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We study a one-dimensional reaction-diffusion model arising in population dy-
namics where the growth rate is a weak Allee type. In particular, we consider
the effects of grazing on the steady states and discuss the complete evolution
of the bifurcation curve of positive solutions as the grazing parameter varies.
We obtain our results via the quadrature method and Mathematica computations.
We establish that the bifurcation curve is S-shaped for certain ranges of the
grazing parameter. We also prove this occurrence of an S-shaped bifurcation
curve analytically.

1. Introduction

For a given population, a linear relationship between the population’s size and its
per capita growth rate is often assumed. This correlation is known as logistic type
growth and reflects that as a given population grows, its per capita growth rate
declines linearly. However, it has been observed that for small population densities,
the per capita growth rate increases rather than declines. Logistic growth cannot
account for this initial increase, and an alternate model, dubbed the Allee effect
[Allee 1938] must be invoked.

The general idea behind the Allee effect is that for small population densities,
a variety of factors (such as a shortage of mates or predator saturation) result in
an initial increase in the per capita growth rate. There are two types of Allee
phenomena: strong Allee effect, whose per capita growth rate begins negative, and
weak Allee effect, whose per capita growth rate is initially positive; these are usually
modeled in the literature by quadratic functions of the population size. Thus, the
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mathematical analysis of such models is considerably more challenging since the
per capita growth rates are neither linear nor always nondecreasing.

When considering the long-term stability of a given population, it is insightful
to study other factors affecting the population. By including an additional term
that accounts for these natural phenomena, such as grazing, more accurate models
can be obtained. Grazing is a type of predation in which an herbivore feeds from
plant life. It is also similar to natural predation found in fish populations. The
grazing term used in previous models, cu2/(1+ u2) (see [Van Nes and Scheffer
2005]), is known as the rate of grazing. Since the grazing population is constant, the
term converges to c at high vegetation density levels. The effects of grazing have
previously been studied with logistic growth, as in [Lee et al. 2011]. In the latter
paper it was shown that, for certain ranges of the parameters involved (including c),
the bifurcation curve of positive steady states is S-shaped.

Our primary motivation is to analyze the consequences of grazing on a weak
Allee effect problem and on a strong Allee effect, in order to determine its effect
on the steady state solutions.

Hence, we examine the structure of positive solutions of the steady state equations
obtained from the reaction diffusion model,

ut =
1
λ

uxx + u f̃ (u)−
cu2

1+ u2 in (0, 1),

with Dirichlet boundary conditions, namely

− u′′ = λ
[

u f̃ (u)−
cu2

1+ u2

]
= λ f (u) in (0, 1),

u(0)= 0, u(1)= 0,

where u is the population density, f̃ (u) is the per capita growth rate, 1/λ is the
diffusion coefficient where λ > 0 is a constant, and c ≥ 0 is also a constant.

Previous studies have analyzed positive solutions to Allee effect problems, both
strong and weak (see [Shi and Shivaji 2006], for example), but to our knowledge
no information is known about the combination of grazing with Allee effect. In
this paper, we will analyze how the addition of a grazing term in combination with
a weak Allee and also in combination with a strong Allee type affects the steady
states in the one-dimensional problem. Our analysis is completed via the quadrature
method [Brown et al. 1981; Laetsch 1970], which we will discuss in Section 2. In
Sections 3–5, we provide a detailed analysis on the case when f̃ is weak Allee, i.e.,

f̃ (u)= (u+ 1)(b− u), b > 1.

In Section 3, we present some necessary analysis of the zeros of our nonlinearity,
f , and in Section 4, we provide the complete evolution of the bifurcation curve of
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positive solutions via Mathematica computations. In particular, we obtain S-shaped
bifurcation curves for certain ranges of parameters bifurcating from the nontrivial
branch of solutions. We note here that for all parameter values u ≡ 0 is a solution
of (1-1). In Section 5, we provide various analytical results, including a proof of
the occurrence of such an S-shaped bifurcation curve. In Section 6, we study the
case when f̃ represents a logistic growth rate, that is,

f̃ (u)= (1− bu)

and provide the evolution of the bifurcation curve as c varies. Next, Section 7
provides the evolution of the bifurcation curve for the case when f̃ is of strong
Allee type. That is,

f̃ (u)= (u− 1)(b− u), b > 1. (1-1)

Unlike the weak Allee case and the logistic case, for the strong Allee case, we notice
that the variation of c had little effect on the general structure of the bifurcation
curve. In particular, no S-shaped bifurcation curve occurred for any parameter
values.

Finally, in Section 8, we conclude the paper by considering the biological
implications arising from our results. In particular, the ranges of conditional and
unconditional persistence in terms of the diffusion coefficient as c varies will also
be discussed. Interestingly, our analysis proves that for weak Allee effect growth
models, when grazing is large, there exist no ranges of the diffusion coefficient for
which conditional persistence exists.

