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(Communicated by Kenneth S. Berenhaut)

A modular magic sudoku solution is a solution to a sudoku puzzle with symbols
in {0, 1, . . . , 8} such that rows, columns, and diagonals of each subsquare add
to 0 mod 9. We count these sudoku solutions by using the action of a suitable
symmetry group and we also describe maximal mutually orthogonal families.

1. Introduction

1A. Terminology and goals. Upon completing a newspaper sudoku puzzle one
obtains a sudoku solution of order nine, namely, a nine-by-nine array in which all of
the symbols {0, 1, . . . , 8} occupy each row, column, and subsquare. For example,
both

7 2 3 1 8 5 4 6 0
4 0 5 3 2 6 1 8 7
6 1 8 4 0 7 2 3 5

1 7 0 6 3 2 5 4 8
5 4 6 8 1 0 7 2 3
8 3 2 7 5 4 0 1 6

2 6 4 0 7 8 3 5 1
3 5 7 2 6 1 8 0 4
0 8 1 5 4 3 6 7 2

and

1 8 0 7 5 6 4 2 3
2 3 4 8 0 1 5 6 7
6 7 5 3 4 2 0 1 8

8 4 6 5 1 3 2 7 0
7 0 2 4 6 8 1 3 5
3 5 1 0 2 7 6 8 4

5 1 3 2 7 0 8 4 6
4 6 8 1 3 5 7 0 2
0 2 7 6 8 4 3 5 1

(1-1)

are sudoku solutions. The righthand array in (1-1) is a modular magic sudoku
solution: in addition to satisfying the ordinary sudoku conditions, the rows, columns,
and diagonals of each subsquare add to 0 mod 9. These subsquares are called
modular magic squares. Plain magic squares of order 3 can’t be cobbled into
sudoku solutions but modular magic squares can.

One of our goals is to count the modular magic sudoku solutions. In Sections 2
and 3 we discuss properties and relabelings of modular magic squares; in Section 4
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we introduce a natural symmetry group G acting on the set X of modular magic
sudoku solutions and determine its structure. These ideas, coupled with a G-
invariant property possessed by certain elements of X , are used to show that there
are exactly two G-orbits on X (Theorem 4.3) and that there are 32256 modular
magic sudoku solutions (Theorem 4.4).

Two sudoku solutions are orthogonal if upon superimposition there is no repeti-
tion in the resulting ordered pairs. The set of ordered pairs formed by superimposing
the righthand sudoku solution in (1-1) and the solution x ′2 given in Section 5 is

10 88 01 73 52 64 46 25 37
24 33 42 87 06 15 51 60 78
65 77 56 38 41 20 02 14 83

86 44 68 50 17 32 23 71 05
72 00 27 45 63 81 18 36 54
31 55 13 04 28 76 67 82 40

53 11 35 26 74 08 80 47 62
48 66 84 12 30 57 75 03 21
07 22 70 61 85 43 34 58 16

.

One can check directly that the two solutions are orthogonal; each is called an
orthogonal mate of the other. On the other hand, the lefthand sudoku solution in
(1-1) is not orthogonal to any sudoku solution (or to any Latin square, for that
matter). A collection of sudoku solutions is said to be mutually orthogonal if every
pair of distinct members is orthogonal.

Another of our goals is to investigate the orthogonality of modular magic su-
doku solutions. In Section 5 we show that every modular magic sudoku solution
possesses an orthogonal modular magic sudoku mate and that each such pair forms
a largest possible family of mutually orthogonal modular magic sudoku solutions
(Theorem 5.1).

1B. Background: Latin squares, orthogonality, and sudoku. A Latin square of
order n is an n×n array with n symbols such that every symbol appears in each row
and column. Latin squares have been of mathematical interest for hundreds of years,
at first in their own right (for example, Euler’s 36 officers problem; see [Euler 1923;
Ball and Coxeter 1987]) and then in concert with other mathematical structures
when it was discovered in the early 20th century that Latin squares are intimately
connected with statistical design, coding theory, finite geometry, and graph theory.
(See [Colbourn and Dinitz 1996; Dénes and Keedwell 1974; Roberts 1984] for more
information.) A classical theorem illustrating some of these connections, largely
due to Bose [1938], is:
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Theorem 1.1. Let m be an integer with m ≥ 2. The following are equivalent:

(a) There is a collection of m− 1 mutually orthogonal Latin squares of order m.

