ be the maxclique that contains this 4-clique. Then L ′′ is distinct
from L and shares at least three vertices with it. This contradicts (1).

(3) The proof is similar to the proof of (2). Let L and L ′ be distinct maxcliques
that share exactly one vertex, v. Suppose towards contradiction that there exist
vertices x ∈ V (L) \V (L ′) and x ′, y′ ∈ V (L ′) \V (L) with x adjacent to x ′ and
y′. Then the induced subgraph of G containing {x, x ′, y′, v} is a 4-clique, and the
maxclique that contains this 4-clique is distinct from L ′ and shares at least three
vertices with it. This contradicts (1). �

Proposition 3. Suppose L1, . . . , Lk , where k is odd and at least 3, are distinct
maxcliques in a graph G such that L i shares exactly two vertices with L i+1 for
1≤ i ≤ k− 1, and Lk shares exactly two vertices with L1; then G is not JIS.
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Proof. In the following, L i+1 refers to L1 whenever i = k. Suppose towards contra-
diction that G is realized as a JIS graph by a family of n-sets. Note that each L i has
at least three vertices, since otherwise it would not be distinct from L i+1. Hence, by
Lemma 1, we can label each L i as either “sub” or “super” according to whether the
n-sets assigned to its vertices share an immediate subset or an immediate superset.
Then, since k is odd, there exists a j such that L j and L j+1 have the same label.
Now, L j and L j+1 share two vertices; therefore the n-sets assigned to their vertices
must all share the same immediate subset or immediate superset, which makes all
vertices in L j adjacent to those in L j+1, giving a contradiction. �

An equivalent way of stating the above result is: One can label every maxclique
in a JIS graph with a + or − (or any two symbols) in such a way that any two
maxcliques that share two vertices have distinct labels.

3. Miscellaneous JIS and non-JIS graphs

In this section we give some sufficient conditions for when a graph is JIS. We
also describe some graphs that satisfy all the conditions listed in the results of the
previous section as necessary for a graph to be JIS, but are not JIS.

Proposition 4. All complete graphs and all cycles are JIS.

Proof. For each n, Kn is realized as a JIS graph by the 1-sets {1}, {2}, . . . , {n}. For
each n ≥ 3, the n-cycle is realized as a JIS graph by the 2-sets {1, 2}, {2, 3}, . . . ,
{n−1, n}, {n, 1}. �

We define the n-core of a graph G as the graph obtained by recursively removing
all vertices of degree less than n until there are none left.

Proposition 5. A graph is JIS if and only if its 2-core is JIS.

Proof. Suppose G is obtained from a graph G ′ by removing exactly one vertex, w,
which has degree 0 or 1. By induction, it is enough to show that G is JIS if and
only if G ′ is JIS. Clearly, if G ′ is JIS, then so is G, since any induced subgraph of
a JIS graph is JIS. To prove the converse, suppose G is JIS. Let {Sx : x ∈ V (G)}
be n-sets that realize G as a JIS graph. Pick distinct a and b that are not in any
of the sets Sx . For each x ∈ V (G), let S′x = Sx ∪ {a}. Let S′w = Sv ∪ {b}, where
v ∈ V (G ′) is arbitrary if w has degree 0, and v is adjacent to w if w has degree 1.
Then {S′x : x ∈ V (G ′)} are (n+1)-sets that realize G ′ as a JIS graph, as desired. �

It follows as a trivial corollary that all trees are JIS.

Proposition 6. A graph is JIS if and only if all its connected components are JIS.

Proof. One direction is trivial: every induced subgraph of a JIS graph, and in par-
ticular every connected component of it, is JIS. We prove the converse by induction
on the number of components of G.
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Base step: Suppose that G has two components, Gi , i = 1, 2, each realized as
a JIS graph by a family of sets Fi . We can assume without loss of generality that
each set in F1 is disjoint from each set in F2.

We would like each set in F1 to have the same size as each set in F2, in order to
obtain F1 ∪ F2 as a family that realizes G as a JIS graph. If this is not already so,
we proceed as follows. Let mi denote the number of elements in each set in Fi .
We can assume n1 > n2. Now add the first n1− n2 elements of the first set in F1

to every set in F2.
Once the sets in the two families all have the same size, we must make sure that

sets corresponding to vertices in different components of G do not share immediate
subsets. This will automatically be true for sets that had two or more elements
before any extra elements were added to them (since we started with the sets in F1

disjoint from those in F2), but not for singletons. We remedy this by adding, for
each i , an element ei to every set in Fi , where e1 and e2 are distinct elements not
already in any set in any Fi . It is now easy to verify that F1 ∪ F2 realizes G as a
JIS graph.

The inductive step follows trivially from the base step. �

Proposition 7. The Cartesian product of two JIS graphs is JIS.

Proof. Let G and G ′ be JIS graphs that are realized, respectively, by sets {Sx : x ∈
V (G)} and {S′x ′ : x

′
∈ V (G ′)}. We can assume without loss of generality that every

Sx is disjoint from every S′x ′ .
For each vertex v = (x, x ′) ∈ V (G × G ′), let Tv = Sx ∪ S′x ′ . By definition,

two vertices v = (x, x ′) and w = (y, y′) of G × G ′ are adjacent if and only if
x = x ′ and y is adjacent to y′ or y = y′ and x is adjacent to x ′. Thus, Tv and
Tw share an immediate subset if and only if v and w are adjacent. Hence the sets
{Tv : v ∈ G×G ′} realize G×G ′ as a JIS graph. �

Proposition 8. The complete bipartite graph K2,3 is not JIS.

Proof. Label the two degree-3 vertices of K2,3 as v and w, and the three degree-2
vertices as x , y, and z, as in Figure 1. Suppose towards contradiction that there
exists a family of n-sets {Su : u ∈ V (K2,3)} that realizes K2,3 as a JIS graph. Since
v and w have distance two (where distance is the number of edges in the shortest

v w

x y z

Figure 1. K2,3 with labeled vertices.
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path joining the two vertices), Sv and Sw must share exactly n− 2 elements (this
does not work for distance ≥ 3; it works only for distance ≤ 2). Let T = Sv ∩ Sw.
Then, since each of x , y, and z is adjacent to both v andw, Sx , Sy , and Sz must each
contain T as a subset. Therefore, by subtracting T from every Su, u ∈ V (K2,3), we
get a family of 2-sets that realizes K2,3. Hence we will assume that every Su has
exactly two elements. It follows that Sv and Sw are disjoint; and Sx , Sy , and Sz are
pairwise disjoint and each shares exactly one element with each of Sv and Sw.

So, without loss of generality, Sv = {1, 2}, and Sw = {3, 4}. Therefore, again
without loss of generality, Sx = {1, 3}, and Sy = {2, 4}. And there is nothing left
for Sz . �

The graph K2,3 can be thought of as two 4-cycles that share three vertices. So
one may wonder whether the graph θn consisting of two n-cycles that share n− 1
vertices is also not JIS. It turns out that θn is not JIS only for n = 4 and n = 5.
The proof that θ5 is not JIS is very similar to the proof that K2,3 is not JIS, and we
therefore omit it. The proof that θn is JIS for n≥6 is a straightforward construction,
which we also omit.

One may also wonder whether K2,3 becomes JIS if an edge is added to it. There
are, up to isomorphism, two ways to add an edge to K2,3: add an edge that connects
the two degree-3 vertices; or add an edge that connects two of the three degree-2
vertices. It turns out that neither of these two graphs is JIS. The proof that the
former graph is not JIS follows immediately from Proposition 3. The proof that
the latter graph (which we call 12) is not JIS is given below in Proposition 9.

The graphs1i depicted in Figure 2 have the following pattern (ignore the vertex
labels and the + and − signs for now; they are used later): 1i consists of a chain
of i “consecutively adjacent” triangles, plus one vertex which is connected to the
two vertices of degree 2 in the triangle chain. It turns out that, like K2,3, 12, 14,
and 16 satisfy the necessary conditions in the results of the previous sections for
being JIS, but are not JIS; 13 and 15, however, are JIS. We prove these claims
below, except for16: its proof is similar to that of12 and14, but is more tedious,
and in our opinion not worth being included here. We did not check which 1i are
JIS for i ≥ 7, but, from the pattern for i ≤ 6, it seems that:

Conjecture. 1i is JIS if and only if i is odd.

Proposition 9. (i) The graphs 12 and 14 are not JIS. (ii) The graphs 13 and 15

are JIS.

Remark. As mentioned above,12 is isomorphic to K2,3 plus an edge that connects
two of its three degree-2 vertices. Because of this, the proof that K2,3 is not JIS
can be easily modified to prove that 12 is not JIS. However, we give a different
proof below, one that can be naturally extended to also prove that 14 (and 16) is
not JIS.
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Proof. Label the vertices of 12 as v1, . . . , v5, as in Figure 2. The + and − signs
will be explained shortly. Suppose, towards contradiction, that 12 can be realized
as a JIS graph by sets S1, . . . , S5 (for simplicity, we write Si instead of Svi ). Each
of the two triangles in 12 is a maxclique. Thus, by Lemma 1, S1, S2, and S3 must
share an immediate subset or an immediate superset; similarly for S2, S3, and S4.
Furthermore, S1, S2, and S3 share an immediate subset if and only if S2, S3, and
S4 share an immediate superset, because: if S1, S2, and S3 share an immediate
subset and S2, S3, and S4 also share an immediate subset, then S1 and S4 must
share S2 ∩ S3 as an immediate subset, but this contradicts the fact that v1 and v4

are not adjacent; and if S1, S2, and S3 share an immediate superset and S2, S3,
and S4 also share an immediate superset, then S1 and S4 must share S2 ∪ S3 as an
immediate superset, which implies that they also share an immediate subset, again
contradicting the fact that v1 and v4 are not adjacent.

Thus, without loss of generality, we will assume that S1, S2, and S3 share an
immediate subset. This is indicated in Figure 2 by the − sign; the + signs indicate
immediate supersets. So we will assume that S1 = {1, 2, 3, 4}, S2 = {1, 2, 3, 5},
and S3 = {1, 2, 3, 6}; we explain in the next paragraph why there is no loss of
generality in assuming that Si are 4-sets (as opposed to larger sets). To make the
notation more compact, we will drop the commas and the braces from each set; e.g.,
S1 = 1234. Then S4 must be a 4-subset of S2 ∪ S3 = 12356. Since S1 and S4 have
no immediate subset, we can without loss of generality assume that S4 = 2356.
Now, S5 must differ by exactly one element from each of S1 and S4. The only
possibilities are 1235, 1236, 2345, and 2346. But the first two are equal to S2 and
S3 respectively; and the last two differ from S2 and S3 respectively by exactly one
element, which is not allowed since v5 is adjacent to neither v2 nor v3. Thus we
have a contradiction, as desired.

Note that by assuming that all Si are 4-sets, we ended up with all of them sharing
the two elements 2 and 3. If we instead assumed that Si were n-sets with n ≥ 5,

v2 v4

v6v4

v1

v2

v3

v1 v7v5

v5

v3

+

+

-

+
--

Figure 2. 12, 13, and 14, with vertices labeled in 12 and 14.
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256

245 136

356

Figure 3. 13 (left) and 15 (right) realized as JIS graphs.

the proof would remain the same except that we would end up with all Si sharing
more than two elements. Hence there is no loss of generality in assuming that Si

are 4-sets (in fact, this shows that we could even assume they are 2-sets).
To prove that 14 is not JIS, we start with the same assumptions that S1, S2,

and S3 share an immediate subset, S2, S3, and S4 share an immediate superset, and
S1=1234, S2=1235, S3=1236, and S4=2356. Now, S3, S4, and S5 must share an
immediate subset. So S5 must contain S3∩S4= 236. Since v5 is adjacent to neither
v1 nor v2, S5 can contain neither 1 nor 4 nor 5. Hence, without loss of generality,
S5 = 2367. Continuing, S4, S5, and S6 must share an immediate superset. So S6

must be a 4-subset of S4∪ S5= 23567; i.e., we must drop one element from 23567
to get S6. Dropping 5 or 7 gets us back to S4 and S5; hence we must drop 2, 3, or
6. The roles of 2 and 3 have been identical so far; so, without loss of generality,
we must drop 2 or 6; so S6 = 2357 or 3567. The former is not possible since v6

and v2 are not adjacent. And the latter is ruled out by noticing that 3567 differs
from S1 = 1234 by three elements, which contradicts the fact that v6 and v1 have
distance two1. Thus we have reached a contradiction, as desired.

Part (ii) of the proposition is proved in Figure 3, which shows sets that realize
13 and 15 as JIS graphs. For the sake of compactness, braces and commas are
omitted from the sets. �

We end this section with the following definition and question. Let G be a JIS
graph, and suppose F = {Su : u ∈ V (G)} realizes G as a JIS graph. We define the
F-distance between two vertices v and w of G to be dF (v,w) = |Sv \ Sw|. It is
easy to show this distance function is indeed a metric. The JIS-diameter of G is
defined as

max
v,w∈V (G)

min
F
{dF (v,w)}

where the minimum is taken over all families F that realize G as a JIS graph.

Question. Do there exist JIS graphs with arbitrarily large JIS-diameter?

1Note that 14 − v7 is JIS, with S1 and S6 differing in three elements. We will refer back to this
point at the very end of this section.
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From the proof of Proposition 9 and the footnote in it, it follows that 14 minus
the degree-2 vertex v7 has JIS-diameter 3: S1 = 1234, S2 = 1235, S3 = 1236,
S4 = 2356, S5 = 2367, and S6 = 3567, i.e., v1 and v6 have F-distance 3.

4. An algorithm for recognizing JIS graphs

As mentioned in the introduction, the following theorem provides for an algorithm
for deciding if a graph is JIS by doing a bounded exhaustive search.

Theorem 10. Every JIS graph of order n is isomorphic, for some m ≤ n, to an
induced subgraph of the Johnson graph J (m, 2n).

Proof. Let G be a JIS graph of order n with c connected components.

Case 1. Assume c = 1, i.e., G is connected. In this case we will prove a slightly
stronger result, which we will use in the proof of Case 2:

G is isomorphic, for some m≤n, to an induced subgraph of J (m, 2n−1).

The case n= 1 is trivial; so we assume n≥ 2. Since G is connected, there exists an
ordering v1, v2, . . . , vn of the vertices of G such that for each i ≥ 2, vi is adjacent
to at least one of v1, . . . , vi−1. Since G is JIS, for some k ≥ 1 there exist k-sets
{S1, . . . , Sn} that realize G as a JIS graph, where Si corresponds to the vertex
vi . Since v1 and v2 are adjacent, |S1 ∩ S2| = k − 1. Since v3 is adjacent to at
least one of v1 and v2, |S1 ∩ S2 ∩ S3| ≥ k − 2. Continuing this way, we see that
|S1 ∩ · · · ∩ Sn| ≥ k− (n− 1). Let

S′i = Si \ (S1 ∩ · · · ∩ Sn)

for 1≤ i ≤ n. Then for all i , |S′i | =m where m ≤ k− (k− (n−1))= n−1, and it
is easily verified that the family of sets {S′1, . . . , S′n} realizes G as a JIS graph.

Now, since v1 and v2 are adjacent, |S′1 ∪ S′2| = m+ 1. Since v3 is adjacent to at
least one of v1 and v2, |S′1 ∪ S′2 ∪ S′3| ≤ m + 2. Continuing this way, we see that
|S′1 ∪ · · · ∪ S′n| ≤ m+ n− 1 ≤ 2n− 2, which implies G is an induced subgraph of
J (m, 2n−1), m ≤ n−1. (Note: we proved the inequalities |S′1∪· · ·∪ S′n| ≤ 2n−2
and m ≤ n− 1 only for n ≥ 2, not for n = 1.)

Case 2. Assume c ≥ 2. Let ni be the order of the i th component of G. Then, by
Case 1 above, for each i there is a family Fi of mi -sets, mi ≤ ni , that realizes the
i th component of G as a JIS graph, such that the union of the sets in Fi has at most
2ni − 1 elements. Thus

⋃
Fi has at most 2n− c elements.

We can assume m1≥mi for all i . We can also assume that for all i 6= j , every set
in the family Fi is disjoint from every set in F j . To make all sets in all the families
have the same size, for each i such that m1 >mi we add the first m1−mi elements
of the first set in F1 to every set in Fi . After adding these extra elements, we must
make sure that sets corresponding to vertices in different components of G do not



INDUCED SUBGRAPHS OF JOHNSON GRAPHS 35

share immediate subsets. This will automatically be true for sets that had two or
more elements before the extra elements were added, but not for singletons. We
remedy this by adding, for each i , an element ei to every set in Fi , where e1, . . . , ec

are distinct elements not already in any set in any Fi . Let F =
⋃

Fi . Then G is
realized as a JIS graph by F , which is a family of (m1+1)-sets whose union has at
most 2n− c+ c= 2n elements, where m1+1≤ n1+1≤ n. Thus G is an induced
subgraph of J (m, 2n) where m = m1+ 1≤ n. �

Remark. It is not difficult to modify the above proof in Case 1 to show that if G
is connected, then it is an induced subgraph of J (n, 2n). It would be interesting to
see for which graphs the bounds n and 2n can be lowered. Note that if G consists
of exactly n ≥ 2 vertices of degree zero, then the bound 2n is optimal.

5. Edge move distance graphs and JIS graphs

Since the 1970s many authors have written on various metrics defined on sets of
graphs; see, for instance, [Benadé et al. 1991; Chartrand et al. 1997; 1990; Deza
and Deza 2009; Johnson 1987; Kaden 1983; Zelinka 1985]. Among them are edge
move, edge rotation, edge jump, and edge slide distances. In general, given a metric
d on a set of graphs S = {G1, . . . ,Gk}, the distance graph of S, denoted Dd(S),
has S as its vertex set, where two vertices Gi and G j are adjacent if d(Gi ,G j )= 1.
We will see shortly that distance graphs associated with the edge move metric are
closely related to JIS graphs.

An edge move on a graph G consists of removing one edge from and adding a
new edge to G, without changing its vertex set V (G); i.e., one edge is “moved to a
new position.” The edge move distance dm(G, H) between two graphs G and H is
defined as the fewest number of edge moves necessary to transform G into H , up to
isomorphism. Note that for dm(G, H) to be defined, G and H must have the same
order and the same size. It is easy to verify that dm is a metric on any set of graphs
of given order and size. Given a set S of graphs of the same order and size, the edge
move distance graph of S, Dm(S), is the graph whose vertices are the elements of
S, where two vertices are adjacent if their edge move distance is one. When we
say a graph is an edge move distance graph we mean it is isomorphic to one.

The connection between JIS graphs and edge move distance graphs can be seen
by focusing on edge sets. Let G and H be graphs of the same order and size, with
n edges each. If the edge sets E(G) and E(H) share exactly n− 1 elements, then
G and H have edge move distance one. Conversely, if G and H have edge move
distance one, then their vertices can be labeled such that E(G) and E(H) share
exactly n− 1 elements. At first glance, this might seem to suggest that a graph is
JIS if and only if it is isomorphic to an edge move distance graphs. We will show,
however, that only half (one direction) of this statement is true.
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Proposition 11. Every JIS graph is an edge move distance graph.

Proof. Let G be realized as a JIS graph by a family of n-sets {Sv : v ∈ V (G)}. We
will construct a graph Gv for each v ∈ V (G) such that dm(Gv,Gw)= 1 if and only
if Sv and Sw share an immediate subset.

We can assume that each Sv consists of positive integers. Let

k = 1+max{i ∈ Sv : v ∈ V (G)},

and let P be a path of length 2k. Denote the vertices of P by p0, p1, . . . , p2k . For
each v ∈ V (G), we let Gv be the graph consisting of P plus the edges pi p2k−i for
all i ∈ Sv. Then it is easily verified that for v 6=w, Gv is not isomorphic to Gw, and
dm(Gv,Gw)= 1 if and only if Sv and Sw share an immediate subset. Therefore G
is isomorphic to the edge move distance graph Dm({Gv : v ∈ V (G)}). �

The converse is not true. The reason is that the number of edges shared by the
edge sets of two graphs depends on how their vertices are labeled, whereas edge
move distance is measured up to graph isomorphism.

Proposition 12. The graph obtained by removing one edge from the complete
graph Kn , where n ≥ 5, is an edge move distance graph but is not JIS.