2. Quadrature method

In this section, we recall results via the quadrature method developed by Laetsch
[1970] and Brown, Ibrahim, and Shivaji [Brown et al. 1981] to analyze positive
solutions to the boundary value problem

− u′′(x)= λ f (u(x)), x ∈ (0, 1),

u(0)= 0,

u(1)= 0, (2-1)

where f : [0,∞)→ (0,∞) is a C1 function and λ is a nonnegative parameter.

Lemma 2.1 [Laetsch 1970]. Let u be a positive solution to (2-1) with ‖u‖∞ =
u( 1

2)= ρ > 0. Such a solution exists if and only if

G(ρ) :=
∫ ρ

0

dt
√

F(ρ)− F(t)
=

√
λ

2
, (2-2)
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where

F(u)=
∫ u

0
f (s) ds.

Proof. (⇒) Since (2-1) is an autonomous differential equation, if u is a positive
solution to (2-1) such that u′(x0)=0 for some x0∈ (0, 1), then both v(x) :=u(x0+x)
and w(x) := u(x0− x) satisfy the initial value problem

−z′′(x)= λ f (z(x)), x ∈ [0, d),

z(0)= u(x0), z′(0)= 0,

where d = min{x0, 1− x0}. By Picard’s existence and uniqueness theorem, we
can infer that u(x0 + x) ≡ u(x0 − x) for all x ∈ [0, d). Thus, solutions of (2-1)
must be symmetric around x = 1

2 , at which point u attains its maximum ρ := u(1
2).

Multiplying the differential equation in (2-1) by u′(x) gives

−

(
[u′(x)]2

2

)′
= λ[F(u(x))]′, (2-3)

where F(s)=
∫ s

0 f (z) dz.
Integrating both sides, we derive

u′(x)
√

F(ρ)− F(u(x))
=
√

2λ, x ∈
[
0, 1

2

)
. (2-4)

Integrating again, we obtain∫ u(x)

0

dt
√

F(ρ)− F(t)
=
√

2λx, x ∈
[
0, 1

2

]
. (2-5)

Substituting x = 1
2 into (2-5) and using u( 1

2)= ρ, we now have

G(ρ) :=
∫ ρ

0

dt
√

F(ρ)− F(t)
=

√
λ

2
. (2-6)

Thus, if u is a solution of (2-1) with ‖u‖∞ = ρ, then ρ must satisfy the equation
G(ρ)=

√
λ/2.

(⇐) Now, if we have such a value for ρ, we can define our solution u through the
equation ∫ u(x)

0

dt
√

F(ρ)− F(t)
=
√

2λx, x ∈
[
0, 1

2

]
.

By the implicit function theorem, u is differentiable; therefore,

u′(x)=
√

2λ[F(ρ)− F(u(x))].
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Differentiating again gives us

− u′′(x)= λ f (u(x)).

Also, it is easy to see that u(0) = 0. Finally, defining u(x) to be a symmetric
solution, we have that u is a positive solution to (2-1) with ‖u‖∞ = ρ if and only if
√
λ/2= G(ρ). �

Remark 2.1. For values of ρ satisfying the following two conditions, the improper
integral in (2-2) will be well-defined and convergent:

f (ρ) > 0,

F(ρ) > F(s) for all s ∈ [0, ρ).

The following lemma is taken from [Brown et al. 1981], and the proof makes
critical use of Lebesgue’s dominated convergence theorem to prove the existence
of the integral in (2-7).

Lemma 2.2. G(ρ) is continuous and differentiable on the set

S := {ρ > 0 | f (ρ) > 0 and F(ρ)− F(s) > 0 for all s ∈ [0, ρ)};

moreover,

G ′(ρ)=
∫ 1

0

H(ρ)− H(ρv)

[F(ρ)− F(ρv)]
3
2

dv, (2-7)

where

H(s) := F(s)−
s
2

f (s). (2-8)

3. Preliminaries

We consider the following reaction term, which combines weak Allee effect and
grazing:

f (u)= u(u+ 1)(b− u)−
cu2

1+ u2 =
u(u+ 1)(b− u)(1+ u2)− cu2

1+ u2 ,

where b > 1 and c ≥ 0. The numerator of f (u) is a fifth degree polynomial. Study
of the roots of f (u) reveals the existence of one negative root and one root at u = 0,
regardless of the values chosen for b and c. On the contrary, the three remaining
roots are dependent on the value of the constant c. These three roots fluctuate
between real and imaginary values as c changes. Let σ represent the smallest
positive root of f (u) in all cases, and let σ0 and σ1 denote the two remaining roots.
We must also note that a special case occurs for small values of b: for b ∈ (1, b0),
(for some b0 > 1), there is always exactly one positive real root of f (u), σ . In
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0

σ

f(u)

Figure 1. Graph of f (u) with root at σ .

order for G(ρ) to be defined, this variance demands that further analysis of f (u)
be completed case-wise (see Remark 2.1).