(b) There is a finite projective plane of order m.

(c) There exists a symmetric balanced incomplete block design with the type
(m2
+m+ 1,m+ 1, 1).

The theorem indicates that counting Latin squares is of fundamental importance.
The exact number of Latin squares of order nine (approximately 5.52× 1027; see
[Bammel and Rothstein 1975]) wasn’t known until 1975, and the exact number
for orders twelve and larger is currently unknown. Regarding families of mutually
orthogonal Latin squares, it has long been known that there are at most n − 1
mutually orthogonal Latin squares of order n and that this bound is achieved when
n is a prime power. However, for nonprime power orders larger than six, the largest
size of a family of mutually orthogonal Latin squares is unknown. This open
problem has been proposed by Mullen [1995] as a candidate for the “next Fermat
problem.”

Sudoku solutions, being special types of Latin squares, inherit both the legacy
and the problems associated with Latin squares. In [Felgenhauer and Jarvis 2006]
and [Jarvis and Russell 2006], using computer-aided arguments, it has been shown
that there are 6670903752021072936960 distinct sudoku solutions of order nine
and 5472730538 orbits under the action of a natural symmetry group (consisting of
rotations, relabelings, et cetera), respectively. Moving on to orthogonal families of
sudoku solutions, it is known that there are at most n(n− 1) mutually orthogonal
sudoku solutions of order n2; this bound is achieved when n is a prime power.
More generally it has recently been shown (for example, [Bailey et al. 2008]) that if
pk1

1 . . . pks
s is the prime factorization of n and q =min{pki

i }, then there is a family of
q(q − 1) mutually orthogonal sudoku solutions of order n2. As in the case of Latin
squares, the maximum size of a family of mutually orthogonal sudoku solutions is
unknown in general. Given the difficulty of these counting problems, it is desirable
to understand tractable settings such as modular magic sudoku thoroughly so that
they can be used as a testing ground for new counting methods.

1C. Miscellaneous remarks. In addition to modular magic sudoku, both magi-
doku and quasimagic sudoku (each described in [Forbes 2007] and certain of the
latter painstakingly counted in [Jones et al. 2011]) are types of sudoku solutions
characterized by additional sum conditions on the subsquares. Also, our modular
magic squares are equivalent (in order three) to the pseudomagic, modular magic
squares considered by Evans [1996], provided that one adds a diagonal condition
to Evans’ definition.
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2. Properties of modular magic squares

Before investigating modular magic sudoku, we establish a few properties of modular
magic squares. For example, all of the modular magic squares presented thus far
have the entries {0, 3, 6} on a diagonal; this is not coincidental. Throughout we let
U = {1, 2, 4, 5, 7, 8} and D = {0, 3, 6} be subsets of {0, 1, . . . , 8}, and we let the
remainder square associated to a modular magic square consist of remainders mod 3
of the original entries. We often identify {0, 1, . . . , 8} with the ring Z9.

Lemma 2.1. A remainder square associated to a modular magic square must be a
Latin square.

Proof. Given a modular magic square, we make the following observations about
its remainder square:

(a) Each of the symbols {0, 1, 2} must appear exactly three times in the remainder
square.

(b) The rows, columns, and diagonals of the remainder square must each add
to 0 mod 3 or else the rows, columns, and diagonals of the original modular
magic square won’t sum to 0 mod 9.

(c) No row or column can consist of the same symbol.

Item (a) must hold because there are exactly three numbers in Z9 possessing each
of the three possible remainders mod 3. Item (b) must hold or else the rows,
columns, and diagonals of the original modular magic square won’t sum to 0 mod 9.
Regarding item (c), rows or columns of 1s or 2s in the remainder square lead to
sums of the form 7+4+1 and 8+5+2, respectively, in the original modular magic
square; neither is equal to 0 in Z9. In view of items (a) and (b), a row or column of
0s in the remainder square implies a row or column of 1s, which is not allowed.

