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We develop a finite-difference scheme to approximate the bounded solutions of
the classical Fisher–Kolmogorov–Petrovsky–Piskunov equation from population
dynamics, in which the nonlinear reaction term assumes a generalized logistic
form. Historically, the existence of wave-front solutions for this model is a well-
known fact; more generally, the existence of solutions of this equation which
are bounded between 0 and 1 at all time, is likewise known, whence the need to
develop numerical methods that guarantee the positivity and the boundedness
of such solutions follows necessarily. The method is implicit, relatively easy
to implement, and is capable of preserving the positivity and the boundedness
of the new approximations under a simple parameter constraint. The proof of
the most important properties of the scheme is carried out with the help of the
theory of M-matrices. Finally, the technique is tested against some traveling-wave
solutions of the model under investigation; the results evince the fact that the
method performs well in the cases considered.

1. Introduction

R. A. Fisher [1937] and A. Kolmogorov, I. Petrovsky and N. Piskunov [Kolmogorov
et al. 1937] were the first to investigate the advance wave of mutant genes which
are advantageous to some populations distributed on linear habitats. The model
that they investigated is known as the Fisher–Kolmogorov–Petrovsky–Piskunov
equation, the Fisher–KPP equation, or simply Fisher’s equation, and it is one of
the simplest diffusive equations with nonlinear reaction. This parabolic partial
differential equation is a useful model in the description of the process of epidermal
wound healing [Sherratt and Murray 1990], in the theory of the electrodynamics of
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semiconductors [Wallace 1984], in the investigation of excitons [Rashba and Sturge
1982], and as a model for neutron flux in nuclear reactor kinetics [Kastenberg and
Chambré 1968].

The Fisher–KPP equation, like many other equations in mathematical physics,
is well-known to possess traveling-wave solutions [Wang 1988]. The wave fronts
connect the two stationary solutions, 0 and 1 in the equation’s nondimensionalized
version, via a monotone solution bounded within (0, 1) at all times. The existence
of other bounded solutions for this model, apart from traveling waves, is also a
standard result in the specialized literature [Wazwaz and Gorguis 2004]. This and
the fact that the Fisher–KPP equation is a model for which there is no analytic
solution for every admissible set of initial conditions justify interest in the design
of numerical techniques preserving the boundedness of the solutions.

The design of numerical methods that preserve several physical or mathematical
properties of the phenomena that they describe is a fruitful avenue of research in
scientific computation. Thus, from the physical point of view, several methods have
been proposed to approximate the solution and the energy dynamics of conservative
[Furihata 2001] and dissipative [Furihata 1999] systems. From the mathematical
point of view, the preservation of conditions such as symmetry, monotonicity,
positivity and boundedness is sometimes a highly desirable characteristic in a
numerical integrator. In fact, several numerical methods have been designed with
these conditions in mind, particularly in those cases when the variable of interest is
measured in an absolute scale. In these situations, the conditions of positivity and
boundedness of solutions, which are typical in the study of some traveling waves,
arise as constraints in the meaningfulness of the numerical results.

In this article we develop a finite-difference scheme to approximate bounded
positive solutions to the Fisher–KPP equation, and test our method against known
traveling-wave solutions. The main properties of our technique are consequences
of the theory of M-matrices [Fujimoto and Ranade 2004], which are nonsingular,
square matrices with the property that their inverses have only positive entries.

This work is organized as follows: In Section 2, we introduce the quantitative
model under investigation (namely, the Fisher–KPP equation from population
dynamics), and a family of traveling-wave solutions used in the sequel as comparison
paradigms. Section 3 presents the numerical method employed to approximate
solutions of the problem under investigation. There we prove our main result,
which gives parameter conditions under which the method is able to preserve
positivity and boundedness of the solutions of the Fisher–KPP model. Section 4
presents numerical evidence that the method is capable of preserving the properties
mentioned above when the conditions of our main result are satisfied. We make
some concluding remarks in Section 5.
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2. The Fisher–KPP equation

Let p be a positive integer. Let R+ represent the set of nonnegative numbers, and
let I = [a, b] be a closed and bounded interval of R. Let u be a real function defined
on I ×R+ which, for practical purposes, is supposed to be twice differentiable in
the interior of its domain. In this work, we approximate traveling-wave solutions of
the classical Fisher–KPP equation, which, in nondimensional form, is the nonlinear,
parabolic partial differential equation

∂u
∂t
=
∂2u
∂x2 + u f (u), (1)

where the function f : R→ R has the generalized logistic form

f (u)= 1− u p. (2)

As mentioned in the Introduction, this equation was first studied in the context
of the dynamics of populations in a one-dimensional, unbounded habitat. (In the
original studies, the exponent p was equal to 1.) For every real constant C , the
functions

u(x, t)=
{

1
2

tanh
[
−

p
2
√

2p+ 4

(
x −

p+ 4
√

2p+ 4
t
)
+

C
2

]
+

1
2

}2/p

(3)

are traveling wave solutions to (1), bounded in the interval (0, 1), and connecting
the two constant solutions u = 0 and u = 1 (see [Wang 1988]). These solutions will
be employed for comparison purposes in Section 4.