Remark 3.1. Based on our computations and aid from Mathematica, we conjecture
that b0 ≈ 2.852.

If b ∈ (b0,∞), the characteristic shape of f (u) varies as the value of c changes.
There exists c0 > 0 so that for c ∈ (0, c0), f (u) has only one real root, σ . In this
case, f (u) resembles Figure 1.

Correspondingly, in this case, F(u) will take the form exemplified in Figure 2.
As you can see, G(ρ) will be well-defined for ρ ∈ (0, σ ). As c increases, the shape
of f (u) changes. There exists c1 > c0 so that for c ∈ (c0, c1), f (u) has exactly 3
real positive roots, (σ , σ0, and σ1). The shape of f (u) is illustrated in Figure 3.

There exists ĉ1 < c1 such that for c ∈ (c0, ĉ1), the graph of F(u) resembles
Figure 4. We let γ ∈ (σ0, σ1), so that F(γ )= F(σ ). Recall from Remark 2.1 that,
to guarantee that G(ρ) is well-defined, we need f (ρ) > 0 as well as F(ρ) > F(u)
whenever 0 ≤ u < ρ. Thus, in this case, G(ρ) will be viable only for ρ ∈ (0, σ )
and ρ ∈ (γ, σ1). (The boxed region in Figure 4 has been magnified in Figure 5.)

0
σ

F(u)

Figure 2. Graph of F(u) for c ∈ (0, c0).
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0

f(u)

σ σ
0 σ

1

Figure 3. Graph of f (u) with roots at σ, σ0, and σ1.

0

γσ

F(u)

σ
1

Figure 4. Graph of F(u) for c ∈ (c0, ĉ1).

0

F(u)

γ
σ

σ
0

Figure 5. Magnified picture of the boxed region in Figure 4.

0

F(u)

σ

σ
1

Figure 6. Graph of F(u) for c ∈ (ĉ1, c1).
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0

f(u)
σ

Figure 7. Graph of f (u) with root at σ .

0

σ

F(u)

Figure 8. F(u) for c > c1.

The graph of F(u) for c ∈ (ĉ1, c1) is illustrated in Figure 6. Clearly, G(ρ) in
this instance is only well-defined for ρ ∈ (0, σ ). When c exceeds c1, f (u) is pulled
downward and once again has only one real positive root. We will denote this root
as σ while σ0 and σ1 are imaginary in this case. This is portrayed in Figure 7.
Again, G(ρ) is well-defined only for ρ ∈ (0, σ ). For c > c1, F(u) will take the
form illustrated in Figure 8.

For each of these cases, the structure of positive solutions for (1-1) changes; thus,
distinct bifurcation diagrams are obtained, as we now explain.

4. Computational results

In this section, we present the bifurcation diagrams for the weak Allee effect.
Recalling Lemma 2.1, we obtained these results via Mathematica by plotting (2-2)
for a fixed b-value over a range of c-values.

If b ∈ (b0,∞), then there exist c∗0, c∗1, c∗2 > 0 such that:

1. If c ∈ [0, c∗0), there exist λ0 > 0 and 3= π2/ f ′(0) such that (2-1) has
• no positive solution for λ ∈ (0, λ0),
• exactly 1 positive solution for λ= λ0,
• exactly 2 positive solutions for λ ∈ (λ0,3), and
• exactly 1 positive solution for λ ∈ [3,∞).
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0

λ

||u||
∞

π
2

f ’(0)

              b=5, c=2

λ
0

Λ

Figure 9. Illustration of Case 1.

(See illustration in Figure 9.)

2. If c ∈ [c∗0, c∗1), there exist λ0, λ1, λ1, λ2,3 > 0 such that (2-1) has
• no positive solution for λ ∈ (0, λ0),
• exactly 1 positive solution for λ= λ0,
• exactly 2 positive solutions for λ ∈ (λ0, λ1),
• exactly 3 positive solutions for λ= λ1,
• exactly 4 positive solutions for λ ∈ (λ1, λ2),
• exactly 3 positive solutions for λ= λ2,
• exactly 2 positive solutions for λ ∈ (λ2,3), and
• exactly 1 positive solution for λ ∈ [3,∞).

(See illustration in Figure 10.)