Proof. Fix n ≥ 5, and let H be the graph obtained by removing one edge from Kn .
Then H contains two maximal (n− 1)-cliques which share n− 2 vertices. Hence,
by Proposition 2(1), H is not JIS.

To show that H is an edge move distance graph, we construct a set of graphs
S= {Q1, Q2, . . . , Qn} such that H ' Dm(S). For 1≤ i ≤ n, Qi has n+2 vertices:
V (Qi )= {v1, v2, . . . , vn+2}. For 1≤ i ≤ n− 1, we have

E(Qi )= {vkvk+1 : 1≤ k ≤ n} ∪ {vn−1vn+1, vivn+2};

and E(Qn)= (E(Q1)∪ {v1vn−2}) \ {vn−2vn−1}.
Then one readily verifies for all i 6= j except when {i, j} = {n − 1, n} that Qi

and Q j have edge move distance one. Thus H is an edge move distance graph. �

Figures 4 and 5 show some of the Qi in the case n = 6.

v1 v2 vn-2 vn-1 vn

vn+1vn+2

Figure 4. Q1 for n = 6.
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v1 v2 vn-2 vn-1 vn

vn+1
vn+2

v1 v2 vn-2 vn-1 vn

vn+1vn+2

Figure 5. Qn−1 (left) and Qn (right) for n = 6.
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Multiscale adaptively weighted least squares finite
element methods for convection-dominated PDEs

Bridget Kraynik, Yifei Sun and Chad R. Westphal

(Communicated by John Baxley)

We consider a weighted least squares finite element approach to solving con-
vection-dominated elliptic partial differential equations, which are difficult to
approximate numerically due to the formation of boundary layers. The new
approach uses adaptive mesh refinement in conjunction with an iterative process
that adaptively adjusts the least squares functional norm. Numerical results show
improved convergence of our strategy over a standard nonweighted approach.
We also apply our strategy to the steady Navier–Stokes equations.

1. Introduction

In this paper we consider numerically approximating solutions to the convection-
diffusion partial differential equation{

−ε1u+ b · ∇u = f in �,

u = g on ∂�.
(1)

Here, u=u(x, y) is the solution, ∇u and1u are the gradient and Laplacian of u,
∂� is the boundary of domain �, f is a known data function, g is a known bound-
ary function, and ε and b are coefficients for diffusion and convection, respectively.
For ε� |b| we say that this represents a convection-dominated diffusion problem.
In such cases, solutions tend to develop boundary layers, that is, components of
the solution that have steep gradients near the boundary. To illustrate this, consider
the following ordinary differential equation analogy:

−εu′′+ bu′ = 0 in (0, 1),

u(0)= 1,

u(1)= 0,

(2)

MSC2010: 65N30, 65N50, 35J57.
Keywords: partial differential equations, finite element methods, convection, boundary layers.
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Figure 1. Solution of (2) for ε = 1 (left), ε = 0.1 (middle), and
ε = 0.01 (right).

where bu′ is the convection term and −εu′′ the diffusion term. We call the ODE
convection-dominated when ε�|b|, and to illustrate this we set b=1 and consider
the following solution plots for different values of ε in Figure 1.

We can see that as ε→ 0, a boundary layer forms near x = 1. This behavior
is difficult to approximate computationally and is also present in the solution of
system (1) for regions of � near boundary points with n · b > 0, where n is
an outward unit normal to ∂�. See [Brenner and Scott 1994; Braess 2001] for
background on finite element methods for such problems.

The method we develop here is a generalization of a least squares finite element
discretization for scalar elliptic equations. In general, a least squares approach to
(1) tends to be an effective way to approximate solutions; however, convergence
is degraded in the presence of dominant convection. We consider a least squares
functional minimized with respect to a weighted L2-norm, where the weights are
chosen adaptively in the context of an adaptive mesh refinement routine. This idea
is inspired by work of Westphal et al. [Lee et al. 2006; 2008; Cai and Westphal
2008], where a weighted functional is used to improve solutions to problems with
singularities.

The organization of this paper is as follows: in Section 2 we introduce a reformu-
lated version of (1) and the adaptively weighted procedure; in Section 3 we provide
several numerical tests to demonstrate the effectiveness of the method compared
to a more standard approach; and in Section 4 we show the robustness of the idea
by applying it analogously to a moderately high Reynolds number Navier–Stokes
system for steady fluid flow.

2. Methodology

The L2(�) norm of a function f is defined to be

‖ f ‖ = ‖ f ‖L2(�) =

(∫
�

| f |2
)1/2

,

and L2(�) is the space of functions in � that have finite L2(�) norms. Likewise,
we define H 1(�) as the subspace of L2(�) where all first partial derivatives of
functions are also in L2(�).
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With the substitution σ =−ε∇u, we rewrite (1) as the first-order equations

5 · σ + b · ∇u = 0 in �,

σ + ε∇u = 0 in �,

∇ × σ = 0 in �,

u = g on ∂�,

τ̂ · σ =−ετ̂ · ∇g on ∂�.

(3)

The third equation holds because ∇×σ =∇×(−ε∇u)=−ε(∇×∇u)= 0. In the
fifth equation, τ̂ is a unit tangent vector to ∂� and this new boundary condition is
simply a statement about the directional derivative of g along ∂�.

We first consider what we refer to as the standard least squares approach. Since
we seek a finite element solution, we partition � into an initial triangulation de-
noted as �h . Here, h denotes the size, or width of the triangles and (uh, σ h)

represents an approximate solution to (u, σ ), the exact solution of system (3).
Define

V = {v ∈ H 1(�) : v = g on ∂�},

6 = {s ∈ H 1(�)2 : τ · s =−ετ · ∇g on ∂�}

as sets of admissible solutions, and let V h
⊆ V and 6h

⊆6 be finite dimensional
subsets in which we seek approximate solutions.

A standard LS approach seeks a pair of solutions (uh, σ h) ∈ V h
× 6h which

minimizes the functional

G(uh, σ h
; f )= ‖∇ · σ h

+ b · ∇uh
− f ‖2+‖σ h

+ ε∇uh
‖

2
+‖∇ × σ h

‖
2. (4)

For elliptic problems that are diffusion dominated, minimizing (4) using stan-
dard finite element spaces results in good convergence. However, for convection-
dominated problems, minimizing (4) results in slow convergence until h is very
small (typically h ≈ O(ε)). Other finite element approaches tend to be unstable in
convection-dominated regimes and solutions may exhibit oscillatory behavior; see,
e.g., [Bochev and Gunzburger 2009; Strang and Fix 1973].

One undesirable aspect of the standard least squares approach is that there is not
only significant error near boundary layers, but that the error may remain large even
in regions of the domain where the solution is smooth. To reduce this “pollution
effect”, we introduce weight functions into the functional (4) to redefine the metric
of the approximation space. By doing this, we are able to force the least squares
functional to choose a better solution globally (i.e., in the regions of the domain
where the solution is smooth) and segregate errors to a small region near boundary
layers. Thus, we want to choose the weight function, w, to be large (a value at or
near 1) where the error is small, and small (a value near 0) where the error is large.
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In this paper we use what we call a sigma-based weighting strategy that uses
the approximate solution for σ to construct the weight function. An alternative,
one we refer to as functional based weighting, uses locally evaluated functional
values to generate weights. Though both strategies have merits, we focus here on
sigma-based weights. Consider an approximate solution σ h evaluated on a single
finite element triangle, T :

‖σ h
‖T =

(∫
T
|σ h
|
2
)1/2

,

which we may use as a local indicator of where the solution is likely to have steep
gradients (recall the definition of σ ). We thus choose a weight function, w, on each
T by the procedure illustrated in Figure 2.

We choose wmin = e−h/ε. For coarse meshes, where weighting is most needed,
wmin is very near zero. For increasingly fine meshes, where the weight procedure
is needed less, we have limh→0wmin→ 1. Thus our algorithm remains robust for
a wide range of convection-diffusion regimes.

With such an appropriate weight function chosen we find an improved approx-
imate solution by choosing uh and σ h that minimize the weighted least squares
functional

G(uh, σ h
; f )

= ‖w(∇ · σ h
+ b · ∇uh

− f )‖2+‖w(σ h
+ ε∇uh)‖2+‖w(∇ × σ h)‖2, (5)

where we note that setting w = 1 corresponds to the original least squares func-
tional (4). Since this approach obviously requires an initial approximate solution
to choosew, it makes sense to conduct this in a nested iteration approach where the
initial approximation is found cheaply on a coarse mesh and the improved approx-
imation is found on refined mesh. In other words, our approach is to incorporate

min
T
‖σ h
‖T max

T
‖σ h
‖T

wmin

1

w

‖σ h
‖

Figure 2. The relationship between ‖σ h
‖T and the weight function.
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refining the weight function in (5) into an adaptive mesh refinement routine for
finding increasingly accurate approximations on a sequence of refined meshes.

We describe the solution process in the following algorithm:

• Start: Consider minimizing (5) on an initial coarse triangulation �H , where
H is the mesh size. Initially set w = 1.

• Coarse solve: Minimize (5) to find (u H , σ H ) ∈ V H
×6H .

• Construct weights: Using the rule illustrated in Figure 2, choose w to be a
piecewise linear function on each element in �H .

• Refine mesh: The locally evaluated least squares functional is used to deter-
mine triangles in�H with the highest concentration of error, which are refined
by splitting each into four smaller triangles. Let h = H/2 represent the mesh
size of the refined mesh, �h .

• Fine solve: Minimize (5) to find (uh, σ h) ∈ V h
× 6h . Set H ← h as the

coarse scale for the problem and repeat the procedure.

Figure 3 illustrates the multilevel iterative algorithm.

−→ −→

−→ −→

Figure 3. Iterative process for computing approximate solutions:
coarse mesh, coarse solution, weight function, refined mesh, fine
solution.
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3. Testing and results

We test several problems with various levels of difficulty. We compare our approxi-
mate solution (uh, σ h) to a control solution to get the associated error. This control
solution is obtained by computing the solution on a superfine scale mesh using
the standard LS approach over several iterations. We assume it to be sufficiently
accurate for our purpose of comparison. We compute the L2 norm of this error as a
measure of accuracy of the approximated solution. In all cases we use conforming
piecewise quadratic finite elements for each unknown. In the computational tests in
this section, we choose �= (0, 1)2 and zero Dirichlet boundary conditions on the
north, east and west boundaries, and define a nonzero g(x) on the south boundary.

The following four examples compare the efficiency of the standard LS approach
and our sigma-based weighting strategy. Both axes in all graphs are on a log10

scale. The points that are higher have larger errors than the lower ones.

Example 1. We solve the system (1) with a constant b=
(
−

1
√

10
, 3
√

10

)
, a smooth

g = 16x2(1 − x)2, and a relatively large ε = 0.005. The results are shown in
Figure 4; it can be seen that our sigma-based weighting method yields a more
accurate solution (by a factor of 3 approximately) than the standard LS approach.

Example 2. Next we take a nonconstant convection coefficient,

b=
(
−y√

x2+ y2
,

x√
x2+ y2

)
,

with g and ε as in Example 1. The results, shown in Figure 5, show that our
approach still outperforms the standard one, though by a lesser factor than before.
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Figure 4. Log-log plot of L2 norm of error (with respect to
control solution) as a function of the number of triangles, for
b=

(
−

1
√

10
, 3
√

10

)
, g = 16x2(1− x)2, ε = 0.005 (Example 1).
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Figure 5. Like Figure 4, with b=
(
−y/

√
x2+ y2, x/

√
x2+ y2

)
,

g = 16x2(1− x)2, ε = 0.005 (Example 2).
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Figure 6. Like Figure 4, with g discontinuous (Example 3).

Example 3. We return to b and ε as in Example 1, and choose a discontinuous
boundary function,

g =
{

1 if x ∈ (0.2, 0.8),
0 else.

Here the two curves (Figure 6) come even closer than in the previous example,
but the solution with sigma-based weights is still the more accurate one. With
discontinuous data on the boundary, the solution here is much more difficult to
approximate numerically, so the overall error is larger than the previous examples.

Example 4. For our final example in this section, we decrease ε by an order of
magnitude, that is, ε = 0.0005, while b=

(
−

1
√

10
, 3
√

10

)
and g = 16x2(1− x)2 stay
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Figure 7. Like Figure 4, with b=
(
−

1
√

10
, 3
√

10

)
, g=16x2(1−x)2,

ε = 0.0005.

the same as in Example 1. Here again, our method shows an improvement over
the standard approach (Figure 7).

4. Results for Navier–Stokes equations

The preceding examples suggest that the sigma-based weighting method is gen-
erally more efficient than the standard LS approach. As a further case study, we
consider a more complicated system of equations that retains the same set of chal-
lenges as the convection-dominated diffusion problem.

In this section we directly apply the adaptively weighted norm minimization
strategy to a more difficult system of equations. We consider the stationary incom-
pressible Navier–Stokes equations in the form

−
1

Re
1u+ u · ∇u+∇ p = f in �,

∇ · u = 0 in �,

u = g on ∂�,

(6)

where u denotes the velocity of fluid flow in the x and y direction, p the pressure of
fluid flow, f a given body force, and Re denotes the Reynolds number, a measure
of the potential turbulence of the fluid. With the two substitutions

ε =
1

Re
and U =−ε∇u,

the first equation in (6) becomes

∇ ·U + u · ∇u+∇ p = f . (7)
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Utilizing a Newton linearization, we have the following approximation

u · ∇u ≈ uold · ∇u+ u · ∇uold− uold · ∇uold,

where uold ≈ u is a known approximation to u. This current solution, uold, is
initially set to be (0, 0). During the iteration process, each time we obtain a new
approximate solution to u, we assign its value to uold. Therefore, the older uold

in (6) will be replaced by the new one to better approximate the left-hand side
of (6). After the substitution, (6) is reformulated as

∇ ·U + uold · ∇u+ u · ∇uold+∇ p = f + uold · ∇uold in �,

U + ε∇u = 0 in �,

∇ ×U = 0 in �,

∇ · u = 0 in �,

u = g on ∂�.

Notice the similarity between this system and (3), which gives us confidence
that the weighted norm procedure can improve a least squares solution method
for this system. For large Re, turbulent flow characteristics, including boundary
layers, may develop, which is similar to the behavior of convection-dominated
PDEs. Therefore, we define our weighted, linearized LS functional to be

G(u, U, p; f )= ‖w(∇ ·U + uold · ∇u+ u · ∇uold+∇ p)− ( f + uold · ∇uold)‖
2

+‖w(U + ε∇u)‖2+‖w(∇ ×U)‖2+‖w(∇ · u)‖2,

where w denotes our weight function. On each mesh we carry out several steps of
Newton linearization, and then adaptively refine our mesh. Weight functions are
now constructed based on U (which is analogous to σ in the convection-dominated
diffusion system).

To test our weighting strategy, we choose our domain � to be (0, 1)2 \(0, 0.5]2.
We set ε = 1/200 and u = ((1− e−(y−0.5)/ε)(1− e−(1−y)/ε), 0) on the upper west
boundary and u = (0,−(1− e−(x−0.5)/ε)(1− e−(1−x)/ε)) on the south boundary.
We again set f to be 0 for simplicity. Figure 8 shows the control solution for our
test problem.

We set the number of Newton linearization steps on each mesh to 3. Figure 9
compares the accuracy of both approaches to solving Navier–Stokes equations.
The x- and y-axis are on a log10 scale.

The result shows again that our sigma-based weighting method is more efficient
at solving the Navier–Stokes equations than having no weight functions.
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Figure 8. The control solution for u1 (left) and u2 (right), ob-
tained on a fine mesh and presumed very accurate.
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Figure 9. Comparison of weighted and nonweighted approaches
for the Navier–Stokes example (log-log plot).

5. Conclusion

We find that defining and adaptively modifying weight functions in a least squares
functional can improve the efficiency of the method for convection-dominated
problems. Our approach uses approximate solutions on coarse meshes to adapt
the metric of the approximation space so that the error is reduced with respect to
a better scaled norm than a standard approach. The procedure is easily adapted to
more difficult convection-dominated problems, such as the steady Navier–Stokes
equations.
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Diameter, girth and cut vertices of the graph of
equivalence classes of zero-divisors

Blake Allen, Erin Martin, Eric New and Dane Skabelund

(Communicated by Scott Chapman)

We explore the properties of 0E (R), the graph of equivalence classes of zero-
divisors of a commutative Noetherian ring R. We determine the possible combi-
nations of diameter and girth for the zero-divisor graph 0(R) and the equivalence
class graph 0E (R), and examine properties of cut-vertices of 0E (R).

Introduction

The zero-divisor graph of a commutative ring R, was first introduced in [Beck
1988] and has since been investigated in various forms. It was shown in [Anderson
and Livingston 1999] that the zero-divisor graph of any ring is connected with
diameter less than or equal to 3. Mulay [2002] proved many interesting results
about cycles in the zero-divisor graph.

In 2009, Spiroff and Wickham [2011] introduced 0E(R), the graph of equiva-
lence classes of zero-divisors, which is a simplification of the zero-divisor graph
0(R). The vertices of 0E(R) are, instead of individual zero-divisors of R, equiva-
lence classes of zero-divisors determined by annihilator ideals. The graph 0E(R)
provides a more succinct view of the zero-divisor activity of the ring. In many
cases, the equivalence class graph is finite even though the zero-divisor graph is
infinite. For example, for S=Z[X, Y ]/(X4, XY ), the graph 0(S) is infinite, while
the graph 0E(S) has only 6 vertices. Specifically, the vertices corresponding to
X3, 2X3, 3X3, . . . are all distinct in 0(S). However, since they all have the same
annihilator, they all belong to the same equivalence class, and so are represented
by a single vertex [X3

] in 0E(S).
The equivalence class graph also lets us view the interplay between the anni-

hilator ideals of R and helps to easily identify the associated primes of the ring.
The vertices of 0E(R) which correspond to associated primes have special prop-
erties which will help us to prove several interesting results related to 0E(R). In

MSC2010: 13A99.
Keywords: zero-divisor graph, diameter, girth, cut vertices.
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Section 1, we provide basic definitions and background. In Section 2, we determine
all possible diameter combinations of 0(R) and 0E(R), and do the same for the
girth of the two graphs in Section 3. In Section 4, we look at properties of the
cut-vertices of 0E(R). Throughout, R will denote a commutative Noetherian ring.

1. Background and basic results

Graph theory. We briefly review basic graph theory terms that we will use through-
out the paper. All graphs we deal with will be simple graphs in the sense that they
contain no loops or double edges. We will denote the set of vertices of a graph
0 by V (0). If two vertices x and y are joined by an edge, we say x and y are
adjacent, and write x − y. A path is defined as an alternating sequence of distinct
vertices and edges, and the length of a path is the number of edges in the path. If
x and y are two vertices, then the distance between x and y, denoted d(x, y), is
the length of the shortest path from x to y. If there is no path connecting x to y,
we say that d(x, y) =∞, and we define d(x, x) = 0. The diameter of a graph is
the maximum distance between any two vertices of the graph. We will denote the
diameter of a graph 0 by diam0. A cycle is a closed path, or a path that starts and
ends on the same vertex. The girth of a graph is the length of its smallest cycle.
We denote the girth of a graph 0 by g(0) and say that g(0) =∞ if the graph 0
contains no cycle. Note that the smallest possible cycle length is 3, so if 0 contains
a cycle, g(0)≥ 3.

A graph is said to be connected if every pair of vertices is joined by a path and
complete if every pair of vertices is joined by an edge. A connected component of a
graph 0 is a maximal connected subgraph of 0. If removing a vertex v from a graph
along with all its incident edges increases the number of connected components in
the graph, then v is called a cut vertex. A graph is complete bipartite if its vertices
can be partitioned into two subsets, V1 and V2, such that every vertex of V1 is
adjacent to every vertex of V2, but no two vertices of V1 are adjacent and no two
vertices of V2 are adjacent. Such a graph will be denoted Kn,m , where n= |V1| and
m = |V2|. If the vertices of a graph can be partitioned into r subsets in a similar
fashion, then the graph is said to be r-partite.

Zero-divisor graphs. Let Z(R) denote the set of zero-divisors of R and Z∗(R)
denote the set Z(R) \ {0}. We define the zero-divisor graph of R as the simple
graph 0(R) where the vertices of 0(R) are the elements of Z∗(R), and there is an
edge between x, y ∈ 0(R) whenever xy = 0.