3. Numerical method

For the discretization, we consider a uniform partition a = x0 < x1 < · · ·< xN = b
of the interval I and a uniform partition 0 = t0 < t1 < · · · < tM = T of the time
interval [0, T ] over which we will compute approximate solutions of (1). We let uk

n
represent the approximation to the exact value of u(xn, tk). For convenience, let
1x = (b− a)/N and 1t = T/M , and consider the standard linear operators

δt uk
n =

uk+1
n − uk

n

1t
, (4)

defined for every n ∈ {0, 1, . . . , N } and every k ∈ {0, 1, . . . ,M − 1}, and

δ2
x uk

n =
uk

n+1− 2uk
n + uk

n−1

(1x)2
, (5)

defined for every n ∈ {1, 2, . . . , N − 1} and every k ∈ {0, 1, . . . ,M}. Let n ∈
{1, 2, . . . , N − 1} and k ∈ {0, 1, . . . ,M − 1}. With this notation at hand, we
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approximate the exact solution of u at (xn, tk) through the nonlinear difference
equation

δt uk
n = δ

2
x uk+1

n + uk+1
n f (uk

n). (6)

Clearly, in order to approximate solutions of (1) using the numerical method (6),
appropriate initial and boundary conditions must be imposed in both the continuous
and the discrete scenarios. In the present work, we will consider an initial profile of
the form u(x, 0)= φ(x) for every x ∈ I , a condition that translates to the discrete
scene into the constraint u0

n = φ(xn), for n ∈ {0, 1, . . . , N }. Similarly, we will
consider boundary conditions of the form u(a, t) = g(t) and u(b, t) = h(t) for
every t ∈ [0, T ], which translate, respectively, as uk

0 = g(tk) and uk
N = h(tk), for

every k ∈ {0, 1, . . . ,M}. With these conventions, the finite-difference method (6)
may be rewritten in vector form as the equation

Ak uk+1
= vk for k ∈ {0, 1, . . . ,M − 1}, (7)

where vk is the (N + 1)-dimensional real vector

vk
=
(
g(tk+1), uk

1, . . . , uk
N−1, h(tk+1)

)t
, (8)

for k ∈ {0, 1, . . . ,M}, and A is the matrix of size (N + 1)× (N + 1) given by

Ak =



1 0 0 0 · · · 0 0 0
−R ak

1 −R 0 · · · 0 0 0
0 −R ak

2 −R · · · 0 0 0
0 0 −R ak

3 · · · 0 0 0
...

...
...

...
. . .

...
...

...

0 0 0 0 · · · ak
N−2 −R 0

0 0 0 0 · · · −R ak
N−1 −R

0 0 0 0 · · · 0 0 1


. (9)

Here,

R =
1t
(1x)2

, (10)

ak
n = 1+ 2R− f (uk

n)1t for n ∈ {1, 2, . . . , N − 1}. (11)

The forward-difference stencil of our method is depicted in Figure 1. The method
is clearly implicit and, after appropriate boundary conditions are specified at the
endpoints of I , it only requires of an initial profile u0 in order to compute the
subsequent approximations. Note also that, if f were a constant function, the
matrix Ak would be a constant matrix A, and the approximation at time k would be
given by Ak uk

= u0.
We now establish conditions under which the finite-difference method (6) pre-



APPROXIMATION OF SOLUTIONS OF A NONLINEAR EQUATION 223

6
t

-ee
ee
ee
ee
e

ee
ee
ee
ee
e

e e e e e e e e e e e e e
xn

xn−1 xn+1

tk
tk+1 u× × ×

Figure 1. Forward-difference stencil of the finite-difference
scheme (6). The black circle represents the known approximation
to the exact solutions at the time tk , and the crosses denote the
unknown, new approximations at the time tk+1.

serves the boundedness and the positivity of the solutions of (1), and it makes use
of the nonsingularity properties of M-matrices [Fujimoto and Ranade 2004].

Proposition 1. Let k ∈ {0, 1, . . . ,M − 1}, let p be equal to 1, and suppose that all
the components of vk are numbers in (0, 1). If 1t < 1 then the components of uk+1

in (7) are all likewise bounded in (0, 1).