0

||u||
∞

              b=5, c=3.93

π
2

f ’(0)

λ
0 Λ

λ

0

λ

||u||
∞

π
2

f ’(0)

λ
1

λ
2

Λ

Figure 10. Illustration of Case 2. The bottom diagram shows the
contents of the small dotted box under magnification.
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0

λ

||u||
∞

b=5, c=3.937

f ’(0)
π

2

λ
0

Λ

0

λ

||u||
∞

π
2

f ’(0)

Λλ
1

Figure 11. Illustration of Case 3, including magnified detail.

3. If c = c∗1 , there exist λ0, λ1,3 > 0 such that (2-1) has
• no positive solution for λ ∈ (0, λ0),
• exactly 1 positive solution for λ= λ0,
• exactly 2 positive solutions for λ ∈ (λ0, λ1),
• exactly 3 positive solutions for λ= λ1,
• exactly 4 positive solutions for λ ∈ (λ1,3),
• exactly 2 positive solutions for λ=3, and
• exactly 1 positive solution for λ ∈ (3,∞).

(See illustration in Figure 11.)

4. If c = (c∗1, c∗2 = b− 1), there exist λ0, λ1, λ2,3 > 0 such that (2-1) has
• no positive solution for λ ∈ (0, λ0),
• exactly 1 positive solutions for λ= λ0,
• exactly 2 positive solutions for λ ∈ (λ0, λ1),
• exactly 3 positive solutions for λ= λ1,
• exactly 4 positive solutions for λ ∈ (λ1,3),
• exactly 3 positive solutions for λ ∈ [3, λ2),
• exactly 2 positive solutions for λ= λ2, and
• exactly 1 positive solution for λ ∈ (λ2,∞).

(See illustration in Figure 12.)

5. If c = c∗2 = b− 1, there exist λ0,3 > 0 such that (2-1) has
• no positive solution for λ ∈ (0, λ0),
• exactly 1 positive solutions for λ= λ0,
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0

||u||
∞

b=5, c=3.95

λ

Λ

f ’(0)
π

2

λ
0

0

λ

||u||
∞

λ
1 Λ λ

2

π
2

f ’(0)

Figure 12. Illustration of Case 4, including magnified detail.

0

λ
0

λ

||u||
∞

f ’(0)

         b=5,  c=4

Λ

π
2

Figure 13. Illustration of Case 5.

• exactly 2 positive solutions for λ ∈ (λ0,3), and
• exactly 1 positive solutions for λ ∈ [3,∞).

(See illustration in Figure 13.)

6. If c ∈ (c∗2 = b− 1, c∗3), there exist λ0,3, λ2 > 0 such that (2-1) has
• no positive solution for λ ∈ (0, λ0),
• exactly 1 positive solution for λ= λ0,
• exactly 2 positive solutions for λ ∈ (λ0,3],
• exactly 3 positive solutions for λ ∈ (3, λ2),
• exactly 2 positive solutions for λ= λ2, and
• exactly 1 positive solution for λ ∈ (λ2,∞).

(See illustration in Figure 14.)
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0

||u||
∞

f ’(0)
λ

Λ

π
2

              b=5, c=5

λ
0

λ
2

Figure 14. Illustration of Case 6.

0

||u||
∞

λ

              b=5, c=10.3

Λ λ
2

π
2

f’(0)

Figure 15. Illustration of Case 7.

7. If c = c∗3 , there exist 3, λ2 > 0 such that (2-1) has
• no positive solution for λ ∈ (0,3),
• exactly 1 positive solution for λ=3,
• exactly 3 positive solutions for λ ∈ (3, λ2),
• exactly 2 positive solutions for λ= λ2, and
• exactly 1 positive solution for λ ∈ (λ2,∞).

(See illustration in Figure 15.)

8. If c ∈ (c∗3, c∗4), there exist 3, λ0, λ2 > 0 such that (2-1) has

0

||u||
∞

λ

λ
2

π
2

              b=5, c=13.9

f’(0)

λ
0Λ

Figure 16. Illustration of Case 8.
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• no positive solution for λ ∈ (0,3],
• exactly 1 positive solution for λ ∈ (3, λ0),
• exactly 2 positive solutions for λ= λ0,
• exactly 3 positive solutions for λ ∈ (λ0, λ2),
• exactly 2 positive solutions for λ= λ2, and
• exactly 1 positive solution for λ ∈ (λ2,∞).

(See illustration in Figure 16.)

9. If c ∈ [c∗4, c∗5), there exist 3, λ0 > 0 such that (2-1) has

• no positive solution for λ ∈ (0,3],
• exactly 1 positive solution for λ ∈ (3, λ0),
• exactly 2 positive solutions for λ= λ0, and
• exactly 3 positive solutions for λ ∈ (λ0,∞).

(See illustration in Figure 17.)

10. If c ∈ [c∗5,∞), there exists 3> 0 such that (1-1) has

• no positive solution for λ ∈ (0,3], and
• exactly 1 positive solution for λ ∈ (3,∞).