Recall that the annihilator ideal associated to an element x ∈ R is the set ann x =
{r ∈ R : xr=0}. We define an equivalence relation∼ on R such that for all x, y∈ R,
we say x ∼ y if ann x = ann y. Let [x] denote the equivalence class of x . Notice
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that [0] = {0}, [1] = R \ Z(R) and the relation ∼ partitions the remaining zero-
divisors into distinct classes. Furthermore, it follows that the multiplication of
these equivalence classes [x] · [y] = [xy] is well-defined.

The graph of equivalence classes of zero-divisors of R, 0E(R), is the graph
whose vertices are the classes of nonzero zero-divisors of R determined by the
relation∼, where there is an edge between two vertices [x] and [y] if [x]·[y]= [0].

Here, as an example, are the zero-divisor graph of Z12 and the graph of its
equivalence classes:

2

[2] [6] [4] [3]

4

8

6
3 9

10

EΓ 12(Z   )

Γ 12(Z   )

We see that since ann 2= ann 10, the elements 2 and 10 are in the same equivalence
class, and therefore collapse to the single vertex [2] in 0E(R).

Previous results. Spiroff and Wickham [2011] have several interesting results link-
ing the associated primes of R with the structure of 0E(R). These will be useful in
furthering our investigation of 0E(R). Remember that a prime ideal p of R is an
associated prime if it is the annihilator of some element of R. The set of associated
primes is denoted ass R. It is well known that if R is a Noetherian ring, then ass R
is nonempty and finite and that any maximal element of the family of annihilator
ideals F={ann x :0 6= x ∈ R} is an associated prime. Note also that since every zero
divisor is contained in an annihilator ideal and maximal annihilators are associated
primes, the set of zero-divisors of R equals the union of all associated primes of
R. Since there is exactly one vertex of 0E(R) for each distinct annihilator ideal
of R, we have a natural injection of ass R into the vertex set of 0E(R) given by
p 7→ [y] where p= ann y. We adopt the conventions of Spiroff and Wickham and
by a slight abuse of terminology will refer to the vertex [y] as an associated prime
if ann y ∈ ass R. It will be clear from context whether [y] refers to an equivalence
class, a vertex, or a specific annihilator.

Lemma 1.1 [Spiroff and Wickham 2011, Lemma 1.2]. Any two distinct elements
of ass R are connected by an edge. Furthermore, every vertex [v] of 0E(R) is either
an associated prime or adjacent to an associated prime maximal in F.

Lemma 1.2 [Spiroff and Wickham 2011, Proposition 1.7]. Let R be a ring such
that 0E(R) is complete r-partite. Then r = 2 and 0E(R)= Kn,1 for some n ≥ 1.
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2. Diameter

In this section, we explore the relationship between the diameters of the graphs
0(R) and 0E(R). It is shown in [Anderson and Livingston 1999] that 0(R) has
diameter at most 3 for any commutative ring R. In [Spiroff and Wickham 2011]
it is shown that diam0E(R) ≤ 3 for R commutative and Noetherian. The follow-
ing results further demonstrate the relationship between the diameters of the two
graphs.

Proposition 2.1. If R is a commutative ring, then diam0E(R)≤ diam0(R).

Proof. Let [a], [b] ∈ 0E(R) with d([a], [b])= n, and let [a] = [x1] − [x2] − · · · −

[xn+1] = [b] be a path of minimal length from [a] to [b]. From each [xi ], choose
one yi ∈ [xi ]. Then y1− y2−· · ·− yn+1 is a path in 0(R) of length n. We claim that
this path is minimal, and thus d(y1, yn+1) = n. If this path is not minimal, there
is some shorter path y1 = z1− z2− · · · − zm+1 = yn+1, with m < n. Since either
[zi ] = [zi+1] or [zi ] − [zi+1], the path [y1] = [z1] − [z2] − · · · − [zm+1] = [yn+1]

has length less than or equal to m, a contradiction. �

Theorem 2.2. If diam0E(R)= 0, then diam0(R)= 0 or 1.

Proof. Let 0E(R) have diameter 0. Since 0E(R) has only one vertex, [x] = [y] for
every x, y ∈ Z∗(R). Since the graph 0(R) is connected and every element in 0(R)
has the same annihilator, xy = 0 for every x, y ∈ Z∗(R). Thus the graph 0(R) is
complete and diam0(R)= 0 or 1. �

Theorem 2.3. If diam0(R)= 3, then diam0E(R)= 3.

Proof. Let 0(R) have diameter 3. Then for some elements x, w ∈0(R), d(x, w)=
3 in 0(R). Let x − y− z−w be a path from x to w of minimal length. Since this
path is minimal, xz 6=0, but zw=0, so ann x 6= annw. By similar reasoning we see
that each of ann x , ann y, ann z, and annw are distinct. Hence [x], [y], [z], and [w]
are distinct equivalence classes in 0E(R). Thus [x] is not adjacent to [w] and there
exist no paths [x]−[y]−[w] or [x]−[z]−[w] in 0E(R). Now suppose there is some
other [v] such that [x]−[v]−[w]. This is impossible because it implies that there is
a path x−v−w in0(R), contradicting the supposition that x−y−z−w is a minimal
path. Therefore d([x], [w])= 3 and since diam0E(R)≤ 3, diam0E(R)= 3. �

We summarize with Table 1, which shows all possible combinations of diameter
for 0(R) and 0E(R).

We see from our examples that it is possible for the diameter of the zero-divisor
graph to shrink under the equivalence relation. We consider the situations where
this happens.

If diam0(R) = 1 and diam0E(R) = 0, then R has a unique annihilator ideal
ann x . This annihilator is maximal in F and an associated prime of the ring. Since
Z(R)=

⋃
p∈ass R p= ann x , Z(R) forms an ideal of R.
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diam0E(R)=
diam0(R) 0 1 2 3

0 Z4, Z2[x]/(x2) – – –

1 Z9, Z25 Z2×Z2 – –

2 impossible (Theorem 2.2) Z6, Z21, Z2[x]/(x3) Z16 –

3 impossible (Theorem 2.3) Z12

Table 1. Possibilities for diam0(R) and diam0E(R), with examples.

Next we consider the situation in which the diameter reduces from 2 to 1. Since
there are no complete equivalence class graphs on 3 or more vertices, by [Spiroff
and Wickham 2011, Proposition 1.5], 0E(R) must have exactly two vertices, and
R must have exactly 2 distinct annihilator ideals, ann x and ann y. Let ann x be
maximal in F. If ann y ⊆ ann x , then Z(R) =

⋃
p∈ass R p = ann x forms an ideal

of R. Otherwise, both ann x and ann y are maximal in F and ann x ∩ ann y = {0}.
If we have nonzero a, b with a ∈ ann x and b ∈ ann y such that a+b ∈ ann x , then
b ∈ ann x , a contradiction. So in this case Z(R)=

⋃
p∈ass R p= ann x ∪ ann y does

not form an ideal of R.
Therefore we see that if the diameter shrinks in the equivalence class graph, R

has 1 or 2 associated primes. If R is a finite ring, this corresponds to R being the
direct product of 1 or 2 local rings, since every finite ring R is expressible as the
product of finite local rings, with the number of factors equal to the number of
associated primes of R.

We show below examples of graphs of rings with shrinking diameter, one from
each of the situations considered above. Note that Z25 has a unique annihilator,

(Z   )Γ 25

5 10
2 5

3 6 9 12

10x x + 2 3x + 2 3x15

[5]
[2]

[x]

[5]

[3]

20

EΓ 25(Z   ) 2
EΓ 4(Z  [x] / (2x, x    2)) EΓ 15(Z   )

2
Γ 4(Z  [x] / (2x, x    2)) Γ 15(Z   )
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ann 5= (5), Z4[x]/(2x, x2
−2) has two annihilators, ann x = (2)⊆ (2, x)= ann 2,

and Z15 has two annihilators, ann 3= (5) and ann 5= (3), which intersect trivially.

3. Girth

Mulay [2002] proved that if the zero-divisor graph, 0(R), contains a cycle then
g(0(R)) ≤ 4. In this section we will demonstrate an even stronger restriction on
the girth of the equivalence class graph, and find all possible combinations of girth
for 0(R) and 0E(R). The following result gives a girth restriction for 0E(R)
similar to that shown by Mulay for 0(R).

Theorem 3.1. If R is a commutative Noetherian ring, and if 0E(R) contains a
cycle, then g(0E(R))≤ 4.

Proof.
Case 1: If R has at least 3 distinct associated primes, say ann x , ann y, and

ann z, then the vertices [x], [y], and [z] in 0E(R) are all adjacent to each other
by Lemma 1.1, and therefore span a complete subgraph of 0E(R). Hence 0E(R)
contains a 3-cycle, so g(0E(R))= 3.

Case 2: If R has exactly one associated prime, ann y, then every other vertex in
0E(R) is adjacent to [y] by Lemma 1.1. If there is any cycle in 0E(R), then there
are some vertices [x1], [x2] distinct from [y] with [x1] − [x2]. But these are both
adjacent to [y], creating the 3-cycle [y] − [x1] − [x2] − [y]. So g(0E(R))= 3.

Case 3: Now assume that R has exactly 2 associated primes, and let ass R =
{ann x, ann y}. Let [x1] and [x2] be two vertices distinct from [x] and [y] such that
[x1] − [x2]. By Lemma 1.1, [x1] is adjacent to an associated prime. Without loss
of generality, let [x1] − [x]. Also, [x2] is adjacent to either [x] or [y]. In the first
case, we have a 3-cycle [x] − [x1] − [x2] − [x] and in the second case, we have a
4-cycle [x]−[x1]−[x2]−[y]. Now assume that given any two vertices of 0E(R),
at least one is an associated prime. Let [x1]− [x2]− · · ·− [xn]− [x1] be a cycle in
0E(R) of minimal length, and let n ≥ 4. Since at least one of [x1] and [x2] is an
associated prime, without loss of generality let [x1] be an associated prime. Also,
at least one of [x3] and [x4] is an associated prime. If [x3] is an associated prime,
we have the 3-cycle [x1]−[x2]−[x3]−[x1], and if [x4] is an associated prime, we
have the 4-cycle [x1] − [x2] − [x3] − [x4] − [x1]. �

The following corollary is a direct result of the proof of Theorem 3.1.

Corollary 3.2. If 0E(R) has girth 4, then R must have exactly 2 associated primes.

The following proposition gives a relationship between the girths of the two
graphs. Note that the inequality is opposite that of the diameter relationship stated
in the previous section.

Proposition 3.3. If 0E(R) contains a cycle, then g(0E(R))≥ g(0(R)).
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Proof. Let [x1]−[x2]−· · ·−[xn]−[x1] be a cycle in 0E(R). For each [xi ], choose
one yi ∈ [xi ]. Then by the definition of multiplication of our equivalence classes,
y1− y2−· · ·− yn− y1 is a cycle in 0(R) of equal length. So g(0E(R))≥ g(0(R)).

�

Corollary 3.4. If g(0E)= 3, then g(0)= 3.

We now examine the situation in which 0E(R) has girth 4 and conclude that it
is impossible.

Theorem 3.5. For R a commutative Noetherian ring, g(0E(R)) 6= 4.

Proof.
Suppose that 0E(R) has girth 4. By Corollary 3.2, R has exactly two associated

primes, so let ass R = {ann x, ann y}.
Since ann x and ann y are associated primes, [x] − [y] by Lemma 1.1. Let [z]

be some other vertex of 0E(R). Then [z] must be adjacent to at least one of [x] or
[y]. But if it is adjacent to both [x] and [y] we have a 3-cycle, so [z] is adjacent
to exactly one of [x] or [y]. Thus the vertex set of 0E(R) minus {[x], [y]} can be
partitioned into two disjoint subsets, one adjacent to [x] and one adjacent to [y].
We refer to these subsets as X and Y , respectively.

As mentioned earlier, since R is Noetherian, there is at least one maximal ele-
ment of F, and this annihilator is an associated prime. Without loss of generality,
let ann x be maximal in F. We claim that ann y is also maximal in F. Now
if ann y ⊆ annw for some w, then annw ⊆ ann m for some maximal element
ann m ∈F, but since ann m is an associated prime, ann m= ann y or ann m= ann x .
In the latter case, ann y ⊆ ann x , so [x] and [y] are both adjacent to a common
vertex. This creates a 3-cycle, contradicting that g(0E(R))= 4. So both ann y and
ann x are maximal in F.

Suppose that [x]2 = [0] and [y]2 = [0], and consider the class [x + y]. This
class is annihilated by both [x] and [y], so either [x + y] = [0] or [x + y] is in the
vertex set of 0E(R). If [x + y] = [0], then [x] = [y], contrary to our assumption.
So [x + y] is in the vertex set of 0E(R). Since [y] is adjacent to no vertex of X ,
[x + y] 6= [x]. Similarly, since [x] is adjacent to no vertex of Y , [x + y] 6= [y]. So
0E(R) contains the 3-cycle [x + y] − [x] − [y] − [x + y], a contradiction.

Now suppose that [x]2 6= [0] and [y]2 6= [0]. Then ann x ∩ ann y = {0}. Now
multiplying any [x j ] ∈ X and [yi ] ∈ Y , we see that since [x j ] ∈ ann x and [yi ] ∈

ann y, [x j yi ] ∈ ann x ∩ ann y = {0}. If we break up the vertex set of 0E(R) into
X∪{[y]} and Y∪{[x]}, we see that 0E(R) is complete bipartite, and 0E(R)= Kn,m

with n,m 6= 1, which contradicts Lemma 1.2.
Without loss of generality, let [x]2 = [0] and [y]2 6= [0]. Let [x] − [y] − [z] −
[w] − [x] be a 4-cycle in 0E(R), with [w] ∈ X, [z] ∈ Y . Then there is a 4-cycle
x − y − z − w − x in 0(R). By the previous discussion, x2

= 0 and y2
6= 0.
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diam γE(R)=
diam γ (R) ∞ 3 4

∞ Z4 impossible (Proposition 3.3)

3 Z12 Z24 impossible (Theorem 3.5)

4 Z15 impossible (Corollary 3.2) impossible (Theorem 3.5)

Table 2. Possibilities for g(0(R)) and g(0E(R)), with examples.

Since ann y is maximal in the set of annihilators of R, there is some m in ann y
but not in annw. Note that mw 6= 0, but ann mw ⊇ {x, z, y}. Since mw− y but
y2
6= 0, ann mw 6= ann y. Also since mw is adjacent to both x and z, and x and z

are not adjacent, ann mw 6= ann x and ann mw 6= ann z. So we have the 3-cycles
x − y − mw − x and z − y − mw − z that do not reduce under the equivalence
relation. So 0E(R) contains a 3-cycle and g(0E(R)) 6= 4. �

We summarize with Table 2, which shows all possible combinations of girths
for 0(R) and 0E(R). We illustrate the case (3, 3) with the graphs of the ring Z24,
which does not have shrinking girth:

Γ 24(Z   ) EΓ 24(Z   )

22
14

10

2

12

8

3
9

15

21
[2]

[12] [8]

[4] [6]

[3]

16

6

1820

4

4. Cut-vertices

In this section, we examine the properties of cut-vertices of 0E(R). Since 0E(R)
is connected, the vertex [a] is a cut-vertex of 0E(R) exactly when removing the
vertex [a] and its incident edges causes 0E(R) to no longer be connected.

We begin with an interesting result concerning cut-vertices and ideals of the
ring. The following theorem is very similar to [Axtell et al. 2009, Theorem 4.4],
which deals with cut-vertices of the original zero-divisor graph 0(R).

Theorem 4.1. If [a] is a cut-vertex of 0E(R), then [a] ∪ {0} forms an ideal of R.
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Proof. Let [a] be a cut-vertex of 0E(R) and let [a] partition 0E(R) into 0b and
0c. Let [b] ∈ 0b with [a] − [b] and [c] ∈ 0c with [a] − [c]. Let a1, a2 ∈ [a] ∪ {0}.
Since a1+a2 ∈ ann b∩ann c, a1+a2 ∈ [a]∪{0}. If r ∈ R, then c(ra)= r(ca)= 0,
so ra ∈ ann c. Similarly, ra ∈ ann b. So ra ∈ ann b∩ann c= [a]∪ {0}. This shows
that [a] ∪ {0} is an ideal of R. �

Theorem 4.2. If [a] is a cut-vertex of 0E(R), then ann a is maximal in F.

Proof. Let [a] be a cut-vertex of 0E(R), and let X and Y be mutually separated
subgraphs of 0E(R) with V (X ∪ Y ) = V (0E(R)) \ [a]. Let [x] ∈ X and [y] ∈ Y .
Then for any [x1] ∈ X we have y ∈ ann a r ann x1, and for any [y1] ∈ Y we have
x ∈ ann a r ann y1. Thus ann a 6⊆ ann x1 and ann a 6⊆ ann y1, and so ann a is
maximal in F. �

The converse of this theorem does not hold. We may have ann x maximal in F,
yet not have [x] be a cut-vertex. For example, here are two equivalence graphs,
one on 6 vertices and one on 8, each with no cut vertex:

(Z  [x, y] / (x  , xy, x  + y  ))EΓ 2
234

[x  ]2
[x  ]   =3 [ y  ]2

[x  + y]2

[x  ]2

[x + y]

[ y]

[x]

(Z  [x, y, z] / (x  ,y  ,z  , xy, xz))EΓ 2
23 2

[x  ]2

[x + y + z]

[x + y]
[x + z]

[ y] [z]

[x]

[ y + z]

Both of these rings contains an annihilator ideal which maximal in F, and therefore
an associated prime.

The next corollary follows immediately from Theorem 4.2:

Corollary 4.3. If [a] is a cut-vertex of 0E(R), then ann a is an associated prime.

Theorem 4.4. If [a] is a cut-vertex of 0E(R), then all other associated primes of
0E(R) are contained in only one connected component of 0E(R) \ [a].

Proof. Suppose that X and Y are two mutually separated connected components
of 0E(R) \ [a], and that each contains an associated prime. By Lemma 1.1, these
associated primes are adjacent, and so X and Y are connected, a contradiction. �
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Theorem 4.5. If 0E(R) has at least 2 cut-vertices, then it has diameter 3.

Proof. Let [a] and [b] be cut-vertices of 0E(R). Since [a] is a cut-vertex, there is
some [xa] such that any path connecting [xa] and [b] must include [a]. Similarly,
since [b] is a cut-vertex, there is some [xb] such that any path connecting [xb] and
[a] must include [b]. Therefore any path from [xa] to [xb] must include both [a]
and [b] and so d([a], [b])≥ 3. Since 0E(R) is connected, diam0E(R)= 3. �
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Total positivity of a shuffle matrix
Audra McMillan

(Communicated by John C. Wierman)

Holte introduced a n × n matrix P as a transition matrix related to the carries
obtained when summing n numbers base b. Since then Diaconis and Fulman
have further studied this matrix proving it to also be a transition matrix related
to the process of b-riffle shuffling n cards. They also conjectured that the matrix
P is totally nonnegative. In this paper, the matrix P is written as a product
of a totally nonnegative matrix and an upper triangular matrix. The positivity
of the leading principal minors for general n and b is proven as well as the
nonnegativity of minors composed from initial columns and arbitrary rows.

1. Introduction

Holte [1997] introduced an n× n matrix P , with entries

P(i, j)=
1
bn

j−bi/bc∑
r=0

(−1)r
(

n+ 1
r

)(
n− 1− i + ( j+1−r)b

n

)
where the P(i, j) entry gives the probability that when adding n random numbers
base b, the next carry will be j , given that the previous carry was i . This matrix
was then further studied in [2009a; Diaconis and Fulman 2009b], where it is noted
that this is also a transition matrix related to card shuffling, where the P(i, j) entry
records the probability that a b-riffle shuffle of a permutation with i descents will
lead to a permutation with j descents. Note that the rows and columns of this
matrix are indexed by 0, . . . , n− 1.

Holte proved a number of properties of the matrix P , including that P has
eigenvalues given by the geometric sequence 1, b−1, . . . , b−(n−1), implying that
the determinant is positive for positive b.

A matrix will be referred to as totally nonnegative if every minor is nonnegative
and totally positive if every minor is positive. Note that in some texts, such as
[Pinkus 2010] and [Karlin 1968] these terms are replaced by totally positive and
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strictly totally positive respectively. Totally nonnegative matrices figure promi-
nently in a wide range of mathematical disciples including, but not limited to,
combinatorics, stochastic processes and probability theory. Many properties of to-
tally nonnegative matrices are known including eigenvalue/eigenvector properties
and factorisation of such matrices. A good reference for the theory and applications
of total positivity is [Pinkus 2010] and some further results on stochastic totally
nonnegative matrices are included in [Gasca and Micchelli 1996].