Proof. Clearly, Ak has nonpositive, off-diagonal entries. Moreover, if f (uk
n)1t < 1

for every n ∈ {1, 2, . . . , N − 1}, then Ak is a strictly diagonally dominant matrix
with positive diagonal entries (notice that such condition holds if 0< uk

n < 1 for
every n ∈ {1, 2, . . . , N −1} and 1t < 1) and, as a consequence, Ak is an M-matrix,
that is, a nonsingular matrix whose inverse only has positive entries. Together
with (7), this implies that uk+1 is a vector with positive entries. Next, we establish
the boundedness from above of the components of uk+1. Let e be the (N + 1)-
dimensional vector all of whose components are equal to 1, and let wk+1

= e−uk+1.
A simple substitution in (7) gives us the equation

Akw
k+1
= Ak e− vk . (12)

The first and last components of the right-hand side of (12) are, respectively, 1−g(tk)
and 1−h(tk), which are positive, while for every n ∈{1, 2, . . . , N−1}, the (n+1)-st
component is given by the expression (1−1t)(1− uk

n), which is also a positive
number. As in the first part of this proof, it follows that the components of wk+1

are all positive numbers or, equivalently, that the components of uk+1 are all less
than 1. �
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We stress that (4) is a first-order accurate approximation of the partial derivative
of u with respect to t at (xn, tk), and that (5) is an approximation of the second
order to the value of the partial derivative of u with respect to x2 at the same point.
Under these circumstances, the linearized version of the finite-difference scheme
(6) is consistent of order 1t+ (1x)2 with the linearized version of (1) at (xn, tk+1).

4. Numerical results

To illustrate the validity of the our method and its computational implementation,
we ran two numerical experiments, choosing the initial conditions so the exact
solution is known, namely, the function (3). We set C = 1 and p = 1, and let the
spatial domain be I = [−50, 150], imposing at the endpoints Dirichlet conditions
provided by the exact solution evaluated at −50 and 150.
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Figure 2. Analytical solution (solid line) and the corresponding
approximation (dotted line) versus the spatial variable x at four
different times, of a system governed by (1) with p= 1. The initial
profile is that given by (3) at t = 0 with C = 1, and the boundary
conditions are provided by (3) at the endpoints of [−50, 150] at
any time. Numerically, the method (6) employed 1x = 1 and
1t = 0.05, and the times considered were t = 5, 15, 30, 60.
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In the first run, we use the finite-difference method (6) with1x=1 and1t=0.05,
so that the parameter constraint in Proposition 1 for the boundedness of the method
be satisfied. Under these conditions, Figure 2 compares the exact solutions with
the corresponding numerical approximations provided by our technique at four
different times, namely t=5, 15, 30 and 60. The results show that the computational
solution remains bounded within (0, 1), as expected. Additionally, there exists a
good agreement between both solutions at small times; the difference between the
exact solutions and the numerical approximations is more pronounced at the times
t = 30 and 60.

In the second run, we change only the parameter values1x = 0.5 and1t = 0.005.
The numerical results are presented in Figure 3, and one immediately notices a better
agreement between the analytical solutions and the computational approximations
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Figure 3. Analytical solution (solid line) and the corresponding
approximation (dotted line) versus the spatial variable x at four
different times, of a system governed by (1) with p= 1. The initial
profile is that given by (3) at t = 0 with C = 1, and the boundary
conditions are provided by (3) at the endpoints of [−50, 150] at
any time. Numerically, the method (6) employed 1x = 0.5 and
1t = 0.005, and the times considered were t = 5, 15, 30, 60.
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to the problem under consideration, even for larger values of time. We also see
that the numerical approximations, like the exact solutions, remain bounded within
(0, 1). This is in agreement with Proposition 1.

5. Conclusions

We have presented a numerical method to approximate bounded solutions of the
classical Fisher–KPP equation from population dynamics. The proposed finite-
difference scheme is a nonstandard method in the way that the reaction term is
approximated, and it may be conveniently expressed in vector form in terms of
the multiplication by a tridiagonal matrix which, under certain circumstances, is
actually an M-matrix. In this way, new approximations may be written as the
product of the previous approximation by the inverse of the M-matrix. Some simple
and direct calculations show that the new approximations are bounded between 0
and 1 under suitable conditions on the computational parameters.

The method was implemented and tested against known exact solutions of the
classical Fisher–KPP equation on a bounded spatial domain. The results show that
the method performs well when approximating the analytical solutions considered.
Moreover, one notices that the method preserves the boundedness and the positivity
of the solutions considered when the parameter conditions derived in the work are
satisfied.
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