These observations imply that the remainder square is Latin: item (a) says that
we have an order-three grid with three symbols each appearing three times. Further,
if there is repetition of symbols in a given row or column then item (b) forces that
row or column to consist of all the same symbol, thus violating item (c). �

Proposition 2.2. In any modular magic square the elements of D must lie on a
diagonal.

Proof. We first show that the central entry of a given modular magic square must
lie in D. Suppose otherwise that α ∈ U occupies the central location. Since α
is not a zero divisor in Z9, it follows that −(2−1α) is distinct from α. Therefore,
α, −(2−1α), and a third element of Z9 must form a row, column, or diagonal of
the square. But the zero sum condition forces this third element to be −(2−1α),
contradicting the uniqueness of symbols in a modular magic square.
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Then, given a modular magic square, the fact that an element of D lies in the
center together with Lemma 2.1 indicate that the associated remainder square must
be Latin with a 0 in the center. This means that all the 0s in the remainder square
must occupy one of the diagonals, and so the elements of D must lie on this same
diagonal in the original modular magic square. �

Finally, we observe that a modular magic square is uniquely determined by a
choice of diagonal type (either “main” or “off”), elements of D to occupy this
diagonal, and one element of U occupying a location away from the chosen diagonal.
All of the remaining entries of the square can be filled in via the zero sum condition.
This gives 2× 6× 6= 72 modular magic squares.

3. Modular magic relabelings

Ultimately we will use a group generated by certain grid symmetries and relabelings
to count modular magic sudoku solutions. As opposed to ordinary sudoku, we
cannot allow all relabelings because not every relabeling preserves modular magic
squares. For example, the relabeling that swaps 0 and 1 and leaves everything else
fixed is not allowable, as when

4 8 6
2 0 7
3 1 5

becomes
4 8 6
2 1 7
3 0 5

.

Our purpose here is to describe the collection of modular magic relabelings, namely,
those bijections of Z9 onto itself that preserve modular magic squares. We begin
by making a few observations:

Lemma 3.1. Let S denote the group of magic relabelings.

(a) Members of S become permutations of D when restricted to D.

(b) Given a permutation µ of {0, 3, 6} and λ ∈U , there is at most one σ ∈ S with
σ |D = µ and σ(λ)= 1.

(c) |S| ≤ 36.

Proof. Part (a) must hold or else the action of such a relabeling on a modular
magic square can produce a square having a member of U in its central location,
contradicting Proposition 2.2. For part (b), more than one such σ would imply
the existence of multiple modular magic squares possessing the data described
immediately after Proposition 2.2, again a contradiction. Part (c) follows from part
(b): we have |S| ≤ |S3| × |U | = 36. �

Let’s produce some magic relabelings. Given k ∈ U and l ∈ D, consider the
mapping µk,l : Z9→ Z9 defined by µk,l(n)= kn+ l. Let H = {µk,l | k ∈U, l ∈ D},
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and it is not too difficult to see that H is an order-18 subgroup of S. In addition
to H there are rather less obvious magic relabelings. For example, consider the
mapping ρ : Z9→ Z9 defined1 by

ρ(n)=
{

2n−1 if n ∈U,
n if n ∈ D.

To see that ρ preserves the magic sum property, if m, n ∈ U and a ∈ D with
m+ n+ a = 0 (that is, {m, n, a} make a typical row/column/diagonal triple), then

ρ(m)+ ρ(n)+ ρ(a)= 2m−1
+ 2n−1

+ a

= (mn)−1(2m+ 2n+mna)

= (mn)−1((2m+ 2n+mna)+ (m+ n+ a)
)

= (mn)−1(3(m+ n)+ (mn+ 1)a
)

= (mn)−1(0+ 0)= 0,

where we’ve used the facts that m+ n+ a = 0 in Z9 implies m+ n ≡ 0 mod 3 and
that mn ≡ 2 mod 3 for all m, n ∈U . All told, these relabelings generate S:

Proposition 3.2. The group S of modular magic relabelings is generated by the set
{µk,l, ρ | k ∈U, l ∈ D} and is isomorphic to (S3×Z3)o Z2.