Diaconis and Fulman [2009a, Remark after Lemma 4.2] conjectured that the
matrix P is totally nonnegative for all positive integers n and b. Their paper in-
cluded a proof that for all n and b, P is totally nonnegative of order 2, that is all
the 2× 2 minors are nonnegative, and that when b is a power of 2, P is totally
nonnegative. Unfortunately, their method of proof does not generalise to other b.
The aim of this paper is to make progress on the general conjecture.

Recall the following result:

Theorem 1. Let A= (ai j ) be an n×n nonsingular matrix whose rows and columns
are indexed by 0, . . . , n− 1. Then A is totally nonnegative if and only if A satisfies

(i) A
(

0, . . . , k− 1
0, . . . , k− 1

)
> 0 for k = 1, . . . , n,

(ii) A
(

i1, . . . , ik

0, . . . , k− 1

)
for 0≤ i1 < · · ·< ik ≤ n− 1 and k = 1, . . . , n,

(iii) A
(

0, . . . , k− 1
j1, . . . , jk

)
for 0≤ j1 < · · ·< jk ≤ n− 1 and k = 1, . . . , n,

where A
(

i1, . . . , ik

j1, . . . , jk

)
denotes the minor composed of rows i1, . . . , ik and columns

j1, . . . , jk .

A proof of this can be found in [Pinkus 2010, Proposition 2.15].
In this paper, we will prove (i) and (ii) for the matrix P , hence reducing the

conjecture to condition (iii). Proving these conditions hold for P is equivalent to
proving that they hold for P ′ = bn P , so this matrix will be dealt with instead.

2. Proof of total nonnegativity claims

Firstly, note that

P ′(i, j)=
j−bi/bc∑

r=0

(−1)r
(

n+ 1
r

)(
n− 1− i + ( j + 1− r)b

n

)

=

j∑
r=0

(−1)r
(

n+ 1
r

)(
n− 1− i + ( j + 1− r)b

n

)
,
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which implies

P ′ =
((

n− 1− i + ( j + 1)b
n

))
0≤i≤n−1
0≤ j≤n−1

(
(−1) j−i

(
n+ 1
j − i

))
0≤i≤n−1
0≤ j≤n−1

,

where
(n

k

)
= 0 if k < 0. Let’s call the first matrix A, and the second B. Note that

B is upper unitriangular.
Using the Vandermonde convolution note that

n−i∑
k=0

(
n− i

n− i − k

)(
jb

i + k

)
=

(
n− i + jb

n

)
,

so A can be further factored as

A =
[(

n− i − 1
j − i

)]
i, j

[(
( j + 1)b

i + 1

)]
i, j

.

Let’s call these matrices C and D, respectively. Note that C is upper unitrian-
gular, so this factorisation of P ′ implies that det P ′ = det D.

Lemma 2. C is totally nonnegative.

Proof. Obviously all the leading principal minors of C are 1, and all other mi-
nors composed of k initial columns and k arbitrary rows are 0 since C is upper
unitriangular.

Now let k ∈ Z, 1 ≤ k ≤ n and 0 ≤ j1 < · · · < jk ≤ n − 1. Again using the
Vandermonde convolution we observe that

k−i−1∑
p=0

(
k− i − 1

p

)(
n− k

jl+1− i − p

)
=

(
n− i − 1
jl+1− i

)
,

so

C
(

0, . . . , k−1
j1, . . . , jk

)
=

∣∣∣∣∣
[(

n−i−1
jl+1−i

)]
i,l

∣∣∣∣∣=
∣∣∣∣∣
[(

k−i−1
l−i

)]
i,l

∣∣∣∣∣
∣∣∣∣∣
[(

n−k
jl+1−i

)]
i,l

∣∣∣∣∣
=

∣∣∣∣∣
[(

n−k
jl+1−i

)]
i,l

∣∣∣∣∣ . (*)

A sequence (ai )0≤i<∞ is called a Pólya frequency sequence of infinite order if
the corresponding infinite kernel matrix

a0 a1 a2 · · ·

0 a0 a1 · · ·

0 0 a0 · · ·
...

...
...


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is totally nonnegative. The matrix (*) is nonnegative since it is a submatrix of the
infinite kernel matrix of the sequence((

n− k
0

)
,

(
n− k

1

)
, . . . ,

(
n− k
n− k

))
,

which is a Pólya frequency sequence of infinite order according to the classification
of Pólya frequency sequences in [Karlin 1968, Theorem 5.3, Chapter 8].

Therefore, by Theorem 1, matrix C is totally nonnegative for all n. �

Lemma 3. D is totally nonnegative.

Proof. D is a submatrix of the upper triangular Pascal matrix[(
j
i

)]
i, j

which is simply the reflection of C about the antidiagonal where the dimension is
nb+ 1, and hence is totally nonnegative [Pinkus 2010, Propositions 1.2 and 1.3].
Therefore D is totally nonnegative. �

Corollary 4. A is totally nonnegative.

Proof. Since the product of totally nonnegative matrices is totally nonnegative, A
is totally nonnegative. �

Proposition 5. Conditions (i) and (ii) of Theorem 1 hold for matrix P ′ for general
n and b.

Proof. Let k ∈ Z, 1≤ k ≤ n and 0≤ i1 < · · ·< ik ≤ n−1. From the Cauchy–Binet
formula and the fact that B is upper unitriangular,

P ′
(

i1, . . . , ik

0, . . . , k− 1

)
= A

(
i1, . . . , ik

0, . . . , k− 1

)
≥ 0

and

P ′
(

0, . . . , k− 1
0, . . . , k− 1

)
= A

(
0, . . . , k− 1
0, . . . , k− 1

)
=

∑
0≤m1<···<mk≤n−1

C
(

0, . . . , k− 1
m1, . . . , mk

)
D
(

m1, . . . , mk

0, . . . , k− 1

)

≥ D
(

0, . . . , k− 1
0, . . . , k− 1

)
=

∣∣∣∣∣
[(

( j + 1)b
i + 1

)]
i, j

∣∣∣∣∣ .
Here the inequality follows from the fact that C and D are totally nonnegative and
C is upper unitriangular.

However this is simply the determinant of a smaller version of D, with n re-
placed by k and therefore by the previous factorisation of P ′, this is equal to the
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determinant of the P ′ matrix of dimension k, which is positive (as stated earlier)
so we are done. �

One might hope that condition (iii) could be proved similarly by noting that

P ′
(

0, . . . , k− 1
j1, . . . , jk

)
=

∑
0≤m1<···<mk≤n−1

A
(

0, . . . , k− 1
m1, . . . , mk

)
B
(

m1, . . . , mk

j1, . . . , jk

)
.

However the proof of condition (ii) relied on the fact that the minors of B in-
volved were clearly seen to be 0 or 1 so this equation easily simplified. This is
not the case for the above equation since little has been established about general
minors of B. Progress might still be made if all minors of size k were nonnegative
for some k however small examples show this to be unlikely, for example this is
not true for minors of size 2 for any n. If the conjecture is true, it seems likely that
a new approach is required to prove condition (iii).
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Betti numbers of order-preserving graph
homomorphisms

Lauren Guerra and Steven Klee

(Communicated by Jim Haglund)

For graphs G and H with totally ordered vertex sets, a function mapping the
vertex set of G to the vertex set of H is an order-preserving homomorphism
from G to H if it is nondecreasing on the vertex set of G and maps edges of G
to edges of H . In this paper, we study order-preserving homomorphisms whose
target graph H is the complete graph on n vertices. By studying a family of
graphs called nonnesting arc diagrams, we are able to count the number of order-
preserving homomorphisms (and more generally the number of order-preserving
multihomomorphisms) mapping any fixed graph G to the complete graph Kn .

1. Introduction

The study of graph homomorphisms has been the subject of a great deal of recent
work in the fields of enumerative, algebraic, and topological combinatorics. The
recent survey [Borgs et al. 2006] is an excellent source on the many facets of enu-
merating graph homomorphisms, while [Kozlov 2008] outlines a more topological
approach. In this paper, we study combinatorial properties of order-preserving
homomorphisms between two graphs G and H as introduced by Braun, Browder
and Klee [Braun et al. 2011].

Throughout this paper, V (G) and E(G) will denote the vertex set and edge set
respectively of a graph G. All graphs are assumed to be simple, meaning that loops
and multiple edges are not allowed.

Let G be a graph on vertex set [m] = {1, 2, . . . ,m} and let H be a graph on
vertex set {x1, x2, . . . , xn}. We order the vertex set of G naturally, and we order
the vertex set of H by declaring that x1 < x2 < · · · < xn . An order-preserving
homomorphism from G to H is a function ϕ : V (G)→ V (H) such that

(1) if 1≤ i < j ≤ m, then ϕ(i)≤ ϕ( j), and

(2) if (i, j) ∈ E(G), then (ϕ(i), ϕ( j)) ∈ E(H).

MSC2010: primary 13D02; secondary 05A18, 06A06, 05C30.
Keywords: graph homomorphisms, Betti numbers, nonnesting partitions.
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An order-preserving homomorphism ϕ : G → H may be presented as a vector
[ϕ(i)]mi=1 = [ϕ(1), . . . , ϕ(m)].

Example 1.1. Let G and H be as follows:

1 2 3 x1 x2 x3 x4

G : H :

Define functions ϕ1, ϕ2, ϕ3 : V (G)→ V (H) by

ϕ1 : [x1, x2, x2], ϕ2 : [x1, x2, x4], ϕ3 : [x1, x3, x4].

The functions ϕ1 and ϕ2 are order-preserving homomorphisms from G to H .
Notice that since (2, 3) is not an edge in G, having ϕ1(2)= ϕ1(3) does not violate
the definition of an order-preserving homomorphism. The function ϕ3 is order-
preserving, but it is not a homomorphism since (1, 2) ∈ E(G), but (ϕ(1), ϕ(2))=
(x1, x3) /∈ E(H).

Rather than view each order-preserving homomorphism from G to H as a sin-
gle function, it is often more convenient to encode several homomorphisms as
a single object. An (order-preserving) multihomomorphism from G to H is a
function η : V (G) → 2V (H)

\ ∅ with the property that [ϕ(i)]mi=1 is an order-
preserving homomorphism from G to H for all possible choices of ϕ(i) ∈ η(i)
and 1 ≤ i ≤ m. The complex of order-preserving homomorphisms from G to H ,
denoted OHOM(G, H), is the collection of all multihomomorphisms from G to H .

For any graphs G and H , there is a geometric cell complex corresponding to
OHOM(G, H) whose faces are labeled by multihomomorphisms from G to H .
While the geometry of OHOM(G, H) is very interesting in its own right, it is not
the primary focus of this paper, and we will not spend any further time discussing
it. For reasons that are motivated by this underlying geometry, we define the di-
mension of a multihomomorphism η ∈ OHOM(G, H) to be

dim η :=

m∑
i=1

(|η(i)| − 1).

A zero-dimensional multihomomorphism is an order-preserving homomorphism.
In this paper, we are primarily interested in a family of combinatorial invariants of
OHOM(G, H) called its Betti numbers.

Definition 1.2. The r-th Betti number of the complex OHOM(G, H), denoted
βr (G, H), counts the number of multihomomorphisms η ∈ OHOM(G, H) with
dim η = r .
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Example 1.3. Let G and H be as in Example 1.1. The following table encodes a
one-dimensional multihomomorphism η ∈ OHOM(G, H):

η(1) η(2) η(3)
x1 x2 x2

x4

The two distinct choices of elements [ϕ(1), ϕ(2), ϕ(3)] correspond to the order-
preserving homomorphisms ϕ1 and ϕ2 of Example 1.1.

The following proposition is a consequence of from our definitions of order-
preserving homomorphisms. We introduce the following notation, which will be
used for the remainder of the paper. If X and Y are subsets of some totally ordered
set (for our purposes, either [m] or {x1, . . . , xn}), we write X ≤ Y (or X < Y ) to
indicate that x ≤ y (similarly x < y) for all x ∈ X and all y ∈ Y .

Proposition 1.4. Let G and H be graphs with

V (G)= [m] and V (H)= {x1, . . . , xn}.

If η∈OHOM(G, H), then η(1)≤ η(2)≤ · · · ≤ η(m). Moreover, if (i, j) is an edge
in G, then η(i) < η( j).

The purpose of this paper is to determine the Betti numbers βr (G, Kn) of the
complex of order-preserving homomorphisms between a fixed graph G and the
complete graph on n vertices. In order to more easily compute the Betti numbers
βr (G, Kn), we use the following series of reductions outlined in [Braun et al. 2011,
Section 5]. All relevant definitions are deferred to Section 2.

(1) We show that for any graph G, there is a nonnesting partition P of [m] and a
corresponding graph 0P on [m], called an arc diagram, such that

OHOM(G, Kn)= OHOM(0P, Kn).

(2) We define a weight function ωr (0P, Kn) that counts the number of r -dimen-
sional multihomomorphisms in OHOM(0P, Kn) “minimally” determined by
P. These weights are ultimately easier to compute than the Betti numbers of
OHOM(0P, Kn).

(3) We define a partial order, denoted �, on the family of nonnesting partitions
of [m] and show that

βr (0P, Kn)=
∑
Q�P

ωr (0Q, Kn).

In Section 3, we provide an explicit (and simple) closed formula for the weight
function ωr (0P, Kn) for any nonnesting partition P.
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2. Nonnesting partition graphs

Nonnesting partitions. A partition P= {P1, . . . , Pt } of the set [m] is a collection
of nonempty subsets Pi ⊆ [m] (called blocks) such that Pi ∩ Pj = ∅ for all i 6= j
and P1 ∪ · · · ∪ Pt = [m]. We say that two blocks Pi and Pj nest if there exist
1 ≤ a < b < c < d ≤ m with {a, d} ⊆ Pi and {b, c} ⊆ Pj and there does not exist
e ∈ Pi with b< e< c. If no pair of blocks of P nest, we say that P is a nonnesting
partition of [m]. The family of nonnesting partitions was originally introduced and
studied by Postnikov; see [Reiner 1997, Remark 2].

Example 2.1. The partition P1 = {{1, 4}, {2, 5, 6}, {3}} of [6] is a nonnesting par-
tition. The partition P2={{1, 3, 5}, {2, 6}, {4}} is nesting since the blocks {1, 3, 5}
and {2, 6} nest.

It is more illuminating to represent a partition P of [m] as a graph 0P as follows.

Definition 2.2. Let P be a partition of [m] and let Pi = {i1, . . . , ik} be a block of
P with i1 < · · · < ik . The arc diagram 0P is the graph on vertex set [m] whose
edges are given by (i j , i j+1) for consecutive elements of Pi taken over all blocks
of P.

The name “arc diagram” is natural when the graph0P is drawn so that its vertices
are placed in a line and its edges are drawn as upper semicircular arcs, as shown
in Example 2.3. In this representation, a partition P is nonnesting exactly when no
arc of 0P is nested below another.

Example 2.3. Let P1 = {{1, 4}, {2, 5, 6}, {3}} and P2 = {{1, 3, 5}, {2, 6}, {4}} be
the partitions of [6] discussed in Example 2.1. The arc diagrams 0P1 and 0P2 are
as follows:

{{1, 4}, {2, 5, 6}, {3}} {{1, 3, 5}, {2, 6}, {4}}

1 2 3 4 5 6 1 2 3 4 5 6

The next proposition shows that in order to compute Betti numbers βr (G, Kn)

for arbitrary graphs G, we need only study the Betti numbers of nonnesting arc
diagrams.

Proposition 2.4 [Braun et al. 2011, Proposition 5.6]. For any graph G on vertex set
[m], there exists a unique nonnesting partition P of [m] such that 0P is a subgraph
of G and OHOM(G, Kn)=OHOM(0P, Kn). We call 0P the reduced arc diagram
for G.

Suppose there exist vertices 1 ≤ a ≤ b < c ≤ d ≤ m in G such that (a, d)
and (b, c) lie in E(G) (so that the edge (b, c) is nested below the edge (a, d)),
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and let G ′ be the graph obtained from G by removing the edge (a, d). The proof
of Proposition 2.4 uses the observation that OHOM(G, Kn)=OHOM(G ′, Kn) so
that the reduced graph 0P is obtained from G by inductively removing the “top”
arc in any pair of nested edges in G.

The goal for the remainder of this section is to describe a natural partial order on
the family of nonnesting partitions of [m]. We then describe how to use this partial
order to compute the Betti numbers βr (0P, Kn) of an arc diagram. For further
information on posets and definitions of any undefined terms, we refer the reader
to [Stanley 1997].

Definition 2.5. The m-th diagram poset, denoted Dm = (Dm,�), is the poset
whose elements are arc diagrams of nonnesting partitions of [m], partially ordered
by P� Q if every arc of Q lies above an arc of P.

The minimal element of Dm is the path of length m−1 on [m], and the maximal
element of Dm is the empty graph.

For example, there are five nonnesting partitions of [3]:

P1 = {{1}, {2}, {3}},

P2 = {{1, 3}, {2}},

P3 = {{1, 2}, {3}},

P4 = {{1}, {2, 3}},

P5 = {{1, 2, 3}}.

Let 01, . . . , 05 denote their corresponding arc diagrams, as shown in Figure 1.
If (P,≤) is a poset, a subset U ⊆ P is a upper order ideal if y ∈ U whenever

x ∈ U and y ≥ x . An upper order ideal U ⊆ P is principal if there is an element

1 2 3

1 2 3

1 2 3 321

1 2 3

Γ1:

Γ2:

Γ3: Γ4:

Γ5:

Figure 1. The Hasse diagram for D3.
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α ∈ P such that U = {y ∈ P : y ≥ α}. The importance of the partial order on Dm

is illustrated in the following proposition.

Proposition 2.6 [Braun et al. 2011, Proposition 5.8]. If P� Q in Dm , then

OHOM(0P, Kn)⊆ OHOM(0Q, Kn).

Further, for each multihomomorphism η ∈OHOM(Ge, Kn), where Ge denotes the
empty graph on vertex set [m], the upper order ideal U (η) ⊆ Dm of arc diagrams
whose OHOM complexes contain η is principal.

Proof. Fix a multihomomorphism η∈OHOM(0P, Kn). We need to show that each
choice [ϕ(i) ∈ η(i)]mi=1 yields an order-preserving homomorphism from 0Q to Kn

so that η ∈ OHOM(0Q, Kn) as well.
Let (a, d) be an edge in 0Q with a < d. Since P� Q, there is an edge (b, c) in

0P such that a ≤ b < c ≤ d . Since ϕ is an order-preserving homomorphism from
0P to Kn and (b, c) is an arc in 0P, we see that ϕ(a) ≤ ϕ(b) < ϕ(c) ≤ ϕ(d). The
arc (a, d) was arbitrary, and hence ϕ(a) < ϕ(d) for all arcs (a, d) in 0Q. Thus ϕ
is an order-preserving homomorphism from 0Q to Kn and η ∈OHOM(0Q, Kn), as
desired.

Suppose next that η ∈ OHOM(Ge, Kn). Consider the graph G on [m] obtained
as the union of all arc diagrams 0Q such that η ∈ OHOM(0Q, Kn), and let 0P

denote the reduced arc diagram of G. Clearly P � Q for all nonnesting partitions
Q whose OHOM complexes contain η. Thus U (η) is generated by P. �

Example 2.7. We illustrate Proposition 2.6 for the following multihomomorphism
η ∈ OHOM(01, K9), using the notation from Figure 1:

η(1) η(2) η(3)
x1 x4 x7

x3 x6 x9

x7

Since η(2)∩ η(3) is nonempty, the nonnesting partitions P for which η lies in
OHOM(0P, K9) are P1, P2 and P3. The corresponding graphs 01, 02, and 03

form an upper order ideal in D3 that is generated by 03.

Weights of nonnesting partition graphs. Proposition 2.6 gives a well defined no-
tion of the minimal arc diagram 0Q whose OHOM complex supports a given multi-
homomorphism η ∈OHOM(Ge, Kn). We make this more precise in the following
definition.