(See illustration in Figure 18.)

0

||u||
∞

λ

Λ

π
2

f ’(0)

              b=5, c=18

λ
0

Figure 17. Illustration of Case 9.

0

||u||
∞

λ

Λ

π
2

f ’(0)

              b=5, c=22

Figure 18. Illustration of Case 10.
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5. Analytical results

In this section, we provide analytical proofs of several results that help detail the
global behavior of bifurcation curves and further corroborate our computational
results presented in the previous section. First we state two results on the behavior
of G(ρ) when ρ→ 0+ and when ρ→ σ−, where σ is the smallest positive root
of f (u). The proofs of these results are provided in the Appendix. One may also
refer to [Laetsch 1970], where such results were discussed.

Lemma 5.1. limρ→0+ G(ρ)= π/
√

2b.

Lemma 5.2. limρ→σ− G(ρ)=∞.

Next we establish a precise value of c such that for c smaller than this value, the
bifurcation curve bifurcates to the left near (π/

√
2b, 0) while for c greater than this

value, the bifurcation curve bifurcates to the right near (π/
√

2b, 0). Namely, we
establish the following:

Theorem 5.1. Let c∗2 = b − 1. If 0 ≤ c < c∗2 , then G ′(ρ) < 0 on some interval
(0, ρ1) and if c > c∗2 , then G ′(ρ) > 0 on some interval (0, ρ1).

Proof. Recall

G ′(ρ)=
∫ 1

0

H(ρ)− H(ρv)

[F(ρ)− F(ρv)]
3
2

dv (5-1)

where

H(s)= F(s)−
s
2

f (s). (5-2)

Note that H(0) = 0. Thus, showing H ′(s) > 0 for some 0 < s < s0 with s0 ≈ 0
implies G ′(ρ) > 0 on some interval (0, ρ1). We have

H ′(s)= 1
2 [ f (s)− s f ′(s)].

H ′(0)= 0 also. Therefore, we differentiate again.

H ′′(s)=−
s
2

f ′′(s).

Clearly, the sign of H ′′(s) is dependent only on the sign of f ′′(s). We know

f (s)= s(s+ 1)(b− s)− c
s2

1+ s2 (5-3)

=−s3
+ (b− 1)s2

+ bs−
cs2

1+ s2 . (5-4)

By taking the first derivative and simplifying, we get

f ′(s)=−3s2
+ 2(b− 1)s+ b− c

2s
(1+ s2)2

.
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Then, taking the second derivative and simplifying, we obtain

f ′′(s)=−6s+ 2(b− 1)− c
2− 6s2

(1+ s2)3
.

Evaluating f ′′(s) when s = 0 gives

f ′′(0)= 2(b− 1)− 2c. (5-5)

By analysis of (5-5), we see that c < (b− 1) ⇒ f ′′(0) > 0 ⇒ H ′′(s) < 0 ⇒
H ′(s) < 0 for s ∈ (0, s0) for some s0 > 0 ⇒ G ′(ρ) < 0 for ρ ≈ 0. Conversely,
we have c > (b − 1) ⇒ f ′′(0) < 0 ⇒ H ′′(s) > 0 ⇒ H ′(s) > 0 for s ∈
(0, s1) for some s1 > 0 ⇒ G ′(ρ) > 0 for ρ ≈ 0. �

Now we establish our main result of this section, the occurrence of an S-shaped
bifurcation curve.

Theorem 5.2. Let b > 4 and c ∈ (b− 1, 3
2 b− 3). Then the bifurcation curve for

(1-1) is guaranteed to be at least S-shaped. (See Figure 19.)

Proof. The proof is divided into three steps. In Step 1, we establish that if b > 2
and c ∈ (max{0, b− 5}, 3

2 b− 3), then 2 ∈ (0, σ ), for which we must recall that
σ is the smallest positive root of f (u). In Step 2, we prove that if b > 4 and
c ∈ (max{0, b−5}, 3

2 b−3), then H(2) < 0. In Step 3, we prove that the bifurcation
curve is at least S-shaped.

Step 1. Consider the functions

f (u)= u(u+ 1)(b− u)−
cu2

u2+ 1

and
k(u)= u(u+ 1)(b− u)− cu2.

0

                 b= 5, c= 12

λπ
2

f’(0)

2

σ

ρ
*

Figure 19
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0

f(u)

k(u)θ2 σ

Figure 20

As shown in Figure 20, it is clear f (u)≥ k(u). Any positive root of k(u), θ , will
occur before any positive root of f (u), σ . Thus, if r ∈ (0, θ), then r ∈ (0, σ ).