Proof. Using the fact that µk,l ◦ ρ = ρ ◦µk−1,l , which we verify at the end of the
proof, we know H o Z2 is a subgroup of S and so |S| ≥ 36. But Lemma 3.1 says
|S| ≤ 36, so we conclude that |S| = 36 and that S = 〈µk,l, ρ〉 ∼= H o Z2. Regarding
H , observe that |µ1,6| = 3, |µ8,0| = 2, and µ1,6 ◦µ8,0 = µ8,0 ◦µ

−1
1,6. Therefore,

these two elements generate a copy of S3 within H . Likewise, µ4,0 generates a
copy of Z3 in H that commutes with and has trivial intersection with the previously
mentioned copy of S3. Therefore, the direct product of these groups is an order-18
subgroup of H ; this subgroup must be the entirety of H because |H | = 18. We
conclude that H ∼= S3×Z3 and that S ∼= (S3×Z3)o Z2.

Finally, we verify that µk,l ◦ ρ = ρ ◦µk−1,l . Note that

µk,l ◦ ρ(n)=
{

kn+ l if n ∈ D,
2kn−1

+ l if n ∈U,

while

ρ ◦µk−1,l(n)=
{

k−1n+ l if n ∈ D,
2(k−1n+ l)−1 if n ∈U.

If n ∈ D, we require kn+ l = k−1n+ l in Z9, or equivalently (k − k−1)n = 0 in
Z9. The latter statement is an immediate consequence of the facts that k and k−1

1As a product of cycles ρ = (12)(45)(78).
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have the same remainder mod 3 and 3|n. If on the other hand n ∈ U , we require
(k−1n+ l)−1

= kn−1
+ 2−1l in Z9. This follows from

(k−1n+ l)(kn−1
+ 2−1l)= 1+ l

(
kn−1
+ 2−1(kn−1)−1)

+ 2−1l2

= 1+ l(0)+ 0= 1,

where for the latter equation kn−1
+ 2−1(kn−1)−1

≡ 0 mod 3 and l2
= 0 when

l ∈ D. �

Since |S| = 36, all of the relabelings in part (b) of Lemma 3.1 are achieved:

Corollary 3.3. Given λ ∈ U and µ a permutation of D, there exists σ ∈ S with
σ |D = µ and σ(λ)= 1.

4. Counting modular magic sudoku solutions

We use a symmetry group G, called the modular magic sudoku group, to assist
us in the task of counting modular magic sudoku solutions. We first describe the
generators of this group and its action on the set X of modular magic sudoku
solutions, then we count the number of G-orbits in X (this gives the number of
“essentially different” modular magic sudoku solutions), and finally we count the
total number of modular magic sudoku solutions.

4A. The modular magic sudoku group. The modular magic sudoku group G
should consist of all reasonable grid transformations and relabelings that send one
modular magic sudoku solution to another. We declare this group to have the
generators:

• Modular magic relabelings. (Here a single relabeling is applied to each sub-
square. Modular magic relabelings are discussed in Section 3 above.)

• Permutations of large rows. (A large row is a row of subsquares.)

• Swaps of the outer two rows within a given large row.

• Permutations of large columns. (A large column is a column of subsquares.)

• Swaps of the outer two columns within a large column.

• Transpose.

The first set of generators forms the group S of modular magic relabelings, whose
structure we’ve already discussed in Section 3. The remaining generators form a
group H of grid transformations (including rotations), and we have G = H × S
because H, S commute and have trivial intersection.

We determine the structure of H . Observe that H = [Hr × Hc]o T , where
Hr denotes the subgroup of H generated by the large row and row permutations
described, Hc is the analogous subgroup generated by column permutations, and
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T is the two-element group generated by the transpose. The direct product arises
because the groups Hr and Hc have trivial intersection and commute, while the
semidirect product comes about as a result of the fact that thr = hct whenever t is
transpose, hr ∈ Hr , and hc ∈ H , where hc is obtained from hr by simply replacing
the word “row” by “column” in any generators used to produce hr . Now Hr and
Hc clearly have the same structure, so all that remains is to describe the structure
of Hr , which we address in the following paragraphs.