Definition 2.8. Let P be a nonnesting partition of [m]. The r-th weight of P for
n, denoted ωr (P, n), counts the number of r -dimensional multihomomorphisms
η ∈ OHOM(Ge, Kn) such that P generates U (η).
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To be more specific, Proposition 2.6 says that for each nonnesting partition Q

and each multihomomorphism η ∈ OHOM(0Q, Kn), there is a unique minimal
nonnesting partition P � Q such that η ∈ OHOM(0P, Kn). This allows us to
partition the r -dimensional multihomomorphisms of OHOM(0Q, Kn) according
to the poset Dm , as the following proposition indicates.

Proposition 2.9 [Braun et al. 2011, Proposition 5.10]. For any nonnesting parti-
tion Q,

βr (0Q, Kn)=
∑
P�Q

ωr (P, n). (2-1)

Recall that a collection of vertices W in a graph G is independent if there are
no edges in G among the vertices in W . The following lemma provides a converse
to Proposition 1.4 when computing weights.

Lemma 2.10. Let η be a multihomomorphism of OHOM(Ge, Kn), and let P be the
nonnesting partition whose arc diagram generates U (η). Suppose I = [a, c] ⊆ [m]
is independent in 0P. Then

(1) η(a)∩ η(c) 6=∅,

(2) |η(a)∩ η(c)| = 1, and

(3) if η(a)∩ η(c)= {xi }, then η(b)= {xi } for all a < b < c.

Proof. To prove (1), suppose by way of contradiction that η(a)∩ η(c) = ∅. Con-
sider the arc diagram 0Q obtained from 0P by adding the arc (a, c). Since I is
independent in 0P, the graph 0Q is the arc diagram of a nonnesting partition Q.

First, we observe that Q≺P since 0P is a subgraph of 0Q, and hence every arc
of 0P lies above an arc of 0Q. Next, we claim that η ∈ OHOM(0Q, Kn). Since
(a, c) is the only edge in E(0Q) \ E(0P), we only need to check that (x, y) is an
edge of Kn for any choice of x ∈ η(a) and y ∈ η(c). This follows immediately
from our assumption that η(a)∩ η(c)=∅.

Thus η ∈ OHOM(0Q, Kn) and Q ≺ P, contradicting our assumption that the
nonnesting partition P generates U (η). This proves that η(a) ∩ η(c) 6= ∅. Parts
(2) and (3) follow immediately from the requirement that η(a) ≤ η(b) ≤ η(c) for
all a < b < c, together with the fact that η(a)∩ η(c) 6=∅. �

Lemma 2.11 [Braun et al. 2011, Theorem 5.11]. If 0P contains an arc (a, c)where
c− a > 2, then ωr (P, n)= 0.

Proof. Suppose to the contrary that 0P contains such an arc and that ωr (P, n) 6= 0.
Let η be an r -dimensional multihomomorphism of OHOM(Ge, Kn) such that 0P

generates U (η).
Consider the intervals I = [a, c−1] and I ′ = [a+1, c]. Since P is nonnesting,
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I and I ′ are independent in 0P. By Lemma 2.10, there is an element

xi ∈ η(a)∩ η(c− 1)

and moreover, η(b) = {xi } for all a < b < c − 1. In particular, η(a + 1) = {xi }

since a + 1 < c − 1. By applying Lemma 2.10 to the interval I ′, we see that
η(a+1)∩η(c) 6=∅ and hence xi ∈ η(c). Thus xi ∈ η(a)∩η(c), which contradicts
Proposition 1.4. �

Following [Braun et al. 2011], we call an arc diagram 0P containing no arcs of
the form (i, j)with j−i>2 a small arc diagram, and we say that the corresponding
nonnesting partition P is a small nonnesting partition. In light of Lemma 2.11, we
need only compute the weights ωr (P, Kn) for which 0P is a small arc diagram.
The following two results are interesting enumerative results in their own right.

Proposition 2.12 ([Stanley 1997]). The number of nonnesting arc diagrams on
[m] is enumerated by the m-th Catalan number

Cm =
1

m+ 1

(
2m
m

)
.

Proposition 2.13 ([Braun et al. 2011, Theorem 5.12]). Let Fm be the m-th Fi-
bonacci number with F0 = F1 = 1. The number of small arc diagrams on [m] is
F2m−2.

An example. As a more complicated example, we exhibit the weights and corre-
sponding Betti numbers for all nonnesting partitions of {1, 2, 3}. We recall the arc
diagrams 01, . . . , 05 used in Figure 1.

Proposition 2.14. For all r, n ≥ 0,

ωr (01, Kn)=

(
n

r + 1

)
(r + 1).

Proof. Let η ∈OHOM(01, Kn) be a multihomomorphism whose upper order ideal
U (η) is generated by 01. By Lemma 2.10, there is a single element xi ∈η(1)∩η(3)
and η(2)= {xi }. In order to compute ωr (01, Kn), we first determine that there are
r + 1 distinct elements in η(1)∪ η(2)∪ η(3). Indeed, by the inclusion-exclusion
principle,∣∣η(1)∪ η(2)∪ η(3)∣∣
=
∣∣η(1)∣∣+ ∣∣η(2)∣∣+ ∣∣η(3)∣∣− ∣∣η(1)∩ η(2)∣∣− ∣∣η(1)∩ η(3)∣∣− ∣∣η(2)∩ η(3)∣∣

+
∣∣η(1)∩ η(2)∩ η(3)∣∣

= (r + 3)− 3+ 1= r + 1.
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In order to describe any such multihomomorphism η, we must choose a subset
X ⊆ {x1, . . . , xn} of the r + 1 distinct elements in η(1) ∪ η(2) ∪ η(3), together
with the single element xi ∈ X that is common to all three sets. Certainly there are( n

r+1

)
(r + 1) ways to make these choices. Having chosen X and xi ∈ X , we take

η(1)= {x ∈ X : x ≤ xi }, η(2)= {xi }, and η(3)= {x ∈ X : x ≥ xi }. �

Proposition 2.15. For all r, n ≥ 0,

ωr (02, Kn)=

(
n

r + 1

)(
r + 1

2

)
.

Proof. Let η ∈ OHOM(02, Kn) be an r -dimensional multihomomorphism whose
upper order ideal U (η) is generated by 02. By Lemma 2.10, there is an element
xi ∈η(1)∩η(2) and another element x j ∈η(2)∩η(3). Moreover, by Proposition 1.4,
η(1)∩η(3)=∅ and hence xi 6= x j . Thus by the inclusion-exclusion principle, there
are r + 1 distinct elements in η(1)∪ η(2)∪ η(3).

In order to describe any such multihomomorphism η, we must first choose a
subset X ⊆ {x1, . . . , xn} of the r + 1 elements in η(1)∪η(2)∪η(3), together with
the elements xi ∈ η(1)∩ η(2) and x j ∈ η(2)∩ η(3). Certainly there are

( n
r+1

)(r+1
2

)
ways to make these choices. Given the set X and distinguished elements xi and
x j , we take

η(1)={x ∈ X : x≤ xi }, η(2)={x ∈ X : xi ≤ x≤ x j }, η(3)={x ∈ X : x≥ x j }. �

Proposition 2.16. For all r, n ≥ 0,

ωr (03, Kn)=

(
n

r + 2

)(
r + 2

2

)
.

Proof. Let η ∈ OHOM(03, Kn) be an r -dimensional multihomomorphism whose
upper order ideal U (η) is generated by 03. By Lemma 2.10, there is an element
x j ∈ η(2) ∩ η(3), and by Proposition 1.4, η(1) ∩ η(2) = ∅. By the inclusion-
exclusion principle, there are r + 2 distinct elements in η(1)∪ η(2)∪ η(3).

In order to describe any such multihomomorphism η, we must first choose a
subset X ⊆{x1, . . . , xn} of the r+2 distinct elements in η(1)∪η(2)∪η(3), together
with the element x j ∈η(2)∩η(3) and the largest element xi in η(1). Certainly there
are

( n
r+2

)(r+2
2

)
ways to make these choices. As before, having chosen X , xi and

x j , we take

η(1)={x ∈ X : x≤ xi }, η(2)={x ∈ X : xi < x≤ x j }, η(3)={x ∈ X : x≥ x j }. �

Proposition 2.17. For all r, n ≥ 0,

ωr (04, Kn)=

(
n

r + 2

)(
r + 2

2

)
.
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Proof. The proof of this proposition follows by an argument that is symmetric to
the one given to compute the weights ωr (03, Kn). �

Proposition 2.18. For all r, n ≥ 0,

ωr (05, Kn)=

(
n

r + 3

)(
r + 2

2

)
.

Proof. Let η ∈ OHOM(05, Kn) be an r -dimensional multihomomorphism whose
upper order ideal U (η) is generated by 05. By Proposition 1.4, η(1) ∩ η(2),
η(2)∩η(3), and η(1)∩η(3) are empty. Thus by the inclusion-exclusion principle,
|η(1)∪ η(2)∪ η(3)| = r + 3.

In order to describe such a multihomomorphism η, we must choose a subset
X ⊆ {x1, . . . , xn} of the r+3 distinct elements of η(1)∪η(2)∪η(3) together with
the maximal elements xi and x j of η(1) and η(2) respectively. Having made these
choices, we take

η(1)= {x ∈ X : x ≤ xi }, η(2)= {x ∈ X : xi < x ≤ x j }, η(3)= {x ∈ X : x > x j }.

Since η(3) must be nonempty, we cannot choose x j to be the maximal element of
X . The number of ways to choose X , xi , and x j is

( n
r+3

)(r+2
2

)
, which completes

the proof. �

3. Enumerative results

Our goal for this section is to prove the promised formula computing the weights
ωr (P, n) for any small nonnesting partition P. Before stating the main theorem,
we establish notation that will be used for the remainder of the paper.

Proposition 3.1. For any small nonnesting partition P of [m], there is a unique
constant k = k(P) and a unique decomposition of [m] into intervals I1, . . . , Ik

satisfying the following conditions.

(P1) I1 ∪ · · · ∪ Ik = [m],

(P2) I1 ≤ I2 ≤ · · · ≤ Ik ,

(P3) |I j | ≥ 2 for all j , and

(P4) each interval I j satisfies exactly one of the following conditions:

(i) I j is a maximal interval (under inclusion) that is independent in 0P.
(ii) I j = {i j , i j+1} and (i j , i j+1) is an edge of 0P.

Proof. We induct on m. The result is clear when m = 2. When m ≥ 3, we examine
two cases.

If (1, 2) is an arc in 0P, let I1 = {1, 2}. Inductively, we may decompose the
restriction of P to [2,m] into intervals I2, . . . , Ik satisfying conditions (P1)–(P4).
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On the other hand, if (1, 2) is not an arc in 0P, let t be the largest element of
[m] such that [1, t] is independent in 0P. Let I1 = [1, t]; if t = m, we have found
the desired decomposition. Otherwise, if t < m, the restriction of 0P to [t,m] is
a small arc diagram, and we may inductively decompose the restriction of 0P to
[t,m] into intervals I2, . . . , Ik satisfying conditions (P1)–(P4).

In either of the above cases, we must check that the resulting interval decom-
position [m] = I1 ∪ · · · ∪ Ik satisfies conditions (P1)–(P4). Conditions (P1)–(P3)
are satisfied by the inductive hypothesis. We must check, however, that if I1 and
I2 are both edgefree as in condition (P4.i), then both are maximal under inclusion.
By our construction, I1 = [1, t] is maximal. Since t+1 /∈ I1 and P is small, either
(t, t + 1) or (t − 1, t + 1) is an edge in 0P. If (t, t + 1) is an edge in 0P, then
I2 = {t, t + 1} satisfies condition (P4.ii). If (t − 1, t + 1) is an edge in 0P, then
I2 satisfies condition (P4.i), and t − 1 cannot be added to I2 without violating the
independence condition. Thus I2 is maximal under inclusion, which completes the
proof. �

Example 3.2. Consider the small arc diagram 0P for

P= {{1, 3}, {4, 5, 7}, {6, 8}, {9}} :

1 2 3 4 5 6 7 8 9

The interval decomposition of 0P is

I1 = {1, 2}, I2 = {2, 3, 4}, I3 = {4, 5},

I4 = {5, 6}, I5 = {6, 7}, I6 = {7, 8, 9}.

Theorem 3.3. Let P be a small nonnesting partition of [m] with interval decom-
position I1, . . . , Ik as described by Proposition 3.1. For any r, n ≥ 0,

ωr (P, n)=

{(n
l

)(l−1
k

)
if (1, 2), (m− 1,m) ∈ E(0P);(n

l

)(l
k

)
otherwise,

(3-1)

where l := r +m−
∑

j∈J (|I j | − 1) and J ⊆ [k] indexes those intervals described
by condition (P4.i).

Proof. Fix a small nonnesting partition P of [m]. For each 1 ≤ j ≤ k, let I j =

[a j , c j ]. For any r -dimensional multihomomorphism η ∈ OHOM(0e, Kn), we
observe that

∑m
i=1 |η(i)| = r +m. If the arc diagram for 0P generates U (η), then

Lemma 2.10 prescribes the combinatorial structure of the intersections of the sets
η(i) within each interval I1, · · · , Ik .
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As a consequence of these lemmas, we claim that as a set,

l := |η(1)∪ · · · ∪ η(m)| = r +m−
∑
j∈J

(|I j | − 1),

where J ⊆ [k] indexes those intervals described by condition (P4.i). To see this,
we simply observe that for each interval I j with j ∈ J , there is a single element x j

common to the sets among {η(p) : p ∈ I j }. When computing |η(1)∪ · · · ∪ η(m)|,
each of these elements x j is overcounted |I j | − 1 times.

Thus in order to describe such a multihomomorphism η, we must first choose a
subset X ⊆ {x1, . . . , xn} of the l distinct elements of η(1)∪ · · · ∪ η(m). This can
be accomplished in

(n
l

)
ways.

Now suppose that (1, 2) is not an arc of 0P. The binomial coefficient
(l

k

)
counts

the number of ways in which we may decompose the set X into pairwise disjoint
intervals A0 < A1 < · · · < Ak so that the sets A1, . . . , Ak are nonempty. This
follows from a standard stars-and-bars argument [Stanley 1997, Section 1.2] by
arranging the elements of X linearly as

xi1 xi2 · · · xil−1 xil ,

with i1 < · · ·< il and choosing k of the spaces between consecutive elements of X
to partition the set. This includes the possibility of choosing the space to the left
of xi1 , which corresponds to the case that A0 is empty.

We now exhibit a bijection between the family of stars-and-bars partitions of
X described in the previous paragraph and the collection of multihomomorphisms
η ∈ OHOM(Ge, Kn) such that η(1)∪ · · · ∪ η(m)= X and P generates U (η).

Given pairwise disjoint intervals A0 < A1 < · · · < Ak that partition X with
A1, . . . , Ak nonempty, let mi denote the smallest element of Ai for 1≤ i ≤ k. We
determine the sets η(i) by declaring that

• A0 ⊆ η(1),

• A j ⊆ η(c j ) for all 1≤ j ≤ k, and

• m j ∈ η(b) for all b ∈ [a j , c j ] and all j ∈ J .

Lemma 2.10 and Proposition 1.4 show that this is a bijective correspondence. By
symmetry, the same argument applies to the situation that (m− 1,m) /∈ 0P.

In the case that both (1, 2) and (m − 1,m) are edges in 0P, an analogous bi-
jection holds, with the exception that

(l−1
k

)
counts the number of partitions of X

into nonempty, pairwise disjoint intervals B0 < · · · < Bk . Here we must require
that B0 and Bk are nonempty, since they describe the elements of η(1) and η(m),
respectively. �
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Example 3.4. We illustrate the proof of Theorem 3.3. Let P be the small partition
from Example 3.2. Suppose l = 11 and (for simplicity) that

η(1)∪ · · · ∪ η(9)= {x1, . . . , x11}.

The stars-and-bars decomposition

x1 x2 | x3 | x4 x5 x6 | x7 | x8 | x9 | x10 x11

gives

A0 = {x1, x2}, A1 = {x3}, A2 = {x4, x5, x6}, A3 = {x7},

A4 = {x8}, A5 = {x9}, A6 = {x10, x11}.

This, in turn corresponds to the following multihomomorphism η:

η(1) η(2) η(3) η(4) η(5) η(6) η(7) η(8) η(9)
x1

x2

x3 x3

x4 x4 x4

x5

x6

x7

x8 x8

x9 x9

x10 x10 x10

x11

We have shaded the blocks A j ⊆ η(c j ) for all 1 ≤ j ≤ 6, where the intervals
I1, . . . , I6 are those given in Example 3.2 and we write I j =[a j , c j ] as in the proof
of Theorem 3.3.
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Permutation notations for the exceptional
Weyl group F4

Patricia Cahn, Ruth Haas, Aloysius G. Helminck,
Juan Li and Jeremy Schwartz

(Communicated by Joseph Gallian)

This paper describes a permutation notation for the Weyl groups of type F4 and
G2. The image in the permutation group is presented as well as an analysis of
the structure of the group. This description enables faster computations in these
Weyl groups which will prove useful for a variety of applications.

1. Introduction

Weyl groups, or finite Coxeter groups, are widely used in mathematics and in
applications (some examples are given in Section 2). They are most commonly
represented by generators and relations. The disadvantage of that representation
is that elements are not uniquely represented by strings or even minimal strings of
generators. For the classical Weyl groups combinatorialists use one-line permuta-
tion notation, which corresponds to the orbit of the standard basis vectors under
the Weyl group. This combinatorial representation provides unique representation,
which makes it efficient for computation (see [Haas and Helminck 2012]). Many
properties of the elements, such as length and order, can be quickly read from
the combinatorial representation (see, for example, [Haas et al. 2007]). Further,
the unique representation provides insight into more complex structures such as
involution and twisted involution posets; see [Haas and Helminck 2011].

For the exceptional Weyl groups of type G2, F4, E7 and E8, the orbit of the
standard basis vectors includes not just the positive and negative axes but additional
vectors, making description by permutation somewhat less obvious. Nonetheless,
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similar representations can be made in these cases as well. In this paper we give a
permutation representation for the Weyl group of type F4 and discuss a number of
properties of this representation. We also give a similar presentation for G2.

2. Motivation

Given a field k, symmetric k-varieties are the homogenous spaces G/H , where
G is the set of k-rational points of reductive group G defined over k and H the
set of k-rational points of the set of fixed points of an automorphism σ (defined
over k) of the group G. For k the real or p-adic numbers these are also known
as reductive symmetric spaces. These symmetric k-varieties have a detailed fine
structure of root systems and Weyl groups, similar to that of the group G itself.
This fine structure involves 4 (restricted) root systems and Weyl groups. To study
the structure of symmetric k-varieties one needs detailed descriptions of this fine
structure and how they act on the various types of elements of these root systems
and Weyl groups. For example, to study the representations associated with these
symmetric k-varieties one needs a detailed description of the orbits of (minimal)
parabolic k-subgroups acting on these symmetric k-varieties. A characterization
of these orbits was given in [Helminck and Wang 1993]. They showed that these
orbits can be characterized by

⋃
i∈I WG(Ai )/WH (Ai ), where {Ai | i ∈ I } is a set

of representatives of the H -conjugacy classes of the σ -stable maximal k-split tori,
WG(Ai ) is the set of Weyl group elements that have a representative in NG(Ai ),
the normalizer of Ai in G, and WH (Ai ) is the set of Weyl group elements that have
a representative in NH (Ai ). To fully classify these orbits one needs to compute the
subgroups WH (Ai ) of WG(Ai ). This requires a detailed analysis of the structure
of the Weyl groups and their subgroups.

Another example is that the classification of Cartan subspaces can be reduced
to a classification of WH (A)-conjugacy classes of σ -singular involutions. The
WG(A)-conjugacy classes of involutions were classified in [Helminck 1991]. A
detailed analysis of the Weyl groups and their subgroups will enable one to deter-
mine how a WG(A)-conjugacy class breaks up in WH (A)-conjugacy classes. There
are many other problems related to symmetric k-varieties for which one needs a
detailed description of the various Weyl groups and their subgroups. The detailed
combinatorial analysis of the structure of the Weyl groups of types F4 and G2 in
this paper enables us to compute the necessary data to solve those problems for
those symmetric k-varieties that have a restricted Weyl group of type F4 and G2.

The classical text on Weyl groups is [Bourbaki 2002], while a good modern
treatment to Weyl groups and their uses in Lie theory can be found in [Humphreys
1972]. The Weyl groups of type F and G are two of the exceptional Coxeter
groups; see [Humphreys 1990] for a basic treatment of these groups.