Therefore, it suffices to show that 2 ∈ (0, θ). By solving k(u)= 0, we obtain

θ =
(b− 1− c)+

√
4b+ (b− 1− c)2

2
. (5-6)

We want θ > 2, so

(b− 1− c)+
√

4b+ (b− 1− c)2

2
> 2 (5-7)

Simplifying, we obtain √
4b+ (b− 1− c)2 > (5+ c− b) (5-8)

If 5+ c− b ≤ 0, then it is clear the above inequality holds true. If 5+ c− b > 0,
then c > b− 5 and squaring and solving (5-8) gives

c < 3
2 b− 3. (5-9)

Thus, if b > 2 and c ∈ (max{0, b− 5}, 3
2 b− 3), then 2 ∈ (0, θ); hence, 2 ∈ (0, σ ).

Step 2. Recall that

H(s)= F(s)−
s
2

f (s)=
s4

4
− (b− 1)

s3

6
+ c

[
s3

2(1+ s2)
− s+ arctan s

]
.

Then,

H(2)= 4− (b− 1)4
3 + c[45 − 2+ arctan 2] ≤ 16−4b

3
+ c(−6

5 + 1) < 0

for all b > 4.



WEAK ALLEE EFFECT, GRAZING, AND S-SHAPED BIFURCATION CURVES 149

0

H(ρ)

ρ
*

2

Figure 21

Step 3. Let b > 4 and c ∈ (b− 1, 3
2 b− 3). Recall from Lemma 2.2 that

G ′(ρ)=
∫ 1

0

H(ρ)− H(ρv)

[F(ρ)− F(ρv)]
3
2

dv. (5-10)

Then from Theorem 5.1, we conclude that G ′(ρ) begins positive. From Steps 1 and
2, we know 2 ∈ (0, σ ) and H(2) < 0. Hence there exists ρ∗ ∈ (0, 2), (say, the first
zero of H(ρ)), such that G ′(ρ∗) < 0. (See Figure 16.) Also, limρ→σ− G(ρ)=∞
by Lemma 5.2. Therefore, the graph of G(ρ) must be at least S-shaped. �

Next we study the bifurcation diagram for a larger range of c values. First, we
consider the case when the bifurcation curve is split, providing various numbers of
positive solutions for different ranges of λ:

Theorem 5.3. There exist c0, ĉ1 (< c1) such that for c ∈ (c0, ĉ1), there exists a
λ1 > (π/

√
2b)2 such that (1-1) has at least one positive solution in ((π/

√
2b)2, λ1),

at least two positive solutions for λ= λ1, and at least three positive solutions for
λ > λ1.

Proof. By Lemma 5.1, limρ→0+ G(ρ) = π/
√

2b. Recall from Section 3 that for
c0 < c < c1, f (s) has the appearance shown in Figure 22.

Furthermore, recall from Section 3 that G(ρ) is well-defined for ρ ∈ (0, σ )
and ρ ∈ (γ, σ1), and that F(γ ) = F(σ ) (see the graph of F(u) for c ∈ (c0, ĉ1)

in Figure 4, page 139). From Lemma 5.2, we know limρ→σ− G(ρ) = ∞. A
similar argument can be applied to show that limρ→σ−1

G(ρ) =∞. The proof of
Theorem 5.3 is complete if limρ→γ+ G(ρ) = +∞. Such a result was proved in
[Brown and Budin 1979], which we will recall now. First recall that F(γ )= F(σ ).
We let A =max{| f ′(s)|; s ∈ [0, σ1]}. Then we can note that | f (s)| ≤ A|s− σ | for
all s ∈ [0, σ1]. Next we let B =max{| f (s)|; 0≤ s ≤ σ1}. Now, if σ1 > ρ > γ and
0≤ s < ρ, then

F(ρ)− F(s)= F(ρ)− F(γ )+ F(σ )− F(s).
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Figure 22

By the mean value theorem, we can then write this as

F(ρ)− F(s)= (ρ− γ ) f (ξ)+ (σ − s) f (η),

where ξ ∈ (γ, ρ) and η lies between σ and s. Hence,

F(ρ)− F(s)≤ B(ρ− γ )+ A(σ − s)2.

Recall that

G(ρ)=
√

2
∫ ρ

0
[F(ρ)− F(s)]−

1
2 ds.

By substitution, we can write

G(ρ)≥
∫ γ

0

√
2
[
B(ρ− γ )+ A(σ − s)2

]− 1
2 ds.

Let Hρ(s)=
√

2
[
B(ρ−γ )+ A(σ−s)2

]− 1
2 . Since Hρ is nondecreasing as ρ→ γ+,

we can apply the monotonic convergence theorem, which gives us

lim
ρ→γ+

G(ρ)≥ lim
ρ→γ+

∫ γ

0
Hρ(s) ds =

∫ γ

0

√
2A−

1
2 |σ − s|−1ds

=
√

2A−
1
2

∫ σ

0
(σ − s)−1ds+

∫ γ

σ

(s− σ)−1ds.