Positions of rows within our sudoku grid can be labeled (a, b) where a, b ∈ Z3,
a denotes the large row, and b denotes the row within a large row, with 1 denoting
top, 0 denoting middle, and 2 denoting bottom for both large rows and rows within
large rows. (This ordering of rows seems unnatural at the moment, but will suit our
purpose.) The set of permutations of large rows is isomorphic to S3, regarded as
bijections of Z3 onto itself, with σ(a, b)=

(
σ(a), b

)
for σ ∈ S3. On the other hand,

the set of swaps of outer rows within a given large row is isomorphic to (Z∗3)
3 ∼= Z3

2
where if s = (s0, s1, s2) ∈ (Z

∗

3)
3 then s(a, b)= (a, sab).2 (Here sab is computed by

multiplication in Z3.) Observe that S3 acts on Z3
2 via σ.s = (sσ−1(0), sσ−1(1), sσ−1(2))

and that each such σ determines an automorphism φσ : Z
3
2→ Z3

2. Further, if σ ∈ S3

and s ∈ Z3
2 we have the commutation relation

σ s = (σ.s)σ (4-1)

because

σ s(a, b)= σ(a, sab)=
(
σ(a), sab

)
=

(
σ(a), sσ−1(σ (a))b

)
=

(
σ(a), (σ.s)σ(a)b

)
= (σ.s)(σ (a), b)= (σ.s)σ (a, b).

An example may help: According to our labeling, the (0, 1) row is the top row
within the middle large row. Further, if s = (2, 2, 1) ∈ (Z∗3)

2 and σ = (021) ∈ S3,
then σ.s = (2, 1, 2). Applying these to the (0, 1) row we have

σ s(0, 1)= σ(0, s0× 1)= σ(0, 2× 1)= σ(0, 2)=
(
σ(0), 2

)
= (2, 2). (4-2)

Therefore, the outcome of σ s(0, 1) is the bottom row within the bottom large row.
Likewise, we have

(σ.s)σ (0, 1)= σ.s(2, 1)=
(
2, (σ.s)2× 1

)
= (2, 2× 1)= (2, 2), (4-3)

with the equality of (4-2) and (4-3) as required by (4-1).
Returning to the structure of Hr , the commutation relation (4-1) implies that

Hr ∼= S3 o Z3
2 via

( f, σ )(g, τ )=
(

f (σ.g), στ
)
,

2The simple action of s ∈ (Z∗3)
3 on a row (a, b) is facilitated by the strange ordering of rows given

above.
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where f, g ∈ (Z∗3)
3 ∼= Z3

2 and τ, σ ∈ S3. Note here that S3 is acting on multiple
copies of Z2 (three copies), where S3 acts to permute the copies of Z2 among
themselves. Semidirect products of this type are known as wreath products: we
denote Z3

2 o S3 by Z2 wr S3. Summarizing the discussion above we have:

Proposition 4.1. The modular magic sudoku group G is isomorphic to S × H ,
where S ∼= (S3×Z3)o Z2 and H ∼=

[
(Z2 wr S3)× (Z2 wr S3)

]
o Z2. The order of

this group is |S| × |H | = 36× (48× 48× 2)= 165888.

4B. Orbits of the modular magic sudoku group. We set about counting the G-
orbits on X . Begin by declaring a modular magic sudoku solution to be in proper
form if it has this aspect, as described by Lemma 4.2:

1 8 0 6 3
2 3 4 0 6
6 7 5 3 0

6
0

3

3
6

0

.

Lemma 4.2. Every modular magic sudoku solution is in the same G-orbit as some
proper form modular magic sudoku solution.

Proof. Beginning with a modular magic sudoku solution, we apply the these group
elements to produce something in proper form:

(a) Permute the large columns so that there is a 3 in the center of the upper left
subsquare.

(b) Perform an outer row swap in the top large row and/or outer column swap in
the left large column to place 0 in the upper right location of the upper left
subsquare.