PERMUTATION NOTATION FOR THE EXCEPTIONAL WEYL GROUP F4 83

3. The Weyl group of type F4

The root system of type F4 has the following characteristics. There are n = 48
roots. The usual basis is the set{

α1 = e2− e3, α2 = e3− e4, α3 = e4, α4 =
1
2(e1− e2− e3− e4)

}
.

The complete set of roots is {±ei ,±ei ± e j ,
1
2(±e1± e2± e3± e4)}. The positive

roots are {ei , ei ± e j ,
1
2(e1 ± e2 ± e3 ± e4)}. Recall the associated Weyl group is

generated by the reflections over the hyperplanes orthogonal to the basis roots.
These are usually denoted sαi , which we abbreviate to si . Here we label the short
positive roots with the numbers 1- 12 and describe how the Weyl group of type F4

is associated with a subgroup of the permutation group on [−12, . . . , 12]. I.e., each
element in W (F4) will be associated with a signed permutation on {1, . . . , 12}.

To begin compute the images of the short roots under the basis. These are
given in Table 1. Each column in the table describes where each root goes under
each basis reflection, so when read from top to bottom, the column gives one-line
notation for the generators of the Weyl group. These generators are

s1 = (1, 3, 2, 4, 5, 7, 6, 8, 9, 11, 10, 12),

s2 = (1, 2, 4, 3, 5, 6, 8, 7, 9, 10, 12, 11),

s3 = (1, 2, 3,−4, 12, 11, 10, 9, 8, 7, 6, 5),

s4 = (9, 10, 11, 12,−5, 6, 7, 8, 1, 2, 3, 4).

root r sα1(r) sα2(r) sα3(r) sα4(r)

1 e1 1 1 1 9
2 e2 3 2 2 10
3 e3 2 4 3 11
4 e4 4 3 −4 12
5 1

2(e1− e2− e3− e4) 5 5 12 −5
6 1

2(e1− e2+ e3+ e4) 7 6 11 6
7 1

2(e1+ e2− e3+ e4) 6 8 10 7
8 1

2(e1+ e2+ e3− e4) 8 7 9 8
9 1

2(e1+ e2+ e3+ e4) 9 9 8 1
10 1

2(e1+ e2− e3− e4) 11 10 7 2
11 1

2(e1− e2+ e3− e4) 10 12 6 3
12 1

2(e1− e2− e3+ e4) 12 11 5 4

Table 1. Generators of W (F4).
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In cycle notation, they can be expressed as products of transpositions as follows:

s1 = (2, 3)(6, 7)(10, 11), s3 = (8, 9)(7, 10)(6, 11)(5, 12)(4,−4),

s2 = (3, 4)(7, 8)(11, 12), s4 = (1, 9)(2, 10)(3, 11)(4, 12)(5,−5).

Note that the elements of W (F4) are in one-to-one correspondence with only
a subset of signed permutations on [1, . . . , 12]. In particular, since the first 4
elements give the image of the standard basis of R4, they determine the other 8
positions uniquely. In Section 3.10 we will see that there are further restrictions
on what can occur in the first four places.

3.1. A minimal word algorithm. We develop a method for the important task of
converting from this one-line notation to the standard representation of an element
as a minimal word. For x ∈W (F4), recall that the length of x , l(x), is the number
of letters in the minimal word of x . It is well-known that the length of x equals the
number of positive roots mapped to negative roots by x .

Lemma 3.2. Any nontrivial element of W (F4) maps at least one of e4, e2 − e3,
e3− e4, and 1

2(e1− e2− e3− e4) to a negative root.

Proof. This set of roots is exactly the set of roots which get mapped to negative
roots under the basis reflections. �

Lemma 3.3. Let x ∈ W (F4). Then x maps αi to a negative root if and only if
l(xsi ) < l(x).

Proof. This follows directly from the definitions. �

Algorithm 3.4. Given an element x = (a1, a2, . . . , a12) ∈ W (F4), the following
algorithm will output a minimal word for x .

1. If all ai > 0, go to step 6. Otherwise, go to step 2.

2. If a4 < 0, right multiply by s3 and go to step 1. Otherwise, go to step 3.

3. If a5 < 0, right multiply by s4 and go to step 1. Otherwise, go to step 4.

4. If a3 < 0, right multiply by s2 and go to step 1. Otherwise, go to step 5.

5. Right multiply by s1 and go to step 1.

6. If the resulting element is not the identity, compare it to the following list in
order to determine the final step(s).
(a) {1, 3, 2, 4, 5, 7, 6, 8, 9, 11, 10, 12} = s1.
(b) {1, 2, 4, 3, 5, 6, 8, 7, 9, 10, 12, 11} = s2.
(c) {1, 3, 4, 2, 5, 7, 8, 6, 9, 11, 12, 10} = s2s1.
(d) {1, 4, 2, 3, 5, 8, 6, 7, 9, 12, 10, 11} = s1s2.
(e) {1, 4, 3, 2, 5, 8, 7, 6, 9, 12, 11, 10} = s1s2s1.

Theorem 3.5. Algorithm 3.4 produces a minimal word for x.
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Proof. Note that even if ai > 0 for all i , the length of x may not be zero because
not all positive roots are represented in the list of twelve roots. In particular, there
are six elements of W (F4) such that ai > 0 for all i . They are precisely those listed
in Step 6. of the algorithm together with the identity. Clearly steps 2 and 3 reduce
the length of x . If we arrive at step 4, i.e., a4 > 0, and a3 < 0, then one can check
that e3− e4 maps to a negative root under x , so multiplying by s2 will reduce the
length of x .

If we arrive at step 5, i.e., a3, a4, a5 > 0, but some other ai is negative, then we
show that a2 must be negative. Suppose instead that a2>0. Let 〈i〉+〈 j〉 denote the
root which is the vector sum of roots i and j . E.g., 〈5〉= 1

2(〈1〉−〈2〉−〈3〉−〈4〉) and
since x is a linear map this implies 〈a5〉=

1
2(〈a1〉−〈a2〉−〈a3〉−〈a4〉). Rearranging

gives 〈a1〉 = 〈a2〉 + 〈a3〉 + 〈a4〉 + 2〈a5〉, with all terms on the right positive by
assumption. Therefore, a1> 0. Similar calculations done in the correct order show
that all other ai must be positive. Explicitly: 〈a10〉=〈a5〉+〈a2〉; 〈a12〉=〈a5〉+〈a4〉;
〈a11〉 = 〈a5〉 + 〈a3〉; 〈a6〉 = 〈a12〉 + 〈a3〉; 〈a7〉 = 〈a12〉 + 〈a2〉; 〈a8〉 = 〈a10〉 + 〈a3〉;
〈a9〉 =

1
2(〈a1〉+ 〈a2〉+ 〈a3〉+ 〈a4〉).

Thus a2 < 0. In this case e2 − e3 will be mapped to a negative root, so right
multiplication by s1 will reduce the length.

If we arrive at step 6 then all ai > 0. Clearly these must be products of s1 and
s2 only. The 5 elements listed above plus the identity are all the possibilities. �

One can determine the length of any x ∈ W (F4) by finding a reduced word as
above. In what follows we give a combinatorial description of length. Partition the
short roots of F4 into the three sets

α = {±1,±2,±3,±4}, β = {±5,±6,±7,±8}, γ = {±9,±10,±11,±12}.

Lemma 3.6. For all x ∈ W (F4), {x(α), x(β), x(γ )} = {α, β, γ }. In other words,
x permutes the sets α, β and γ .

Theorem 3.7. For an element x = (a1, a2, · · · , a12), define

N (x)= |{i : ai < 0}|
and

p(ai , a j )=


0 if |ai |< |a j | and ai > 0,
2 if |ai |< |a j | and ai < 0,
1 if |ai |> |a j |.

Find k such that {±a4k+1,±a4k+2,±a4k+3,±a4k+4} = α. If k = 1,

l(x)=
∑
i> j

p(a4k+i , a4k+ j )+ N (x).

Otherwise,
l(x)=

∑
i< j

p(a4k+i , a4k+ j )+ N (x).
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Proof. The length counts the number of positive roots mapped to negative roots
under x . The function N (x) counts the number of short roots mapped to negative
roots, while the p(a4k+i , a4k+ j ) terms account for the number of long roots mapped
to negative roots. There are three cases depending on which set is mapped to α.

Suppose x(α) = α. Each of the positive long roots ei ± e j , i < j is the sum or
difference of the roots 〈1〉, 〈2〉, 〈3〉, 〈4〉; where the difference is taken as 〈i〉 − 〈 j〉
where i < j . Thus to determine which of these is mapped to a negative long root,
we need only consider the sum and difference of 〈ai 〉 for i = 1, . . . , 4. It is easy to
check that 〈ai 〉+ 〈a j 〉 is a negative root exactly when either |ai |> |a j | and a j < 0
or when |ai | < |a j | and ai < 0. As well, 〈ai 〉 − 〈a j 〉 is negative exactly when
|ai |< |a j | and ai < 0 or when |ai |> |a j | and a j > 0.

Suppose x(β) = α. Each of the positive long roots ei ± e j , j < i is the sum or
difference of the roots 〈5〉, 〈6〉, 〈7〉, 〈8〉 where the difference is taken as 〈i〉 − 〈 j〉
where j < i . With this reversed order the same conditions for when 〈ai 〉 + 〈a j 〉

and 〈ai 〉− 〈a j 〉 are negative will still hold.
Suppose x(γ ) = α. Each of the positive long roots ei ± e j , i < j is the sum

or difference of the roots 〈9〉, 〈10〉, 〈11〉, 〈12〉; where the difference is taken as
〈i〉− 〈 j〉 where i < j . Again the same conditions hold. �

3.8. Group structure and notation properties. It is also useful to consider the
images of the three sets of short roots as permutations in signed S4. Refer to
the elements in positions 1-4 as set A, the elements in positions 5-8 as set B,
and the elements in positions 9-12 as set C . Formally, let f ∈ F4 such that f =
( f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12). For 1 ≤ i ≤ 4 let ai = fi (mod
4), using the representatives {1, 2, 3, 4} for Z4. Similarly, bi = f4+i (mod 4), and
ci = f8+i (mod 4), for 1 ≤ i ≤ 4 again using the representatives {1, 2, 3, 4} for
Z4. Let A = (a1, a2, a3, a4), B = (b1, b2, b3, b4), and C = (c1, c2, c3, c4). Denote
(|a1|, |a2|, |a3|, |a4|) by |A|, and define |B| and |C | analogously. For example,
if f = (6,−8, 5,−7, 9, 11,−10, 12,−2, 4, 1, 3), then |A| = (2, 4, 1, 3), |B| =
(1, 3, 2, 4), and |C | = (2, 4, 1, 3).

Theorem 3.9. The parity of the negations in each block, given the order of the sets
α, β, and γ , is the following:

set order block A (1–4) block B (5–8) block C (9–12)

αβγ even even even
αγβ odd even even
βαγ odd odd odd
βγα even odd odd
γαβ odd even odd
γβα even odd even
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Proof. Note that generators s1 and s2 do not change the parity of negations in any
set, nor do they change the order of the sets. Therefore it suffices to inductively
show that this table holds after operating by generators s3 and s4 on the right. It is
simple to compute using the following rules. s3 swaps the second and third blocks,
and adds or subtracts one negative from the first block. s4 swaps the first and third
blocks, and adds or subtracts one negative from the second block. �

3.10. Restrictions on the values of |ai |. Let V be the subset of S4 generated by
(12)(34) and (13)(24), and K be the subset of S4 generated by (23) and (34).

For X ∈ S4 define v(X) to be the unique element of V in the coset K X .

Theorem 3.11. Let f ∈ W (F4) with sets A f , B f and C f as defined above. Then
|C f | = |B f |v(|A f |), |B f | = |A f |v(|C f |), and |A f | = |C f |v(|B f |).
Alternative statement: Let f ∈ W (F4) with sets fα, fβ , and fγ as defined above.
Then fγ = fβv( fα), fβ = fαv( fγ ), and fα = fγ v( fβ).

Proof. We proceed by induction. The statement is true for f = identi t y. Assume
its true for f , we show its true for si f for each si . Note that v((si f )µ) = v( fµ)
when i = 1, 2, 4 and µ= α, β, γ ; v((s3 f )α)= v( fα), v((s3 f )β)= (14)(23)v( fγ )
and v((s3 f )γ )= (14)(23)v( fβ). The cases for si where i 6= 3 are straightforward.

Furthermore, (s3 f )β = (14)(23) fγ and (s3 f )γ = (14)(23) fβ . These equa-
tions provide all of the required components for the proof. For example assume
fβ = fγ v( fα). Since v((s3 f )α) = v( fα) and (s3 f )γ = (14)(23) fβ and (s3 f )β =
(14)(23) fγ it follows that (s3 f )γ = (s3 f )βv((s3 f )α). �

3.12. W(F4) as a semidirect product. Let FD denote the subgroup of W (F4) con-
taining all d ∈ FD where d(α) = α, d(β) = β, and d(γ ) = γ , and let FS be the
subgroup of W (F4) generated by the generators s3 and s4. Let T be the group
representing the order of the sets α, β and γ . Define τ : W (F4) 7→ T in the
obvious way. Note that τ( f ) = id if and only if f ∈ FD . Now by Theorem 3.9,
the sets α, β and γ occur in order αβγ in the bottom row notation of f if and only
if the permutation A f contains an even number of negative signs.

Lemma 3.13. FD is isomorphic to D4.

Proof. The map ψ : FD → D4 such that ψ( f ) = A f for f ∈ FD provides the
isomorphism. �

Theorem 3.14. W (F4)= FD o FS .

Proof. We can represent f ∈ W (F4) by a pair (d, s) where f = ds and s is
the unique element of FS such that τ(s) = τ( f ). Define φs : FD 7→ FD where
φs(d)= sds−1 for d ∈ FD and s ∈ FS . One can check that if f1= d1s1, represented
by the pair (d1, s1), and f2 = d2s2, represented by the pair (d2, s2), then f1 f2 =

d1φs1(d2)s1s2, represented by the pair (d1 ·φs1(d2), s1 · s2). �
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One might hope that this semidirect product would provide an efficient notation
for computation in W (F4). A road block to this seems to be finding a combinatorial
description of the multiplication.

4. The Weyl group of type G2

The root system of type G2 has the following characteristics. There are n = 12
roots. The usual basis is the set {α1 = e1−e2, α2 =−2e1+e2+e3}. The complete
set of roots is {±(ei−e j )}, where i < j and i, j ∈ {1, 2, 3}, and {±(2ei−e j−ek)},
where {i, j, k} = {1, 2, 3}. The positive roots are {α1, α2, α1+α2, 2α1+α2, 3α1+

α2, 3α1+2α2}. Again we let si denote the reflection over the hyperplane orthogonal
to αi . We label the short positive roots 2α1+α2, α1+α2, and α1, with the numbers
1-3 respectively, and describe how the Weyl group of type G2 is associated with a
subgroup of the permutation group on [−3, . . . , 3]. Here are the images of roots
1, 2, and 3 under the generators of W (G2):

root r sα1(r) sα2(r)

1 −e2+ e3 2 1
2 −e1+ e3 1 3
3 e1− e2 −3 2

Reading from top to bottom in each column gives one-line notation for the gener-
ators, namely s1 = (2, 1,−3) and s2 = (1, 3, 2).

As with W (F4) we can give a simple combinatorial length formula for W (G2).

Theorem 4.1. The length of an element x = (a1, a2, a3) in W (G2) is given by
l(x)=

∑
i< j p(ai , a j ) where p(ai , a j ) is defined as follows:

p(ai , a j )=


0 if |ai |< |a j | and ai > 0,
2 if |ai |< |a j | and ai < 0,
1 if |ai |> |a j |.

Proof. The length counts the number of positive roots mapped to negative roots
under x . One can check that the positive roots in W (G2) are of the form 〈i〉± 〈 j〉
where i < j and i, j ∈ {1, 2, 3}. To determine which of 〈i〉 ± 〈 j〉 are mapped to
negative roots, we need to determine when 〈ai 〉± 〈a j 〉 is a negative root. One can
check that 〈ai 〉+ 〈a j 〉 is negative when |ai |< |a j | and ai < 0, or when |ai |> |a j |

and a j < 0. Similarly 〈ai 〉− 〈a j 〉 is negative when |ai |< |a j | and ai < 0, or when
|ai |> |a j | and a j > 0. �
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Progress towards counting D5 quintic fields
Eric Larson and Larry Rolen

(Communicated by Ken Ono)

Let N.5;D5;X / be the number of quintic number fields whose Galois closure
has Galois group D5 and whose discriminant is bounded by X . By a conjecture
of Malle, we expect that N.5;D5;X / � C �X

1
2 for some constant C . The best

upper bound currently known is N.5;D5;X /�X
3
4
C", and we show this could

be improved by counting points on a certain variety defined by a norm equation;
computer calculations give strong evidence that this number is� X

2
3 . Finally,

we show how such norm equations can be helpful by reinterpreting an earlier
proof of Wong on upper bounds for A4 quartic fields in terms of a similar norm
equation.

1. Introduction and statement of results

Let K be a number field and G � Sn a transitive permutation group on n letters.
In order to study the distribution of fields with given degree and Galois group, we
introduce the following counting function:

N.d;G;X / WD

#fdegree d number fields K with Gal.Kgal=Q/'G and jDK j �X g:

Here DK denotes the discriminant of K, counting conjugate fields as one. Our
goal is to study this function for d D 5 and GDD5. Malle [2002] has conjectured
that

N.d;G;X /� C.G/ �X a.G/
� log.X /b.G/�1 (1)

for some constant C.G/ and for explicit constants a.G/ and b.G/, and this has been
proven for all abelian groups G. Although this conjecture seems to be close to the
truth on the whole, Klüners [2005] found a counterexample when G D C3 o C2
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by showing that the conjecture predicts the wrong value for b.G/. This conjecture
has been modified to explain all known counterexamples in [Turkelli 2008].

We now turn to the study of N.5;D5;X /. By Malle’s conjecture, we expect
that

N.5;D5;X /
?
� C �X

1
2 : (2)

This question is closely related to average 5-parts of class numbers of quadratic
fields. In general, let l be a prime, D range over fundamental discriminants, and
rD WD rkl.Cl

Q.
p

D/
/. Then the heuristics of Cohen–Lenstra predicts that the aver-

age of lrD � 1 over all imaginary quadratic fields is 1, and the average of lrD � 1

over all real quadratic fields is l�1.
In fact, one can show using class field theory that the Cohen–Lenstra heuris-

tics imply that Malle’s conjecture is true for D5 quintic fields. Conversely, the
best known upper bound for N.5;D5;X / is proved using the “trivial” bound (see
[Klüners 2006])

lrD � # Cl
Q.
p

D/
DO.D

1
2 log D/: (3)

This gives N.5;D5;X /�X
3
4
C", and any improved bound would give nontrivial

information on average 5-parts of class groups in a similar manner.
In this paper, we consider a method of point counting on varieties to give upper

bounds on N.5;D5;X /. Our main result is the following:

Theorem 1.1. To any quintic number field K with Galois group D5, there corre-
sponds a triple .A;B;C / with A;B 2 O

QŒ
p

5�
and C 2 Z, such that

NmQŒ
p

5�
Q

.B2
� 4 � NA �A2/D 5 �C 2 (4)

and satisfying the following bounds under any archimedean valuation:

jAj �D
1
4

K
; jBj �D

3
8

K
; and jC j �D

3
4

K
: (5)

Conversely, the triple .A;B;C / uniquely determines K.

In Section 6, we further provide numerical evidence that N.5;D5;X /�X
2
3
C˛

for very small ˛; in particular the exponent appears to be much lower than 3
4

.
Before we prove Theorem 1.1, we show that earlier results from [Wong 2005]

in the case of G D A4 can be handled in a similar fashion. Namely, we give a
shorter proof of the following theorem:

Theorem 1.2 (Wong). To any quartic number field K with Galois group A4, there
corresponds a tuple .a2; a3; a4;y/ 2 Z4 such that

.4a2
2C 48a4/

3
D NmQŒ

p
�3�

Q

�
32a3

2C 108a2
3� 6a2.4a2

2C 48a4/� 12
p
�3y

�
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and satisfying the following under any archimedean valuation:

ja2j �D
1
3

K
; ja3j �D

1
2

K
; ja4j �D

2
3

K
; and jyj �DK :

Conversely, given such a tuple, there corresponds at most one A4-quartic field. In
particular, we have N.4;A4;X /�X

5
6
C".