Both these integrals diverge to +∞, so limρ→γ+ G(ρ)=+∞. �

Thus, we obtain the bifurcation diagram represented in Figure 23 (see next page).
Next we establish a result for large values of c:

Theorem 5.4. There exists a c̃ such that if c > c̃, then (1-1) has a unique positive
solution for all λ > (π/

√
2b)2.
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Proof. From Section 3 we know that for c> ĉ1, G(ρ) is only defined for ρ ∈ (0, σ ).
With f1(u) = u(u+ 1)(b− u) and f2(u) = cu2/(1+ u2), the graph of f1− f2 is
illustrated in Figure 24. Recall the equality

G ′(ρ)=
∫ 1

0

H(ρ)− H(ρv)

[F(ρ)− F(ρv)]
3
2

dv

with

H(s)= F(s)− 1
2 s f (s), H ′(s)= 1

2 [ f (s)− s f ′(s)], H ′′(s)=− 1
2 s f ′′(s).

We wish to show that f ′′(s) < 0 for 0< s < σ . This will alternatively imply that
H ′′(s) > 0 for 0 < s < σ , noting once again that H(0) = H ′(0) = 0. Therefore,
showing H ′(s) > 0 for 0 < s < σ implies G ′(ρ) > 0 for 0 < ρ < σ , as shown in
the bifurcation diagram in Figure 25.

We begin with the analysis of f ′′(s).

f ′′(s)=−6s+ 2(b− 1)− c
2− 6s2

(1+ s2)3
(5-11)

0

f = f
1
 − f

2

σ

Figure 24. f (u)= f1− f2.
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We can then bound this function by a larger one, so we choose

f ′′(s)≤ 2(b− 1)− c
2− 6s2

(1+ s2)3
. (5-12)

Let

B(s)=
2− 6s2

(1+ s2)3
.

Note that B(s) > 0 on 0≤ s < 1
√

3
. For c� 1, we can assume that σ < 1

2
√

3
. Hence,

for c� 1, there exists δ > 0 such that B(s)≥ δ for all 0≤ s ≤ σ . Thus,

f ′′(s)≤ 2(b− 1)− cδ for all 0≤ s ≤ σ. (5-13)

Therefore, for c� 1, f ′′(s)< 0 for 0< s<σ . Hence, we know then that H ′′(s)> 0
for 0< s < σ and G ′(ρ) > 0 for 0< ρ < σ . �

The corresponding bifurcation diagram is illustrated in Figure 25.

6. Computational results for logistic growth

In [Lee et al. 2011], the effect of grazing on a logistic growth rate was studied.
Several bifurcation diagrams were provided, but a complete bifurcation evolution for
the one-dimensional case as c varies was not provided. It is useful to compare these
computational results to those of the weak and strong Allee effect. The combination
of grazing with a logistic growth rate can be illustrated by the following equation:

f̂ (u)= u(1− bu)− c
u2

1+ u2 ; b > 0, c ≥ 0. (6-1)

We obtain our evolution results via the quadrature method and Mathematica compu-
tations. The following figures illustrate this evolution for a fixed b as c increases.

If b ∈ (0, b0), then there exist ĉ0, ĉ1, ĉ2, ĉ3, ĉ4 > 0 such that:

1. If c ∈ [0, ĉ0), there exists a 3> 0 such that (6-1) has
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Λ

Figure 26. Illustration of Case 1.

• no positive solution for λ ∈ (0,3), and
• exactly 1 positive solution for λ ∈ [3,∞).

(See illustration in Figure 26.)

2. If c ∈ (ĉ0, ĉ1), there exist 3, λ0, λ1 > 0 such that (6-1) has
• no positive solution for λ ∈ (0,3),
• exactly 1 positive solution for λ ∈ [3, λ0),
• exactly 2 positive solutions for λ= λ0,
• exactly 3 positive solutions for λ ∈ (λ0, λ1], and
• exactly 1 positive solution for λ ∈ (λ1,∞).

(See illustration in Figure 27.)

0

b = 0.01, c = 0.8

λ

||
u
||

∞

Λ λ
0

λ
1

Figure 27. Illustration of Case 2.

3. If c ∈ (ĉ2, ĉ3), there exist 3, λ0 > 0 such that (6-1) has
• no positive solution for λ ∈ (0,3),
• exactly 1 positive solution for λ ∈ (3, λ0),
• exactly 2 positive solutions for λ= λ0, and
• exactly 3 positive solutions for λ ∈ (λ0,∞].

(See illustrations in Figure 28.)