(c) Swap the middle and right large columns to place 0 in the center location of
the upper middle subsquare.

(d) Make outer column swaps in the rightmost two large columns to make the
{0, 3, 6}-diagonals go from lower left to upper right in the top rightmost two
subsquares (rightmost two subsquares in the top large row).

(e) Swap the middle and bottom large rows so that 0 lies in the center location of
the middle left subsquare (and 6 lies in the bottom left subsquare).
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(f) Make outer row swaps in the bottommost two large rows to make the {0, 3, 6}-
diagonals go from lower left to upper right in the leftmost bottom two sub-
squares (bottom two subsquares in the leftmost large column).

(g) Via Corollary 3.3 apply a modular magic relabeling to the resulting modular
magic sudoku solution that fixes D and sends the upper leftmost symbol to
1. �

To count the number of proper form modular magic sudoku solutions, and thereby
to determine an upper bound on the number of G-orbits, we first observe that in
any proper form solution, such as

1 8 0 a1 6 a2 3
2 3 4 0 6
6 7 5 3 0

a3 6
0

3

a4 3
6

0

, (4-4)

each of the symbols a1, a2, a3, a4 shown in (4-4) has no more than two possible
values. For example, in order for the first row to satisfy the Latin row condition, we
know that a1 and −(a1+6) cannot be 1 or 8, so a1 ∈ {5, 7}. Further, one can check
that values for a1, a2, a3, a4 either uniquely determine a proper form solution or
lead to a contradiction of sudoku conditions. This implies that there are at most
sixteen proper form solutions. A case-by-case check shows that seven of these
sixteen are valid modular magic sudoku solutions and further that each of these
seven is readily obtainable via G from one of the two proper form solutions:

x1 =

1 8 0 7 5 6 4 2 3
2 3 4 8 0 1 5 6 7
6 7 5 3 4 2 0 1 8

7 5 6 4 2 3 1 8 0
8 0 1 5 6 7 2 3 4
3 4 2 0 1 8 6 7 5

4 2 3 1 8 0 7 5 6
5 6 7 2 3 4 8 0 1
0 1 8 6 7 5 3 4 2

and x2 =

1 8 0 7 5 6 4 2 3
2 3 4 8 0 1 5 6 7
6 7 5 3 4 2 0 1 8

8 4 6 5 1 3 2 7 0
7 0 2 4 6 8 1 3 5
3 5 1 0 2 7 6 8 4

5 1 3 2 7 0 8 4 6
4 6 8 1 3 5 7 0 2
0 2 7 6 8 4 3 5 1

. (4-5)
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This leads to the summary result:

Theorem 4.3. There are exactly two G-orbits orbits in X. The modular magic
sudoku solutions x1 and x2 can be taken as base points for these orbits.

Proof. Our discussion up to this point indicates that there are at most two G-orbits.
To finish we show that x1 and x2 from (4-5) must lie in different orbits. Recall
that a transversal of a Latin square is a collection of locations that meets every
row, column, and symbol exactly once. The property of possessing a transversal
consisting of the diagonals of exactly three subsquares is a property that is invariant
under the action of G: no modular magic sudoku group generator takes a central
subsquare location to a noncentral subsquare location. We see that x1 possesses
such a transversal (the main diagonal) while x2 does not. It follows that x1 and x2

must be in different G-orbits. �

4C. The total number of modular magic sudoku solutions. Let x1 and x2 be as
in (4-5) and let Gx1 and Gx2 be the corresponding stabilizer subgroups of G (that
is, Gxi = {g ∈ G | g.xi = xi }). We introduce the notation:

• Large rows, and rows within large rows, are labeled 0, 1, and 2 from top to
bottom. The same goes for columns, labeled left to right.3

• If σ is a permutation of {0, 1, 2} then σr , σc ∈ G denote the corresponding
permutations of large rows and large columns, respectively, determined by σ .

• Let s ∈ G denote the grid permutation that swaps the outer rows of every large
row and the outer columns of every large column.

• Let t ∈ G denote transpose.