2. Upper bounds via point counting

Let G be a transitive permutation group. If K is a number field of discriminant
DK and degree n for which Gal.Kgal=Q/ ' G, then Minkowski theory implies
there is an element ˛ 2 OK of trace zero with

j˛j �D
1

2.n�1/

K
(under any archimedean valuation),

where the implied constant depends only on n. In particular, if K is a primitive
extension of Q, then K D Q.˛/, so the characteristic polynomial of ˛ will deter-
mine K. One can use this to give an upper bound on N.n;G;X / (at least in the
case where K is primitive), since every pair .K; ˛/ as above gives a Z-point of

Spec QŒx1;x2; : : : ;xn�
G=.s1/;

where s1 D x1C x2C � � � C xn (here QŒx1;x2; : : : ;xn�
G denotes the ring of G-

invariant polynomials in QŒx1;x2; : : : ;xn�).

3. Proof of Theorem 1.2

In this section, we sketch a simplified (although essentially equivalent) version of
Wong’s proof [Wong 2005] that N.4;A4;X /�X

5
6
C� as motivation for our main

theorem. In this section, we assume that the reader is familiar with the arguments
in Wong’s paper. As noted in the last section, it suffices to count triples .a2; a3; a4/

for which jak j �X
k
6 under any archimedean valuation and

256a3
4� 128a2

2a2
4C .16a4

2C 144a2a2
3/a4� 4a3

2a2
3� 27a4

3

D Disc.x4
C a2x2

C a3xC a4/D y2

for some y 2 Z. (See Equation 4.2 of [Wong 2005].)
The key observation of Wong’s paper (although he does not state it in this way)

is that this equation can be rearranged as

.4a2
2C48a4/

3
DNmQŒ

p
�3�

Q

�
32a3

2C108a2
3�6a2.4a2

2C48a4/�12
p
�3y

�
: (6)

One now notes that there are�X
2
3 possibilities for 4a2

2
C48a4, and for each of

these choices .4a2
2
C48a4/

3 can be written in�X " ways as a norm of an element
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of QŒ
p
�3�. Thus, it suffices to count the number of points .a2; a3/ for which

32a3
2C 108a2

3� 6a2.4a2
2C 48a4/� 12

p
�3y and 4a2

2C 48a4

are fixed. But the above equation defines an elliptic curve, on which the number
of integral points can be bounded by Theorem 3 in [Heath-Brown 2002]. This
then gives Wong’s bound (as well as the conditional bound assuming standard
conjectures as Wong shows).

4. Proof of Theorem 1.1

In this section, we give the proof of Theorem 1.1. As explained in Section 2, it
suffices to understand the Z-points of

Spec QŒx1;x2;x3;x4;x5�
D5=.x1Cx2Cx3Cx4Cx5/

inside a particular box. Write � for a primitive fifth root of unity, and define

Vj D

5X
iD1

�ij xi :

In terms of the Vj , we define

AD V2 �V3;

B D V1 �V
2

2 CV 2
3 �V4;

C D
1
p

5
� .V1 �V

2
2 �V 2

3 �V4/ � .V2 �V
2

4 �V 2
1 �V3/:

Lemma 4.1. The expressions A, B, and C are invariant under the action of D5.

Proof. The generators of D5 act by Vj 7! V5�j and Vj 7! �j Vj ; the result follows
immediately. �

Lemma 4.2. We have A;B 2 O
QŒ
p

5�
and C 2 Z.

Proof. To see the first assertion, it suffices to show that A and B are invariant by the
element of Gal.QŒ��=Q/ given by � 7! ��1. But this induces the map Vj 7! V5�j ,
so this is clear.

To see that C is in Z, we observe that the generator of Gal.QŒ��=Q/ given by
� 7! �2 acts by C

p
5 7!�C

p
5. Since C

p
5 is an algebraic integer, it follows that

C
p

5 must be a rational integer times
p

5, so C 2 Z. �

Now, we compute

B2
�4 � NA �A2

D .V1 �V
2

2 CV 2
3 �V4/

2
�4 �V1 �V4 �.V2 �V3/

2
D .V1 �V

2
2 �V 2

3 �V4/
2:
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Therefore,

NmQŒ
p

5�
Q

.B2
� 4 � NA �A2/D .V1 �V

2
2 �V 2

3 �V4/
2
� .V2 �V

2
4 �V 2

1 �V3/
2
D 5 �C 2;

which verifies the identity claimed in Theorem 1.1.
To finish the proof, it remains to show that to each triple .A;B;C /, there cor-

responds at most one D5-quintic field. To do this, we begin with the following
lemma.

Lemma 4.3. None of the Vj are zero.

Proof. Suppose that some Vj is zero. Since NA �A2 D V1 � V
2

2
� V 2

3
� V4, it follows

that NA �A2 D 0, and hence

NmQŒ
p

5�
Q

.B2/D 5 �C 2;

which implies BDC D0. Using BD0, we have V1V 2
2
�V 2

3
V4DV1V 2

2
CV 2

3
V4D0,

so V1V 2
2
DV 2

3
V4D 0. Similarly, using NBD 0, we have V2V 2

4
DV 2

1
V3D 0. Thus,

all pairwise products ViVj with i ¤ j are zero, so at most one Vk is nonzero.
Solving for the xi , we find xi D �

�ikc for some constant c. (It is easy to verify
that this is a solution, since

P
�i D 0; it is unique up to rescaling because the

transformation .xi/ 7! .Vi/ is given by a Vandermonde matrix of rank 4). Hence,
the minimal polynomial of ˛ is t5�c5D 0, which is visibly not a D5 extension. �
Lemma 4.4. For fixed .A;B;C /, there are at most two possibilities for the ordered
quadruple

.V1V 2
2 ;V

2
3 V4;V2V 2

4 ;V
2

1 V3/:

Proof. Since V1V 2
2
CV 2

3
V4DB and V1V 2

2
�V 2

3
V4D

NA �A2 are determined, there
are at most two possibilities for the ordered pair .V1V 2

2
;V 2

3
V4/. Similarly, there at

most two possibilities for the ordered pair .V2V 2
4
;V 2

1
V3/; thus if V1V 2

2
D V 2

3
V4,

then we are done. Otherwise,

V2 �V
2

4 �V 2
1 �V3 D

C
p

5

V1 �V
2

2
�V 2

3
�V4

:

Since V2V 2
4
C V 2

1
V3 D

NB, this shows that the ordered pair .V1V 2
2
;V 2

3
V4/ de-

termines .V2V 2
4
;V 2

1
V3/. Hence there are at most two possibilities our ordered

quadruple. �
Lemma 4.5. For fixed .A;B;C /, there are at most ten possibilities for the ordered
quadruple .V1;V2;V3;V4/.

Proof. In light of Lemmas 4.4 and 4.3, it suffices to show there at most five possi-
bilities for .V1;V2;V3;V4/ when we have fixed nonzero values for

.V1V4;V2V3;V1V 2
2 ;V

2
3 V4;V2V 2

4 ;V
2

1 V3/:
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But this follows from the identities

V 5
1 D

V1V 2
2
� .V 2

1
V3/

2

.V2V3/2
; V3 D

V 2
1

V3

V 2
1

; V4 D
V 2

3
V4

V 2
3

; V2 D
V2V 2

4

V 2
4

: �

This completes the proof of Theorem 1.1, because jD5j D 10, so each D5-
quintic field corresponds to ten ordered quadruples .V1;V2;V3;V4/, each of which
can be seen to correspond to the same triple .A;B;C /. Thus, the triple .A;B;C /
uniquely determines the D5-quintic field, since otherwise we would have at least 20

quadruples .V1;V2;V3;V4/ corresponding to .A;B;C /, contradicting Lemma 4.5.

5. The quadratic subfield

Proposition 5.1. Suppose that K is a D5-quintic field corresponding to a triple
.A;B;C / with C ¤ 0. Then the composite of QŒ

p
5� with the unique quadratic

subfield F �Kgal is generated by adjoining to QŒ
p

5� the square root of

.2
p

5� 10/ � .B2
� 4 � NA �A2/:

Proof. Using the results of the previous section, we note thatq
.2
p

5� 10/ � .B2� 4 � NA �A2/D 2 � .� � ��1/ � .V1 �V
2

2 �V 2
3 �V4/:

By inspection, the D5-action on the above expression is by the sign representation,
and the action of Gal.QŒ��=QŒ

p
5�/ is trivial. Hence, adjoining the above quantity

to QŒ
p

5� generates the composite of QŒ
p

5� with the quadratic subfield F . �

6. Discussion of computational results

Numerical evidence indicates that the number of triples .A;B;C / satisfying the
conditions of Theorem 1.1 is O.X

2
3
C˛/ for a small number ˛ (in particular, much

less than O.X
3
4 /). More precisely, we have the following table of results. The

computation took approximately four hours on a 3.3 GHz CPU, using the program
available at http://web.mit.edu/~elarson3/www/d5-count.py.

X #.A;B;C / X #.A;B;C / X #.A;B;C /

10 3 1000 127 100000 5145
31 3 3162 397 316227 11385

100 7 10000 951 1000000 25807
316 55 31622 2143 3162277 57079

The log plot on the next page shows that after the first few data points, the least
squares best fit to the last four data points given by yD 0:698xC0:506 with slope
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a little more than 2
3

is quite close.

2 4 6 8 10 12 14

2

4

6

8

10
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On supersingular elliptic curves and
hypergeometric functions

Keenan Monks

(Communicated by Ken Ono)

The Legendre family of elliptic curves has the remarkable property that both
its periods and its supersingular locus have descriptions in terms of the hyper-
geometric function 2 F1

( 1/2 1/2
1

∣∣ z
)
. In this work we study elliptic curves and

elliptic integrals with respect to the hypergeometric functions 2 F1
( 1/3 2/3

1

∣∣ z
)

and 2 F1
( 1/2 5/12

1

∣∣ z
)
, and prove that the supersingular λ-invariant locus of certain

families of elliptic curves are given by these functions.

1. Introduction and statement of results

Let p be a prime and F a field of characteristic p. An elliptic curve E/F is a curve
of the form

E : y2
+ a1xy+ a3 y = x3

+ a2x2
+ a4x + a6

where ai ∈ F and the points in E are elements of F × F. This curve must be
nonsingular in that it has no multiple roots. A point at infinity must also be included
on the curve to make it projective.

There is an important invariant defined for any isomorphism class of elliptic
curves (two curves are isomorphic if they have the same defining equation up to
some change of coordinate system). Using the notation of an elliptic curve as
before, the j-invariant j (E) and discriminant 1(E) are defined to be

j (E)=
c3

4

1

and

1(E)=
c3

4− c2
6

1728

where c4 = b2
2 − 24b4, c6 = −b3

2 + 36b2b4 − 216a2
3 − 864a6, b2 = a2

1 + 4a2, and
b4 = a1a3+ 2a4.

MSC2010: 14H52, 33C05.
Keywords: elliptic curves, hypergeometric functions.
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It is well-known that the points on the curve E with coordinates in F form the
group E(F) (see [Washington 2003] for an explanation of the group structure). The
curve E is called supersingular if and only if the group E(F) has no p-torsion. In
this paper, we will determine when certain infinite families of elliptic curves are
supersingular for any prime.

One well-known and widely studied family of elliptic curves is the Legendre
family, which we denote by

E 1
2
(λ) : y2

= x(x − 1)(x − λ)

for λ 6= 0, 1. We define its supersingular locus by

Sp, 1
2
(λ) :=

∏
λ0∈Fp

supersingularE 1
2
(λ0)

(λ− λ0).

The locus Sp, 1
2
(λ) and the periods of E 1

2
(λ) have beautiful and simple descrip-

tions in terms of the hypergeometric function

2 F1

(
a b

c

∣∣∣∣ z
)
=

∞∑
n=0

(a)n(b)n
(c)n

zn

n!
.

Here a, b, z ∈C, c ∈C\Z≤0, (x)0 = 1, and (x)n = (x)(x+1) · · · (x+n−1) is the
Pochhammer symbol. For any prime p, define

2 F1

(
a b

c

∣∣∣∣ z
)

p
≡

p−1∑
n=0

(a)n(b)n
(c)n

zn

n!
(mod p).

It is natural to study hypergeometric functions related to elliptic integrals. An
elliptic integral of the first kind is written as

K (k)=
∫ π

2

0

dθ√
1− k2 sin2(θ)

.

From [Borwein and Borwein 1987] we have the following identities for appropriate
ranges of k:

K (k)=
π

2 2 F1

( 1
2

1
2
1

∣∣∣∣ k2
)
, (1-1a)

K 2(k)=
π2

4

√
1− 8

9 h2

1− (kk ′)2

(
2 F1

( 1
3

2
3
1

∣∣∣∣ h2
))2

, (1-1b)

K (k)=
π

2
(1− (2kk ′)2)−

1
4 2 F1

( 1
4

3
4
1

∣∣∣∣ (2kk ′)2

(2kk ′)2− 1

)
, (1-1c)
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K (k)=
π

2
(1− (kk ′)2)−

1
4 2 F1

( 1
12

5
12
1

∣∣∣∣ J−1
)
. (1-1d)

Here k ′=
√

1− k2, J =
(4(2kk ′)−2

− 1)3

27(2kk ′)−2 and h is the smaller of the two solutions
of

(9− 8h2)3

64h6h′2
= J.

For the locus Sp, 1
2
, it is a classical result (see [Husemöller 2004] and [Silverman

1986]) that

Sp, 1
2
(λ)≡ 2 F1

( 1
2

1
2
1

∣∣∣∣ λ)
p
(mod p).

In [El-Guindy and Ono 2012], El-Guindy and Ono studied the family of curves
defined by

E 1
4
(λ) : y2

= (x − 1)(x2
+ λ).

They proved a result analogous to the classical case, namely∏
λ0∈Fp

supersingular E 1
4
(λ0)

(λ− λ0)≡ 2 F1

( 1
4

3
4
1

∣∣∣∣− λ)
p
(mod p).

Here we prove two other cases of this phenomenon that cover the other hy-
pergeometric functions related to elliptic integrals listed in (1-1). We define the
following families of elliptic curves:

E 1
3
(λ) : y2

+ λyx + λ2 y = x3, (1-2)

E 1
12
(λ) : y2

= 4x3
− 27λx − 27λ. (1-3)

We note that E 1
3
(λ) is singular for λ ∈ {0, 27}, and that E 1

12
(λ) is singular for

λ ∈ {0, 1}.
We also define, for each i ∈

{1
3 ,

1
4 ,

1
12

}
and all primes p ≥ 5,

Sp,i (λ) :=
∏
λ0∈Fp

supersingular Ei (λ0)

(λ− λ0).

Generalizing the results above, we prove the following for E 1
3
(λ) and E 1

12
(λ).

Theorem 1.1. For any prime p ≥ 5, we have

Sp, 1
3
(λ)≡ λb

p
3 c 2 F1

( 1
3

2
3
1

∣∣∣∣ 27
λ

)
p
(mod p).

Theorem 1.2. For any prime p ≥ 5, we have the following:
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(1) If p ≡ 1, 5 (mod 12), then

Sp, 1
12
(λ)≡ cp

−1λb
p

12c 2 F1

( 1
12

5
12
1

∣∣∣∣ 1−
1
λ

)
p
(mod p),

(2) if p ≡ 7, 11 (mod 12), then

Sp, 1
12
(λ)≡ cp

−1λb
p

12c 2 F1

( 7
12

11
12
1

∣∣∣∣ 1−
1
λ

)
p
(mod p),

where cp =

(
6
⌊ p

12

⌋
+ dp⌊ p

12

⌋ )
, and dp = 0, 2, 2, 4 for p ≡ 1, 5, 7, 11 (mod 12).

Remark. The j-invariant of E 1
3
(λ) is λ(λ− 24)3/(λ− 27) and the j-invariant of

E 1
12
(λ) is 1728λ/(λ− 1). Notice that E 1

3
(λ) is singular when λ = 0 and j = 0.

Also, E 1
12
(λ) is singular when its j-invariant is 0 and undefined when j = 1728.

In addition to the stated result, the proof of Theorem 1.2 yields some fascinating
combinatorial identities as well. The following is one such identity obtained for
a specific class of p modulo 12. Similar results also hold for primes in the other
congruence classes, but are omitted for brevity.

Corollary 1.3. Let p ≥ 5 be a prime congruent to 1 modulo 12, and let m = p−1
12 .

Then for all 0≤ n ≤ m,

4n
(

3m− n
3m− 3n

)(
6m

3m− n

)(
6m
m

)
≡ 27n

m∑
t=n

(
m
t

)(
5m
t

)(
6m
3m

)
(mod p).

In particular, when n = m,

4m
(

6m
2m

)(
6m
m

)
≡ 27m

(
5m
m

)(
6m
3m

)
(mod p).

2. Preliminaries

Throughout, let p ≥ 5 be prime.

Definition 2.1. The Hasse invariant of an elliptic curve defined by f (w, x, y)= 0
is the coefficient of (wxy)p−1 in f (w, x, y)p−1. Likewise, the Hasse invariant of
a curve defined by y2

= f (x) is the coefficient of x p−1 in f (x)
p−1

2 .

Remark. The projective completions of E 1
3
(λ) and E 1

12
(λ) are

wy2
+ λwxy+ λ2 y− x3

= 0

and

wy2
− 4x3

+ 27λw2x + 27λw3
= 0.
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Here is a well-known characterization of supersingular elliptic curves.

Lemma 2.2 [Husemöller 2004, Definition 3.1 of Chapter 13]. An elliptic curve E
is supersingular if and only if its Hasse invariant is 0.

It is well-known that two elliptic curves defined over Fp are isomorphic if and
only if they have the same j-invariant. Recall the following formula for the number
of isomorphism classes of supersingular elliptic curves over Fp (see [Washington
2003]). We write p− 1= 12m p + 6εp + 4δp, where εp, δp ∈ {0, 1}.

Lemma 2.3. Up to isomorphism, there are exactly

m p + εp + δp

supersingular elliptic curves in characteristic p.

Remark. It is known that δp = 1 only when p ≡ 2 (mod 3) (i.e., when 0 is a
supersingular j-invariant) and εp = 1 only when p ≡ 3 (mod 4) (when 1728 is a
supersingular j-invariant). Also, in all cases m p =

⌊ p
12

⌋
.

3. Proof of main results

We first prove several preliminary lemmas.

Lemma 3.1. There are exactly
⌊ p

3

⌋
distinct values of λ for which E 1

3
(λ) is super-

singular over Fp.

Proof. To calculate the degree of Sp, 1
3
(λ), we must consider how many different

values for λ yield a curve E 1
3
(λ) with a given supersingular j-invariant. From

[Lennon 2010] we have that

j (E 1
3
(λ))=

λ(λ− 24)3

λ− 27
(3-1)

and that the discriminant 1(E 1
3
(λ))= λ8(λ−27). Hence there are usually four λ-

invariants for a given j-invariant, but there are certain exceptions. Since the only
roots of 1 in this case are 0 and 27, we know that these and 1728 are the only
possible j-invariants for which there are less than four corresponding λ-invariants.
However, there are four distinct values of λ for which j (E 1

3
(λ))= 27. Also, only

λ= 18± 6
√

3 gives a value of 1728 for j , so the correspondence is 2-to-1 in this
case. As mentioned previously, the curve is singular for λ= 0, so the only value of
λ that will give a j-invariant of 0 is λ= 24. The correspondence is thus one-to-one
for j = 0.

Using the ideas of Lemma 2.3, we have that each of the m p supersingular j-
invariants is obtained from four supersingular λ-invariants, δp can come from at
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most one λ-invariant, and εp comes from two, if any, λ-invariants. Thus the total
number of λ-invariants, and the degree of Sp, 1

3
(λ), is

4m p + δp + 2εp = 4
⌊ p

12

⌋
+ δp + 2εp.

It is easily verified that this equals
⌊ p

3

⌋
for every prime p, and so we are done. �

Lemma 3.2. There are exactly
⌊ p

12

⌋
distinct values of λ for which E 1

12
(λ) is super-

singular over Fp.