4. If c ∈ (ĉ3, ĉ4), there exists a 3> 0, such that (6-1) has
• no positive solution for λ ∈ (0,3), and
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Figure 28. Illustrations of Case 3.

0

b = 0.01, c = 26

λ

||
u

| ∞

Λ

Figure 29. Illustration of Case 4.

• exactly 1 positive solution for λ ∈ [3,∞).

(See illustration in Figure 29.)

7. Computational results for strong Allee effect

This section describes the case in which a grazing term is combined with a strong
Allee growth rate. Thus, our reaction term is

f̄ (u)= u(u− 1)(b− u)−
cu2

1+ u2 , b > 1, c ≥ 0.

As in Section 4, we obtain our results via the quadrature method detailed in Section 2
and apply Mathematica to complete our computations. In the top left part of
Figure 30, we present the bifurcation curve with no grazing term (c = 0). The
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Figure 30. Evolution of the bifurcation curve as c increases.

resulting bifurcation curve evolution for increasing c is briefly exemplified in the
remaining three parts of the figure.

After careful computational analysis and application of values for ranges of b> 1
and c≥ 0, we observe that the grazing term ultimately has little effect on the overall
structure of the resulting bifurcation curve. However, we must note that for large
values of c the grazing term will overcome the strong Allee effect and there will no
longer exist any steady states. Thus, in this case the population will die out.

8. Biological implications

Analysis of the steady states of (1-1) provides valuable information on the long-
term survival of a population. Given an initial population size and grazing rate, the
bifurcation diagrams we have included provide ranges of λ for which the population
persists. Depending on the range of λ, the persistence is either conditional or
unconditional.

When λ is small, the diffusion coefficient is large enough to cause a population
to die out despite its initial size. This is clearly illustrated through the bifurcation
diagrams for the range λ ∈ (0, λ0). Using Figure 31 as an example, it is clear that
whether a population has an initial size of k or of l, it will still die out.

Between λ1 and λ2, we have unconditional persistence. That is, a population
with an initial size of m will decrease until achieving stability at the bottom branch.
However, between λ2 and λ3, the stability of the steady states results in conditional
persistence. In this range, the top and bottom branches are stable solutions while the
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middle branch is unstable. Thus, a population’s persistence is dictated by its initial
population size. For example, a population beginning with a size of n will decline
until reaching stability at the bottom branch; whereas, a population beginning with
a size of o will increase until reaching stability at the bottom branch. Furthermore,
for an initial size of p, the population will grow until obtaining stability at the top
branch while an initial size of q will diminish until obtaining stability at the top
branch.

For λ > λ3, the population will unconditionally persist. With an initial size of r ,
a population will decrease until stabilizing at the top branch while an initial size of
s will increase until stabilizing at the top branch.

9. Appendix: Proofs of Lemma 5.1 and Lemma 5.2

Proof of Lemma 5.1. (See also [Laetsch 1970].)

lim
ρ→0+

G(ρ)= lim
ρ→0+

∫ ρ

0

dz
√

F(ρ)− F(z)
= lim
ρ→0+

∫ 1

0

ρdv
√

F(ρ)− F(ρv)

= lim
ρ→0+

∫ 1

0

dv√
F(ρ)−F(ρv)

ρ2

(9-1)

By Lebesgue’s dominated convergence theorem, the limit can be moved inside the
integral. Thus, we evaluate

lim
ρ→0+

F(ρ)− F(ρv)
ρ2 .
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After applying L’Hospital’s rule twice, we obtain

lim
ρ→0+

f ′(ρ)− v2 f ′(ρv)
2

=
f ′(0)

2
(1− v2). (9-2)

Combining (9-1) and (9-2), we have

lim
ρ→0+

G(ρ)=
√

2
f ′(0)

∫ 1

0

dv
√

1− v2
=

π
√

2 f ′(0)
=

π
√

2b
. �

Proof of Lemma 5.2. (See also [Laetsch 1970].) Let N > 0 be large enough such
that f (u)≤ N (σ − u) for all 0≤ u ≤ σ . By the mean value theorem,

F(ρ)− F(s)= F ′(θ)(ρ− s)= f (θ)(ρ− s)≤ N (σ − θ)(ρ− s)≤ N (σ − s)2.

Then
√

F(ρ)− F(s)≤
√

N (σ − s), or, with n = 1/
√

N ,

1
√

F(ρ)− F(s)
≥

n
σ − s

.

Integrating both sides gives∫ ρ

0

ds
√

F(ρ)− F(s)
≥ n

∫ ρ

0

ds
σ − s

G(ρ)≥−n ln(σ − ρ)+ n ln(σ ).

As ρ→ σ−, the right side of the inequality approaches∞. Thus, G(ρ)→∞ as
ρ→ σ−. �
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