We describe the structure of Gx1 . First observe that s is the only possible
nontrivial combination of outer row/column swaps because any other nontrivial
combination of these swaps when applied to x1 yields a modular magic sudoku
solution with some {0, 3, 6} subsquare diagonal of the wrong type. This means
that the possible generators of Gx1 have been reduced to relabelings, permutations
of large rows/columns, s, and t . If g ∈ Gx1 has no contribution from s or t , then
the large row/column permutations must be even, or else g.x1 is not in proper
form. Likewise, if there is contribution from s or t (possibly both), then the
large row/column permutations must be odd. This allows us to further narrow the
possible generators for Gx1 , and, upon checking the possibilities, we find that all of
the “allowable” large row/column permutations (in the sense of the previous two

3This is different from the ordering presented in Section 4A.



184 JOHN LORCH AND ELLEN WELD

sentences) actually appear in elements of Gx1 . We therefore have

Gx1 =
〈
µ1,6(012)c, µ1,6(012)r , ρµ5,6(12)r (12)ct, µ8,6(12)r (12)cs

〉
∼= (Z3×Z3)o (Z2×Z2).

A similar analysis can be applied to Gx2 , which has the same “allowable” large
row/column permutations, but here fewer of them actually work. Upon checking
we have

Gx2 =
〈
µ1,6(012)c, µ8,6(12)r (12)cs

〉
∼= S3,

a subgroup of Gx1 .

Theorem 4.4. There are 32256 modular magic sudoku solutions.

Proof. Let G.xi denote the G-orbit in X through xi . From the discussion immedi-
ately above we have

|G.xi | =
|G|
|Gx1 |

=
165888

36
= 4608 while |G.x2| =

|G|
|Gx2 |

=
165888

6
= 27648.

The total number of modular magic sudoku solutions is |G.x1|+|G.x2| = 32256. �

5. Orthogonality of modular magic sudoku solutions

Here we investigate the orthogonality of modular magic sudoku solutions. We begin
by observing that the solutions x ′1 and x ′2 given in (5-1) are modular magic and are
orthogonal to the solutions x1 and x2 given in (4-5), respectively.

x ′1 =

0 8 1 3 2 4 6 5 7
4 3 2 7 6 5 1 0 8
5 7 6 8 1 0 2 4 3

6 5 7 0 8 1 3 2 4
1 0 8 4 3 2 7 6 5
2 4 3 5 7 6 8 1 0

3 2 4 6 5 7 0 8 1
7 6 5 1 0 8 4 3 2
8 1 0 2 4 3 5 7 6

and x ′2 =

0 8 1 3 2 4 6 5 7
4 3 2 7 6 5 1 0 8
5 7 6 8 1 0 2 4 3

6 4 8 0 7 2 3 1 5
2 0 7 5 3 1 8 6 4
1 5 3 4 8 6 7 2 0

3 1 5 6 4 8 0 7 2
8 6 4 2 0 7 5 3 1
7 2 0 1 5 3 4 8 6

. (5-1)

The selection of x ′1 and x ′2 is not entirely random. For example, one can see that
the {0, 3, 6} subsquare diagonals for x j and x ′j with j ∈ {1, 2} must be of opposite
types and that by applying a relabeling (Corollary 3.3) the upper left subsquare of
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x ′j can be chosen to be

0 8 1
4 3 2
5 7 6

.

Due to the fact that orthogonality is preserved under relabelings and grid symme-
tries, Theorem 4.3 implies that every modular magic sudoku solution possesses an
orthogonal modular magic sudoku mate.

If M is a modular magic sudoku solution let C(M) denote the Latin square of
order 3 with symbols in D containing the subsquare centers of M . We note that if
two modular magic sudoku solutions M1 and M2 are orthogonal then so are C(M1)

and C(M2). Since two is the maximal size of a family of mutually orthogonal Latin
squares of order 3, this observation implies that the maximal size of a family of
mutually orthogonal modular magic sudoku solutions is at most two. Summarizing,
we have:

Theorem 5.1. Every modular magic sudoku solution has an orthogonal modu-
lar magic sudoku mate; such a pair forms a largest possible family of mutually
orthogonal modular magic sudoku solutions.
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