Proof. The j-invariant of E 1
12
(λ) is

j (E 1
12
(λ))=

1728λ
λ− 1

. (3-2)

This is a one-to-one correspondence from λ-invariants to j-invariants for j 6=1728.
Also, the special cases j = 0 and j = 1728 do not apply here, for the curve is
singular for these respective j-invariants. Thus by Lemma 2.3 there are exactly⌊ p

12

⌋
values of λ for which E 1

12
(λ) is supersingular. �

Proof of Theorem 1.1. The curve E 1
3
(λ) can be defined as

f (w, x, y)= wy2
+ λwxy+ λ2w2 y− x3

= 0.

To compute its Hasse invariant, we consider a general term in the expansion of
(wy2

+ λwxy+ λ2w2 y− x3)p−1. It has the form

(wy2)a(λwxy)b(λ2w2 y)c(−x3)d ,

where a+b+ c+d = p−1. In order for this to be a constant multiple of a power
of wxy, we must have a = c = d .

Thus the terms that we are concerned with are of the form

(wy2)n(λ2w2 y)n(−x3)n(λwxy)p−3n−1
= (−λ)p−n−1(wxy)p−1.

For a given n, there are(
p− 1

n

)(
p− n− 1

n

)(
p− 2n− 1

n

)
ways to choose which of the f (w, x, y) factors we obtain each of the wy2, λ2w2 y,
and −x3 terms from. Summing over all possible values of n, we determine the
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Hasse invariant to be

b
p
3 c∑

n=0

(
p− 1

n

)(
p− n− 1

n

)(
p− 2n− 1

n

)
(−λ)p−n−1

≡

b
p
3 c∑

n=0

(−λ)p−n−1(p− 1)(p− 2) · · · (p− n)
n!

·
(p− n− 1) · · · (p− 2n)

n!

·
(p− 2n− 1) · · · (p− 3n)

n!
(mod p)

≡

b
p
3 c∑

n=0

(3n)!
n!3

λp−n−1 (mod p).

By definition, we have

2 F1

( 1
3

2
3
1

∣∣∣∣ 27
λ

)
p
≡

p−1∑
n=0

( 1
3

)
n

( 2
3

)
n

n!2
27n

xn (mod p).

However, if n >
⌊ p

3

⌋
, then p will appear in the numerator of either

( 1
3

)
n or

(2
3

)
n ,

making those terms congruent to 0 modulo p, so

λp−1
2 F1

( 1
3

2
3
1

∣∣∣∣ 27
λ

)
p
≡

b
p
3 c∑

n=0

( 1
3

)
n

( 2
3

)
n

n!2
27nλp−n−1 (mod p)

≡

b
p
3 c∑

n=0

27n 1
3

2
3

4
3

5
3 · · ·

3n−2
3

3n−1
3

n!2
λp−n−1 (mod p)

≡

b
p
3 c∑

n=0

(3n)!
n!3

λp−n−1 (mod p).

Thus λp−1
2 F1

( 1
3

2
3
1

∣∣∣∣ 27
λ

)
p

is congruent modulo p to the Hasse invariant of

E 1
3
(λ). So by Lemma 2.2, λ is a root of λp−1

2 F1

( 1
3

2
3
1

∣∣∣∣ 27
λ

)
p
≡ 0 (mod p) if and

only if E 1
3
(λ) is supersingular, i.e., if and only if λ is a root of Sp, 1

3
(x).

The least power of λ in 2 F1

( 1
3

2
3
1

∣∣∣∣ 27
λ

)
p

is−
⌊ p

3

⌋
. Hence λbp/3c 2 F1

( 1
3

2
3
1

∣∣∣∣ 27
λ

)
p

has the same roots as λp−1
2 F1

( 1
3

2
3
1

∣∣∣∣ 27
λ

)
p
, with the exception of 0, which is not

a λ-invariant as shown in Lemma 3.1, and thus is not a root of Sp, 1
3
.
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The degree of λb
p
3 c 2 F1

( 1
3

2
3
1

∣∣∣∣ 27
λ

)
p

is exactly
⌊ p

3

⌋
. Since the degree of Sp, 1

3
(λ)

is also
⌊ p

3

⌋
by Lemma 3.1, it follows that λb

p
3 c 2 F1

( 1
3

2
3
1

∣∣∣∣ 27
λ

)
p
≡ c · Sp, 1

3
(λ)

(mod p). However, c is 1 since λb
p
3 c 2 F1

( 1
3

2
3
1

∣∣∣∣ 27
λ

)
p

is monic: we are done. �

Proof of Theorem 1.2. Assume p ≡ 1, 5 (mod 12). The function

f (z)= 2 F1

( 1
12

5
12
1

∣∣∣∣ z
)

satisfies the second order differential equation

z(1− z)
d2 f
dz2 +

(
1−

3
2

z
)

d f
dz
−

5
144

f = 0.

Substituting z = 1− 1
x , we see that g(x)= 2 F1

( 1
12

5
12
1

∣∣∣∣ 1− 1
x

)
satisfies

x2(x − 1)
d2g
dx2 + x

(
3
2

x −
1
2

)
dg
dx
−

5
144

g = 0.

Hence, h(λ)= λ
p−1

4 2 F1

( 1
12

5
12
1

∣∣∣∣ 1− 1
λ

)
satisfies

(λ3
− λ2)

d2h
dλ2 +

((
2−

p
2

)
λ2
+

( p
2
− 1

)
λ
) dh

dλ

+

((
p2
− 4p+ 3

16

)
λ+−

p2

16
+

1
36

)
h = 0. (3-3)

The function h(λ) is a Laurent series in 1
λ

with p-integral rational coefficients.
However, its reduction modulo p yields a polynomial in λ. This polynomial must

satisfy the reduction of (3-3) modulo p, so F(λ) = λ
p−1

4 2 F1

( 1
12

5
12
1

∣∣∣∣ 1− 1
λ

)
p

satisfies

(λ3
− λ2)

d2 F
dλ2 + (2λ

2
− λ)

d F
dλ
+

(
3
16
λ+

1
36

)
F ≡ 0 (mod p).

A similar calculation shows that F(λ) = λ
p−3

4 2 F1

( 7
12

11
12
1

∣∣∣∣ 1− 1
λ

)
p

also satisfies

the same differential equation when p ≡ 7, 11 (mod 12).
Now, to compute the Hasse invariant, we consider a general x p−1 term in the

expansion of (4x3
− 27λx − 27λ)

p−1
2 . This is of the form

(4x3)n(−27λx)p−3n−1(−27λ)2n− p−1
2 ,
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where p−1
4 ≤ n ≤

⌊ p
3

⌋
. For a given n in this range, there are exactly

( p−1
2
n

)( p−1
2 − n

p− 3n− 1

)
ways to choose which of the 4x3

− 27λx − 27λ factors the 4x3 terms and −27λx
terms came from. Summing over all n yields the Hasse invariant to be

b
p
3 c∑

n= p−1
4

4n(−27λ)
p−1

2 −n
( p−1

2
n

)( p−1
2 − n

p− 3n− 1

)
,

into which we can substitute n= p−1
2 −k, and using the fact that 4

p−1
2 ≡ 1 (mod p),

we obtain
p−1

4∑
k= p−1

2 −b
p
3 c

(
−

27
4
λ

)k ( p−1
2
k

)(
k

3k− p−1
2

)
.

We show the Hasse invariant satisfies the differential equation by showing that
for any t , the λt term in the resulting expansion is congruent to 0 mod p. Let

c(k)=
(
−

27
4
λ

)k ( p−1
2
k

)(
k

3k− p−1
2

)
.

Then the λt term has coefficient

d2

dt2 c(t − 1)−
d2

dt2 c(t)+ 2
d
dt

c(t − 1)−
d
dt

c(t)+
3

16
c(t − 1)+

1
36

c(t),

which we expand to obtain(
−

27
4

)t ( p−1
2
t

)(
t

3t − p−1
2

)(
−t (t − 1)− t +

1
36

)
+

(
−

27
4

)t−1 ( p−1
2

t − 1

)(
t − 1

3t − 3− p−1
2

)(
(t − 1)(t − 2)+ 2(t − 1)+

3
16

)
.

This is congruent to 0 modulo p if and only if( p−1
2
t

)(
t

3t − p−1
2

)(
27
4

t2
−

3
16

)
+

( p−1
2

t − 1

)(
t − 1

3t − 3− p−1
2

)(
t2
− t +

3
16

)
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is also congruent to 0. We now expand the first binomials to obtain

1
t !

(
p− 1

2

)
· · ·

(
p− 1

2
− t + 1

)(
t

3t − p−1
2

)(
27
4

t2
−

3
16

)
+

1
(t − 1!)

(
p− 1

2

)
· · ·

(
p− 1

2
− t + 2

)(
t − 1

3t − 3− p−1
2

)(
t2
− t +

3
16

)
,

which is congruent to 0 modulo p if and only if

1
2 − t

t

(
t

3t − p−1
2

)(
27
4

t2
−

3
16

)
+

(
t − 1

3t − 3− p−1
2

)(
t2
− t +

3
16

)
≡ 0 (mod p)

as well. Using a similar cancellation method on the remaining binomials shows
that it is sufficient to prove(

1
2
− t
)(

p−1
2
−2t+2

)(
p−1

2
−2t+1

)(
27
4

t2
−

3
16

)
+

(
3t−

p−1
2

)(
3t−

p−1
2
−1

)(
3t−

p−1
2
−2

)(
t2
− t+

3
16

)
≡ 0 (mod p),

which is easily verified.
Thus the Hasse invariant satisfies the same second order differential equation

as both λ
p−1

4 2 F1

( 1
12

5
12
1

∣∣∣∣ 1− 1
λ

)
p

and λ
p−3

4 2 F1

( 7
12

11
12
1

∣∣∣∣ 1− 1
λ

)
p
. For p > 5,

notice that both the Hasse invariant and the truncated hypergeometric functions
have no term with a degree less than 2. For each case, this implies that the truncated
polynomials are congruent modulo p to the Hasse invariant up to multiplication by

a constant. For the case p=5, it is easy to compute that λ 2 F1

( 1
12

5
12
1

∣∣∣∣ 1− 1
λ

)
5
=λ,

and the Hasse invariant is 4λ, so this property still holds.
Therefore, we know that the two truncated hypergeometric functions have the

same roots modulo p as the Hasse invariant, so by Lemma 2.2, λ is a root of
the hypergeometric functions if and only if E 1

12
(λ) is supersingular. Notice that

λb
p

12c 2 F1

( 1
12

5
12
1

∣∣∣∣ 1− 1
λ

)
p

and λb
p

12c 2 F1

( 7
12

11
12
1

∣∣∣∣ 1− 1
λ

)
p

have the same roots

as λ
p−1

4 multiplied by the respective truncated functions with the exception of 0,
which is as desired since E 1

12
(0) is singular. Also, when p ≡ 1, 5 (mod 12) the

degree of λb
p

12c 2 F1

( 1
12

5
12
1

∣∣∣∣ 1− 1
λ

)
p

is
⌊ p

12

⌋
, so by Lemma 3.2, there exists a

constant cp such that

Sp, 1
12
≡ cp

−1λb
p

12c 2 F1

( 1
12

5
12
1

∣∣∣∣ 1−
1
λ

)
p
(mod p).
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Similarly for primes p ≡ 7, 11 (mod 12),

Sp, 1
12
≡ cp

−1λb
p

12c 2 F1

( 7
12

11
12
1

∣∣∣∣ 1−
1
λ

)
p
(mod p).

Finally, we explicitly compute the constant cp. Notice that Sp, 1
12

is monic, so

cp is the coefficient of the leading term in λb
p

12c 2 F1

( 1
12

5
12
1

∣∣∣∣ 1− 1
λ

)
p
, the same

as the constant term in 2 F1

( 1
12

5
12
1

∣∣∣∣ 1− 1
λ

)
p
. For n >

⌊ p
12

⌋
, one of

( 1
12

)
n or

( 5
12

)
n

will be congruent to 0 modulo p. Hence, the constant term of

2 F1

( 1
12

5
12
1

∣∣∣∣ 1−
1
λ

)
p
=

b
p

12c∑
n=0

( 1
12

)
n

( 5
12

)
n

n!2

(
1−

1
λ

)n

is
b

p
12c∑

n=0

( 1
12

)
n

( 5
12

)
n

n!2
.

For p ≡ 1 (mod 12), we have( 1
12

)
n

n!
≡ (−1)n

p−1
12

p−13
12 · · ·

(
p−1
12 − n+ 1

)
n!

(mod p)≡ (−1)n
( p−1

12
n

)
(mod p).

Also,
( 5

12

)
n

n! ≡ (−1)n
( 5p−5

12
n

)
(mod p). Therefore,

cp =

b
p

12c∑
n=0

( 1
12

)
n

( 5
12

)
n

n!2
≡

(
6
⌊ p

12

⌋⌊ p
12

⌋ ) (mod p).

For p ≡ 5 (mod 12),

cp =

b
p

12c∑
n=0

( 1
12

)
n

( 5
12

)
n

n!2
≡

(
6
⌊ p

12

⌋
+ 2⌊ p

12

⌋ )
(mod p).

A similar method can be used to compute cp ≡

(
6
⌊ p

12

⌋
+ 2⌊ p

12

⌋ )
(mod p) when p ≡

7 (mod 12) and
(

6
⌊ p

12

⌋
+4⌊ p

12

⌋ )
when p≡ 11 (mod 12), which completes the proof.

�

Proof of Corollary 1.3. Recall from the proof of Theorem 1.2 that since the Hasse

invariant of E 1
12
(λ) and the polynomial λ

p−1
4 2 F1

( 1
12

5
12
1

∣∣∣∣ 1− 1
λ

)
p

both satisfied

the same second order differential equation, they are congruent up to multiplication
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by a constant, which we will denote bp. The same argument and notation apply to

λ
p−3

4 2 F1

( 7
12

11
12
1

∣∣∣∣ 1− 1
λ

)
p

when p ≡ 7, 11 mod 12).

Assume that p ≡ 1 mod 12, and define m =
⌊ p

12

⌋
. Also, define n = 3m − k.

We computed the Hasse invariant of E 1
12
(λ) to be

3m∑
k=2m

(
−27

4
λ

)k (6m
k

)(
k

3m− 6m

)
=

m∑
n=0

(
−27λ

4

)3m−n ( 6m
3m− n

)(
3m− n

3m− 3n

)
.

By definition,

λ
p−1

4 2 F1

( 1
12

5
12
1

∣∣∣∣ 1−
1
λ

)
p
≡ λ

p−1
4

m∑
k=0

( 1
12

)
k

( 5
12

)
k

k!2

(
1−

1
λ

)k

(mod p).

As before, ( 1
12

)
k

( 5
12

)
k

k!2
≡

(
m
k

)(
5m
k

)
(mod p).

We expand each of the
(
1− 1

λ

)k
terms and rearrange to obtain

λ
p−1

4 2 F1

( 1
12

5
12
1

∣∣∣∣ 1−
1
λ

)
p
≡

3m∑
k=2m

(−λ)k
m∑

t=3m−k

(
m
t

)(
5m
t

)(
t

3m− k

)
(mod p)

≡

m∑
n=0

(−λ)3m−n
m∑

t=n

(
m
t

)(
5m
t

)(
t
n

)
(mod p).

Since this polynomial is congruent to the Hasse invariant via multiplication by
bp, we have, for all 0≤ n ≤ m,(

27
4

)3m−n ( 3m− n
3m− 3n

)(
6m

3m− n

)
≡ bp

m∑
t=n

(
m
t

)(
5m
t

)(
t
n

)
(mod p).

When n = 0, this becomes(
27
4

)3m (6m
3m

)
≡ bp

m∑
t=0

(
m
t

)(
5m
t

)
≡ bp

(
6m
m

)
(mod p)

and thus

bp ≡

(6m
3m

) (27
4

)3m(6m
m

) (mod p).
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Substituting this back into our identity, we have that for all 0≤ n ≤ m,(
4
27

)n ( 3m− n
3m− 3n

)(
6m

3m− n

)(
6m
m

)
≡

(
6m
3m

) m∑
t=n

(
m
t

)(
5m
t

)(
t
n

)
(mod p).

In the case n = m, we obtain the simpler identity(
27
4

)3m (5m
m

)(
6m
3m

)
≡

(
6m
2m

)(
6m
m

)
(mod p). �

4. Examples

In this section we provide two examples to illustrate our main theorems.

Example of Theorem 1.1. Consider p = 19. The supersingular j-invariants mod
19 are known to be 18 (corresponding to 1728) and 7. From formula (3-1) we find
that the values of λ where j ≡ 18 (mod 19) are −1± i

√
6 only. The values of λ

for which j ≡ 7 (mod 19) are −6± 3
√

2 and 4± 11
√

13. Thus

S19, 1
3
(λ)= (λ− (−1+ i

√
6))(λ− (−1− i

√
6))(λ− (−6+ 3

√
2))

(λ− (−6− 3
√

2))(λ− (4+ 11
√

13))(λ− (4− 11
√

13))

≡ λ6
+ 6λ5

+ 14λ4
+ 8λ3

+ 13λ2
+ 5λ+ 12 (mod 19)

≡ (λ2
+ 2λ+ 7)(λ2

+ 11λ+ 1)(λ2
+ 12λ+ 18) (mod 19).

The Hasse invariant is the coefficient of (wxy)18 in the expansion of

(wy2
+ λwxy+ λ2w2 y− x3)18.

This is

H(λ)≡λ18
+6λ17

+14λ16
+8λ15

+13λ14
+5λ13

+12λ12
≡λ12 S19, 1

3
(λ) (mod 19).

In addition,

2 F1

( 1
3

2
3
1

∣∣∣∣ 27
λ

)
19
≡ 1+

6
λ
+

14
λ2 +

8
λ3 +

13
λ4 +

5
λ5 +

12
λ6 ≡

1
λ6 S19, 1

3
(λ) (mod 19).

Example of Theorem 1.2. Consider p = 59, which is 11 modulo 12. The supersin-
gular j-invariants mod 59 are known to be 0, 17 (corresponding to 1728), 48, 47,
28, and 15. From formula (3-2), we find the λ-invariants corresponding to 48, 47,
28, and 15 are 32, 35, 24, and 22, respectively. We do not include the cases j = 0
or j = 1728 since in these cases E 1

12
(λ) is singular. Thus

S59, 1
12
(λ)= (λ+ 27)(λ+ 24)(λ+ 35)(λ+ 37)

≡ λ4
+ 5λ3

+ 10λ2
+ 11λ+ 3 (mod 59).
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The Hasse invariant is the coefficient of x58 in (4x3
− 27λx − 27λ)29. This is

H(λ)≡ 2λ14
+ 10λ13

+ 20λ12
+ 22λ11

+ 6λ10
≡ 2λ10S59, 1

12
(λ) (mod 59).

In addition,

2 F1

( 7
12

11
12
1

∣∣∣∣ 1−
1
λ

)
59
≡2+

10
λ
+

20
λ2+

22
λ3+

6
λ4 ≡

2
λ4 S59, 1

12
(λ) (mod 59) (mod 59).

Also, c59 ≡
(28

4

)
≡ 2 (mod 59).

5. Conclusion

We have described the supersingular loci of two infinite families of elliptic curves
in terms of truncated hypergeometric functions. For the family E 1

3
(λ), the super-

singular locus was a power of λ times the 2 F1

( 1
3

2
3
1

∣∣∣∣ 27
λ

)
p

function. We found

a similar result for the family E 1
12
(λ). This gives a very simple method for de-

termining exactly which values of λ yield supersingular curves for these infinite
families. Over any given field Fp, these λ-invariants are simply the roots of these
hypergeometric functions truncated modulo p.

Our results also yield interesting insights into combinatorics. We have the very
nice identity given in Corollary 1.3, and analogous results can be obtained by
similar methods. For example, assume that p is any prime that is congruent to
1 modulo 12 and that 12m + 1 = p. If one could prove that the constant bp from
the proof of Corollary 1.3 is congruent to 1 modulo p for all such p, then the
following identity is implied from Corollary 1.3:(

6m
3m

)
≡

(
27
4

)m (2m
m

)
(mod p).

The truth of this statement has been verified for all m up to 10000. This is a
fascinating identity regarding the “central” binomial coefficients modulo p, and it
illustrates the types of insights one can gain into combinatorics through the study
of elliptic curves and hypergeometric functions.

It is our hope that these results will be used to further understand the deep
connections between elliptic curves and hypergeometric functions.
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